Tuberosa R, Salvi S: Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci. 2006, 11: 405-412. 10.1016/j.tplants.2006.06.003.
Article
PubMed
CAS
Google Scholar
Ashraf M: Inducing drought tolerance in plants: Recent advances. Biotechnol Adv. 2010, 28: 169-183. 10.1016/j.biotechadv.2009.11.005.
Article
PubMed
CAS
Google Scholar
Singh BB, Ajeigbe HA, Tarawali SA, Fernandez-Rivera S, Abubakar M: Improving the production and utilization of cowpea as food and fodder. Field Crops Res. 2003, 84: 169-177. 10.1016/S0378-4290(03)00148-5.
Article
Google Scholar
Ehlers JD, Hall AE: Cowpea (Vigna unguiculata L Walp). Field Crops Res. 1997, 53: 187-204. 10.1016/S0378-4290(97)00031-2.
Article
Google Scholar
Sanginga N, Lyasse O, Singh BB: Phosphorus use efficiency and nitrogen balance of cowpea breeding lines in a low P soil of the derived savanna zone in West Africa. Plant Soil. 2000, 220: 119-128. 10.1023/A:1004785720047.
Article
CAS
Google Scholar
Iuchi S, YamaguchiShinozaki K, Urao T, Terao T, Shinozaki K: Novel drought-inducible genes in the highly drought-tolerant cowpea: Cloning of cDNAs and analysis of the expression of the corresponding genes. Plant Cell Physiol. 1996, 37: 1073-1082.
Article
PubMed
CAS
Google Scholar
Iuchi S, YamaguchiShinozaki K, Urao T, Shinozaki K: Characterization of two cDNAs for novel drought-inducible genes in the highly drought-tolerant cowpea. J Plant Res. 1996, 109: 415-424. 10.1007/BF02344557.
Article
CAS
Google Scholar
Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K: A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol. 2000, 123: 553-562. 10.1104/pp.123.2.553.
Article
PubMed
CAS
PubMed Central
Google Scholar
Diop NN, Kidric M, Repellin A, Gareil M, d'Arcy-Lameta A, Thi ATP, Zuily-Fodil Y: A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves. FEBS Lett. 2004, 577: 545-550. 10.1016/j.febslet.2004.10.014.
Article
PubMed
CAS
Google Scholar
El-Maarouf H, d'Arcy-Lameta A, Gareil M, Zuily-Fodil Y, Pham-Thi AT: Cloning and expression under drought of cDNAs coding for two PI-PLCs in cowpea leaves. Plant Physiol Biochem. 2001, 39: 167-172. 10.1016/S0981-9428(00)01226-2.
Article
CAS
Google Scholar
D'Arcy-Lameta A, Ferrari-Iliou R, Contour-Ansel D, Pham-Thi AT, Zuily-Fodil Y: Isolation and characterization of four ascorbate peroxidase cDNAs responsive to water deficit in cowpea leaves. Ann Bot. 2006, 97: 133-140.
Article
PubMed
PubMed Central
Google Scholar
Contour-Ansel D, Torres-Franklin ML, De Carvalho MHC, D'Arcy-Lameta A: Glutathione reductase in leaves of cowpea: Cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment. Ann Bot. 2006, 98: 1279-1287. 10.1093/aob/mcl217.
Article
PubMed
CAS
PubMed Central
Google Scholar
Muchero W, Ehlers JD, Close TJ, Roberts PA: Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. Theor Appl Genet. 2009, 118: 849-863. 10.1007/s00122-008-0944-7.
Article
PubMed
CAS
Google Scholar
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004, 116: 281-297. 10.1016/S0092-8674(04)00045-5.
Article
PubMed
CAS
Google Scholar
Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O: Widespread translational inhibition by plant miRNAs and siRNAs. Science. 2008, 320: 1185-1190. 10.1126/science.1159151.
Article
PubMed
CAS
Google Scholar
Jover-Gil S, Candela H, Ponce MR: Plant microRNAs and development. Int J Dev Biol. 2005, 49: 733-744. 10.1387/ijdb.052015sj.
Article
PubMed
CAS
Google Scholar
Phillips JR, Dalmay T, Bartels D: The role of small RNAs in abiotic stress. FEBS Lett. 2007, 581: 3592-3597. 10.1016/j.febslet.2007.04.007.
Article
PubMed
CAS
Google Scholar
Sunkar R, Chinnusamy V, Zhu J, Zhu JK: Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci. 2007, 12: 301-309. 10.1016/j.tplants.2007.05.001.
Article
PubMed
CAS
Google Scholar
Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science. 2006, 312: 436-439. 10.1126/science.1126088.
Article
PubMed
CAS
Google Scholar
Sunkar R, Zhu JK: Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell. 2004, 16: 2001-2019. 10.1105/tpc.104.022830.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li WX, Oono Y, Zhu JH, He XJ, Wu JM, Iida K, Lu XY, Cui XP, Jin HL, Zhu JK: The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell. 2008, 20: 2238-2251. 10.1105/tpc.108.059444.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhao BT, Liang RQ, Ge LF, Li W, Xiao HS, Lin HX, Ruan KC, Jin YX: Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun. 2007, 354: 585-590. 10.1016/j.bbrc.2007.01.022.
