Chester KS: The problem of acquired physiological immunity in plants. Quart Rev Biol. 1933, 8: 275-324. 10.1086/394440.
Article
Google Scholar
Ross AF: Systemic acquired resistance induced by localized virus infections in plants. Virology. 1961, 14: 340-358. 10.1016/0042-6822(61)90319-1.
Article
PubMed
CAS
Google Scholar
Kuc J: Induced immunity to plant disease. Bioscience. 1982, 32: 854-856. 10.2307/1309008.
Article
Google Scholar
Ross AF: Systemic effects of local lesion formation. In Viruses of plants.Edited by: Beemster ABR, Dijkstra J. Amsterdam: North-Holland Publ. Comp.;1966:127-150.
Google Scholar
Mishina TE, Zeier J: Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J. 2007, 50 (3): 500-513. 10.1111/j.1365-313X.2007.03067.x.
Article
PubMed
CAS
Google Scholar
Cameron RK, Paiva NL, Lamb CJ, Dixon RA: Accumulation of salicylic acid and PR-1 gene transcripts in relation to the systemic acquired resistance (SAR) response induced by Pseudomonas syringae pv. tomato in Arabidopsis. Physiol Mol Plant P. 1999, 55 (2): 121-130. 10.1006/pmpp.1999.0214.
Article
CAS
Google Scholar
Delaney TP, Friedrich L, Ryals JA: Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci USA. 1995, 92 (14): 6602-6606. 10.1073/pnas.92.14.6602.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lawton K, Weymann K, Friedrich L, Vernooij B, Uknes S, Ryals J: Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Mol Plant Microbe In. 1995, 8 (6): 863-870. 10.1094/MPMI-8-0863.
Article
CAS
Google Scholar
Malamy J, Klessig DF: Salicylic Acid and Plant Disease Resistance. Plant J. 1992, 2 (5): 643-654. 10.1111/j.1365-313X.1992.tb00133.x.
Article
CAS
Google Scholar
Metraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B: Increase in salicylic Acid at the onset of systemic acquired resistance in cucumber. Science. 1990, 250 (4983): 1004-1006. 10.1126/science.250.4983.1004.
Article
PubMed
CAS
Google Scholar
Yalpani N, Silverman P, Wilson TM, Kleier DA, Raskin I: Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell. 1991, 3 (8): 809-818.
Article
PubMed
CAS
PubMed Central
Google Scholar
Uknes S, Dincher S, Friedrich L, Negrotto D, Williams S, Thompsontaylor H, Potter S, Ward E, Ryals J: Regulation of Pathogenesis-Related Protein-1a Gene Expression in Tobacco. Plant Cell. 1993, 5 (2): 159-169.
Article
PubMed
CAS
PubMed Central
Google Scholar
Champigny MJ, Cameron RK: Action at a Distance: Long-Distance Signals in Induced Resistance. Plant Innate Immunity. 2009, 51: 123-171.
CAS
Google Scholar
Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J: Requirement of Salicylic Acid for the Induction of Systemic Acquired-Resistance. Science. 1993, 261 (5122): 754-756. 10.1126/science.261.5122.754.
Article
PubMed
CAS
Google Scholar
Rasmussen JB, Hammerschmidt R, Zook MN: Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv syringae. Plant Physiol. 1991, 97: 1342-1347. 10.1104/pp.97.4.1342.
Article
PubMed
CAS
PubMed Central
Google Scholar
Vernooij B, Friedrich L, Morse A, Reist R, Kolditzjawhar R, Ward E, Uknes S, Kessmann H, Ryals J: Salicylic Acid Is Not the Translocated Signal Responsible for Inducing Systemic Acquired Resistance but Is Required in Signal Transduction. Plant Cell. 1994, 6 (7): 959-965.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahlgoy P, Metraux JP, Ryals JA: Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance. Plant Cell. 1991, 3 (10): 1085-1094.
Article
PubMed
CAS
PubMed Central
Google Scholar
Smith JA, Hammerschmidt R, Fullbright DW: Rapid induction of systemic resistance in cucumber by Pseudomonas sysringae pv syringae. Physiol Mol Plant P. 1991, 33: 255-261.
Article
Google Scholar
Siegrist J, Jeblick W, Kauss H: Defense Responses in Infected and Elicited Cucumber (Cucumis sativus L) Hypocotyl Segments Exhibiting Acquired Resistance. Plant Physiol. 1994, 105 (4): 1365-1374.
PubMed
CAS
PubMed Central
Google Scholar
Van Loon LC, Van Strien EA: The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant P. 1999, 55 (2): 85-97. 10.1006/pmpp.1999.0213.