Article
PubMed
CAS
Google Scholar
Sunkar R, Zhou XF, Zheng Y, Zhang WX, Zhu JK: Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol. 2008, 8: 25-10.1186/1471-2229-8-25.
Article
PubMed
PubMed Central
Google Scholar
Liu HH, Tian X, Li YJ, Wu CA, Zheng CC: Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA. 2008, 14: 836-843. 10.1261/rna.895308.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L: Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot. 2010, 61: 4157-4168. 10.1093/jxb/erq237.
Article
PubMed
CAS
Google Scholar
Szittya G, Moxon S, Santos DM, Jing R, Fevereiro MP, Moulton V, Dalmay T: High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics. 2008, 9: 593-10.1186/1471-2164-9-593.
Article
PubMed
PubMed Central
Google Scholar
Lelandais-Briere C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M: Genome-Wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell. 2009, 21: 2780-2796. 10.1105/tpc.109.068130.
Article
PubMed
CAS
PubMed Central
Google Scholar
Subramanian S, Fu Y, Sunkar R, Barbazuk WB, Zhu JK, Yu O: Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics. 2008, 9: 160-10.1186/1471-2164-9-160.
Article
PubMed
PubMed Central
Google Scholar
Arenas-Huertero C, Perez B, Rabanal F, Blanco-Melo D, De la Rosa C, Estrada-Navarrete G, Sanchez F, Covarrubias AA, Reyes JL: Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol. 2009, 70: 385-401. 10.1007/s11103-009-9480-3.
Article
PubMed
CAS
Google Scholar
Lu YZ, Yang XY: Computational identification of novel microRNAs and their targets in Vigna unguiculata. Comp Funct Genomics 2010, pii: 128297.
Google Scholar
Paul S, Kundu A, Pal A: Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress. Plant Cell Tiss Org Cult. 2011, 105: 233-242. 10.1007/s11240-010-9857-7.
Article
CAS
Google Scholar
Hall AE, Cisse N, Thiaw S, Elawad HOA, Ehlers JD, Ismail AM, Fery RL, Roberts PA, Kitch LW, Murdock LL, Boukar O, Phillips RD, McWatters KH: Development of cowpea cultivars and germplasm by the Bean/Cowpea CRSP. Field Crops Res. 2003, 82: 103-134. 10.1016/S0378-4290(03)00033-9.
Article
Google Scholar
Hall A: Breeding for adaptation to drought and heat in cowpea. Eur J Agron. 2004, 21: 447-454. 10.1016/j.eja.2004.07.005.
Article
Google Scholar
Muchero W, Ehlers JD, Roberts PA: Seedling stage drought-induced phenotypes and drought-responsive genes in diverse cowpea genotypes. Crop Sci. 2008, 48: 541-552. 10.2135/cropsci2007.07.0397.
Article
CAS
Google Scholar
Zheng J, Fu J, Gou M, Huai J, Liu Y, Jian M, Huang Q, Guo X, Dong Z, Wang H, Wang G: Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol Biol. 2010, 72: 407-421. 10.1007/s11103-009-9579-6.
Article
PubMed
CAS
Google Scholar
Helms D, Panella L, Buddenhagen IW, Tucker CL, Gepts PL: Registration of California Blackeye 46 Cowpea. Crop Sci. 1991, 31: 1703-1703.
Google Scholar
Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008, 36: D154-D158. 10.1093/nar/gkn221.
Article
PubMed
CAS
PubMed Central
Google Scholar
Audic S, Claverie JM: The significance of digital gene expression profiles. Genome Res. 1997, 7: 986-995.
PubMed
CAS
Google Scholar
Kantar M, Lucas SJ, Budak H: miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta. 2011, 233: 471-484. 10.1007/s00425-010-1309-4.
Article
PubMed
CAS
Google Scholar
Frazier TP, Sun G, Burklew CE, Zhang B: Salt and Drought stresses induce the aberrant expression of microRNA genes in tobacco. Mol Biotechnol. 2011, Epub Feb.26,2011.
Google Scholar
Shen J, Xie K, Xiong L: Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses. Mol Genet Genomics. 2010, 284: 477-488. 10.1007/s00438-010-0581-0.
Article
PubMed
CAS
Google Scholar
Wu G, Poethig RS: Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development. 2006, 133: 3539-3547. 10.1242/dev.02521.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ding D, Zhang LF, Wang H, Liu ZJ, Zhang ZX, Zheng YL: Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot. 2009, 103: 29-38.
Article
PubMed
CAS
PubMed Central
Google Scholar
King MC, Wilson AC: Evolution at two levels in humans and chimpanzees. Science. 1975, 188: 107-116. 10.1126/science.1090005.