Article
CAS
Google Scholar
Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK: A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature. 2002, 419 (6905): 399-403. 10.1038/nature00962.
Article
PubMed
CAS
Google Scholar
Yeats TH, Rose JKC: The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Sci. 2008, 17 (2): 191-198. 10.1110/ps.073300108.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lascombe MB, Bakan B, Buhot N, Marion D, Blein JP, Larue V, Lamb C, Prange T: The structure of "defective in induced resistance'' protein of Arabidopsis thaliana, DIR1, reveals a new type of lipid transfer protein. Protein Sci. 2008, 17 (9): 1522-1530. 10.1110/ps.035972.108.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nandi A, Welti R, Shah J: The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell. 2004, 16 (2): 465-477. 10.1105/tpc.016907.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chaturvedi R, Krothapalli K, Makandar R, Nandi A, Sparks AA, Roth MR, Welti R, Shah J: Plastid omega 3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid. Plant J. 2008, 54 (1): 106-117.
Article
PubMed
CAS
Google Scholar
Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF: Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science. 2007, 318 (5847): 113-116. 10.1126/science.1147113.
Article
PubMed
CAS
Google Scholar
Vlot AC, Liu PP, Cameron RK, Park SW, Yang Y, Kumar D, Zhou F, Padukkavidana T, Gustafsson C, Pichersky E, Klessig DF: Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J. 2008, 56 (3): 445-456. 10.1111/j.1365-313X.2008.03618.x.
Article
PubMed
CAS
Google Scholar
Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT: Priming in Systemic Plant Immunity. Science. 2009, 324 (5923): 89-91. 10.1126/science.1170025.
Article
PubMed
Google Scholar
Liu PP, von Dahl CC, Park SW, Klessig DF: Interconnection between Methyl Salicylate and Lipid-Based Long-Distance Signaling during the Development of Systemic Acquired Resistance in Arabidopsis and Tobacco. Plant Physiol. 2011, 155 (4): 1762-1768. 10.1104/pp.110.171694.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chanda B, Xia Y, Mandal MK, Yu K, Sekine KT, Gao QM, Selote D, Hu Y, Stromberg A, Navarre D, Kachroo A, Kachroo P: Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat Genet. 2011.
Google Scholar
Underwood W, Zhang SQ, He SY: The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana. Plant J. 2007, 52 (4): 658-672. 10.1111/j.1365-313X.2007.03262.x.
Article
PubMed
CAS
Google Scholar
Hauck P, Thilmony R, He SY: A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. P Natl Acad Sci USA. 2003, 100 (14): 8577-8582. 10.1073/pnas.1431173100.
Article
CAS
Google Scholar
Chen ZY, Kloek AP, Boch J, Katagiri F, Kunkel BN: The Pseudomonas syringae avrRpt2 gene product promotes pathogen virulence from inside plant cells. Mol Plant Microbe In. 2000, 13 (12): 1312-1321. 10.1094/MPMI.2000.13.12.1312.
Article
CAS
Google Scholar
Thilmony R, Underwood W, He SY: Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157 : H7. Plant J. 2006, 46 (1): 34-53. 10.1111/j.1365-313X.2006.02725.x.
Article
PubMed
CAS
Google Scholar
Hutcheson SW, Bretz J, Sussan T, Jin SM, Pak K: Enhancer-binding proteins HrpR and HrpS interact to regulate hrp-encoded type III protein secretion in Pseudomonas syringae strains. J Bacteriol. 2001, 183 (19): 5589-5598. 10.1128/JB.183.19.5589-5598.2001.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wei WS, Plovanich-Jones A, Deng WL, Jin QL, Collmer A, Huang HC, He SY: The gene coding for the Hrp pilus structural protein is required for type III secretion of Hrp and Avr proteins in Pseudomonas syringae pv. tomato. P Natl Acad Sci USA. 2000, 97 (5): 2247-2252. 10.1073/pnas.040570097.
Article
CAS
Google Scholar
Thoma S, Kaneko Y, Somerville C: A Nonspecific Lipid Transfer Protein from Arabidopsis Is a Cell Wall Protein. Plant J. 1993, 3 (3): 427-436. 10.1046/j.1365-313X.1993.t01-25-00999.x.
Article
PubMed
CAS
Google Scholar
Pyee J, Yu HS, Kolattukudy PE: Identification of a Lipid Transfer Protein as the Major Protein in the Surface Wax of Broccoli (Brassica oleracea) Leaves. Arch Biochem Biophys. 1994, 311 (2): 460-468. 10.1006/abbi.1994.1263.
Article
PubMed
CAS
Google Scholar
Kader JC: Lipid-transfer proteins in plants. Annu Rev Plant Phys. 1996, 47: 627-654. 10.1146/annurev.arplant.47.1.627.
Article
CAS
Google Scholar
Carvalho AD, Teodoro CED, Da Cunha M, Okorokova-Facanha AL, Okorokov LA, Fernandes KVS, Gomes VM: Intracellular localization of a lipid transfer protein in Vigna unguiculata seeds. Physiol Plantarum. 2004, 122 (3): 328-336. 10.1111/j.1399-3054.2004.00413.x.
Article
CAS
Google Scholar
Yamada M: Lipid Transfer Proteins in Plants and Microorganisms. Plant Cell Physiol. 1992, 33 (1): 1-6.
CAS
Google Scholar
Nigg EA: Nucleocytoplasmic transport: Signals, mechanisms and regulation. Nature. 1997, 386 (6627): 779-787. 10.1038/386779a0.
Article
PubMed
CAS
Google Scholar
Berg RH, Beachy RN: Fluorescent protein applications in plants. Method Cell Biol. 2008, 85: 153-+.
Article
CAS
Google Scholar
Amano Y, Tsubouchi H, Shinohara H, Ogawa M, Matsubayashi Y: Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. P Natl Acad Sci USA. 2007, 104 (46): 18333-18338. 10.1073/pnas.0706403104.
Article
CAS
Google Scholar
Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T: Arabidopsis boron transporter for xylem loading. Nature. 2002, 420 (6913): 337-340. 10.1038/nature01139.
Article
PubMed
CAS
Google Scholar
Malnoy M, Venisse JS, Reynoird JP, Chevreau E: Activation of three pathogen-inducible promoters of tobacco in transgenic pear (Pyrus communis L.) after abiotic and biotic elicitation. Planta. 2003, 216 (5): 802-814.
PubMed
CAS
Google Scholar
Goddijn OJM, Lindsey K, Vanderlee FM, Klap JC, Sijmons PC: Differential Gene Expression in Nematode Induced Feeding Structures of Transgenic Plants Harboring Promoter Gus-a Fusion Constructs. Plant J. 1993, 4 (5): 863-873. 10.1046/j.1365-313X.1993.04050863.x.
Article
PubMed
CAS
Google Scholar
Flury T, Wagner E, Kreuz K: An inducible glutathione S-transferase in soybean hypocotyl is localized in the apoplast. Plant Physiol. 1996, 112 (3): 1185-1190.
PubMed
CAS
PubMed Central
Google Scholar
Kristensen AK, Brunstedt J, Nielsen KK, Roepstorff P, Mikkelsen JD: Characterization of a new antifungal non-specific lipid transfer protein (nsLTP) from sugar beet leaves. Plant Sci. 2000, 155 (1): 31-40. 10.1016/S0168-9452(00)00190-4.
Article
PubMed
CAS
Google Scholar
Haritatos E, Medville R, Turgeon R: Minor vein structure and sugar transport in Arabidopsis thaliana. Planta. 2000, 211 (1): 105-111. 10.1007/s004250000268.
Article
PubMed
CAS
Google Scholar
Imlau A, Truernit E, Sauer N: Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. Plant Cell. 1999, 11 (3): 309-322.
Article
PubMed
CAS
PubMed Central
Google Scholar
Stadler R, Wright KM, Lauterbach C, Amon G, Gahrtz M, Feuerstein A, Oparka KJ, Sauer N: Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant J. 2005, 41 (2): 319-331.
Article
PubMed
CAS
Google Scholar
Buhot N, Gomes E, Milat ML, Ponchet M, Marion D, Lequeu J, Delrot S, Coutos-Thevenot P, Blein JP: Modulation of the biological activity of a tobacco LTP1 by lipid complexation. Mol Biol Cell. 2004, 15 (11): 5047-5052. 10.1091/mbc.E04-07-0575.
Article
PubMed
CAS
PubMed Central
Google Scholar
Douliez JP, Michon T, Marion D: Steady-state tyrosine fluorescence to study the lipid-binding properties of a wheat non-specific lipid-transfer protein (nsLTP1). Bba-Biomembranes. 2000, 1467 (1): 65-72. 10.1016/S0005-2736(00)00197-8.
Article
CAS
Google Scholar
Douliez JP, Jegou S, Pato C, Molle D, Tran V, Marion D: Binding of two mono-acylated lipid monomers by the barley lipid transfer protein, LTP1, as viewed by fluorescence, isothermal titration calorimetry and molecular modelling. Eur J Biochem. 2001, 268 (2): 384-388. 10.1046/j.1432-1033.2001.01889.x.