Article
PubMed
CAS
Google Scholar
Guilfoylea TJ, Hagena G: Auxin response factors. Curr Opin Plant Biol. 2007, 10: 453-460. 10.1016/j.pbi.2007.08.014.
Article
Google Scholar
Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC: Represssion of Auxin Responsive Factor10 by microRNA160 is critical for seed germination and post-germination stages. Plant J. 2007, 52: 133-146. 10.1111/j.1365-313X.2007.03218.x.
Article
PubMed
CAS
Google Scholar
Yan YS, Chen XY, Yang K, Sun ZX, Fu YP, Zhang YM, Fang RX: Overexpression of an B-box protein gene reduces abiotic stress tolerance and promotes root growth in rice. Mol Plant. 2011, 4: 190-197. 10.1093/mp/ssq066.
Article
PubMed
CAS
Google Scholar
Jia Y, Gu H, Wang X, Chen Q, Shi S, Zhang J, Ma L, Zhang H, Ma H: Molecular cloning and characterization of an F-box family gene carF-box1 from chickpea (Cicer arietinum L.). Mol Biol Rep. 2011, Epub ahead, 12 June 2011.
Google Scholar
Golldack D, Lüking I, Yang O: Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep. 2011, 30: 1383-1391. 10.1007/s00299-011-1068-0.
Article
PubMed
CAS
Google Scholar
Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN: The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell. 2010, 22: 2219-2236. 10.1105/tpc.110.074096.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li F, Guo S, Zhao Y, Chen D, Chong K, Xu Y: Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang wild rice confers freezing and salt tolerance in transgenic Arabidopsis. Plant Cell Rep. 2010, 29: 977-986. 10.1007/s00299-010-0883-z.
Article
PubMed
CAS
Google Scholar
German MA, Pillay M, Jeong DH, Hetawal A, Luo SJ, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers BC, Green PJ: Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol. 2008, 26: 941-946. 10.1038/nbt1417.
Article
PubMed
CAS
Google Scholar
Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ: Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol. 2008, 18: 758-762. 10.1016/j.cub.2008.04.042.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wu L, Zhang QQ, Zhou HY, Ni FR, Wu XY, Qi YJ: Rice MicroRNA effector complexes and targets. Plant Cell. 2009, 21: 3421-3435. 10.1105/tpc.109.070938.
Article
PubMed
CAS
PubMed Central
Google Scholar
Scholander PF, Bradstreet ED, Hemmingsen EA, Hammel HT: Sap pressure in vascular plants - Negative hydrostatic pressure can be measured in plants. Science. 1965, 148: 339-346. 10.1126/science.148.3668.339.
Article
PubMed
CAS
Google Scholar
Ghildiyal M, Seitz H, Horwich MD, Li CJ, Du TT, Lee S, Xu J, Kittler ELW, Zapp ML, Weng ZP, Zamore PD: Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science. 2008, 320: 1077-1081. 10.1126/science.1157396.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J: SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009, 25: 1966-1967. 10.1093/bioinformatics/btp336.
Article
PubMed
CAS
Google Scholar
Close TJ, Wanamaker S, Roose ML, Lyon M: HarvEST. Methods Mol Biol. 2007, 406: 161-177.
PubMed
CAS
Google Scholar
Timko MP, Rushton PJ, Laudeman TW, Bokowiec MT, Chipumuro E, Cheung F, Town CD, Chen X: Sequencing and analysis of the gene-rich space of cowpea. BMC Genomics. 2008, 9: 103-10.1186/1471-2164-9-103.
Article
PubMed
PubMed Central
Google Scholar
Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK: Criteria for annotation of plant MicroRNAs. Plant Cell. 2008, 20: 3186-3190. 10.1105/tpc.108.064311.
Article
PubMed
CAS
PubMed Central
Google Scholar
Markham NR, Zuker M: UNAFold: software for nucleic acid folding andhybriziation. In Bioinformatics, Volume II Structure, Function and Applications.Edited by: Keith JM. Totowa, NJ: Humana Press; 2008:3-31.
Google Scholar
Pearson WR: Flexible sequence similarity searching with the FASTA3 program package. Methods Mol Biol. 2000, 132: 185-219.
PubMed
CAS
Google Scholar
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS: MicroRNA targets in Drosophila. Genome Biol. 2004, 5: R1.
Article
PubMed Central
Google Scholar
Allen E, Xie ZX, Gustafson AM, Carrington JC: microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell. 2005, 121: 207-221. 10.1016/j.cell.2005.04.004.
Article
PubMed
CAS
Google Scholar
Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006, 34: D140-D144. 10.1093/nar/gkj112.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC: High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One. 2007, 2: e219-10.1371/journal.pone.0000219.
Article
PubMed
PubMed Central
Google Scholar
Gonzalez-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR: RNA-Seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell. 2010, 22: 2058-2084. 10.1105/tpc.109.071167.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pall GS, Hamilton AJ: Improved northern blot method for enhanced detection of small RNA. Nature Protocols. 2008, 3: 1077-1084. 10.1038/nprot.2008.67.
Article
PubMed
CAS
Google Scholar