Article
PubMed
CAS
Google Scholar
Kader JC: Lipid-transfer proteins: A puzzling family of plant proteins. Trends Plant Sci. 1997, 2 (2): 66-70. 10.1016/S1360-1385(97)82565-4.
Article
Google Scholar
Tassin S, Broekaert WF, Marion D, Acland DP, Ptak M, Vovelle F, Sodano P: Solution structure of Ace-AMP1, a potent antimicrobial protein extracted from onion seeds. Structural analogies with plant nonspecific lipid transfer proteins. Biochemistry-Us. 1998, 37 (11): 3623-3637. 10.1021/bi9723515.
Article
CAS
Google Scholar
Tassin-Moindrot S, Caille A, Douliez JP, Marion D, Vovelle F: The wide binding properties of a wheat nonspecific lipid transfer protein. Solution structure of a complex with prostaglandin B2. Eur J Biochem. 2000, 267 (4): 1117-1124. 10.1046/j.1432-1327.2000.01109.x.
Article
PubMed
CAS
Google Scholar
Kader JC, Julienne M, Vergnolle C: Purification and characterization of a spinach leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts. Eur J Biochem. 1984, 139 (2): 411-416. 10.1111/j.1432-1033.1984.tb08020.x.
Article
PubMed
CAS
Google Scholar
Terras FRG, Goderis IJ, Vanleuven F, Vanderleyden J, Cammue BPA, Broekaert WF: In vitro Antifungal Activity of a Radish (Raphanus sativus L) Seed Protein Homologous to Nonspecific Lipid Transfer Proteins. Plant Physiol. 1992, 100 (2): 1055-1058. 10.1104/pp.100.2.1055.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cammue BP, Thevissen K, Hendriks M, Eggermont K, Goderis IJ, Proost P, Van Damme J, Osborn RW, Guerbette F, Kader JC, et al: A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol. 1995, 109 (2): 445-455. 10.1104/pp.109.2.445.
Article
PubMed
CAS
PubMed Central
Google Scholar
Molina A, GarciaOlmedo F: Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2. Plant J. 1997, 12 (3): 669-675. 10.1046/j.1365-313X.1997.00669.x.
Article
PubMed
CAS
Google Scholar
Jayaraj J, Punja ZK: Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Plant Cell Rep. 2007, 26 (9): 1539-1546. 10.1007/s00299-007-0368-x.
Article
PubMed
CAS
Google Scholar
Dong X, Mindrinos M, Davis KR, Ausubel FM: Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. Plant Cell. 1991, 3 (1): 61-72.
Article
PubMed
CAS
PubMed Central
Google Scholar
Whalen MC, Innes RW, Bent AF, Staskawicz BJ: Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell. 1991, 3 (1): 49-59.
Article
PubMed
CAS
PubMed Central
Google Scholar
Guttman DS, Greenberg JT: Functional analysis of the type III effectors AvrRpt2 and AvrRpm1 of Pseudomonas syringae with the use of a single-copy genomic integration system. Mol Plant Microbe In. 2001, 14 (2): 145-155. 10.1094/MPMI.2001.14.2.145.
Article
CAS
Google Scholar
Cameron RK, Dixon RA, Lamb CJ: Biologically Induced Systemic Acquired Resistance in Arabidopsis thaliana. Plant J. 1994, 5 (5): 715-725. 10.1111/j.1365-313X.1994.00715.x.
Article
Google Scholar
Varet A, Hause B, Hause G, Scheel D, Lee J: The Arabidopsis NHL3 gene encodes a plasma membrane protein and its overexpression correlates with increased resistance to Pseudomonas syringae pv. tomato DC3000. Plant Physiol. 2003, 132 (4): 2023-2033. 10.1104/pp.103.020438.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cui J, Bahrami AK, Pringle EG, Hernandez-Guzman G, Bender CL, Pierce NE, Ausubel FM: Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. P Natl Acad Sci USA. 2005, 102 (5): 1791-1796. 10.1073/pnas.0409450102.
Article
CAS
Google Scholar
Zabala MD, Bennett MH, Truman WH, Grant MR: Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses. Plant J. 2009, 59 (3): 375-386. 10.1111/j.1365-313X.2009.03875.x.
Article
CAS
Google Scholar
Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu GH, Nomura K, He SY, Howe GA, Browse J: JAZ repressor proteins are targets of the SCFCO11 complex during jasmonate signalling. Nature. 2007, 448 (7154): 661-U662. 10.1038/nature05960.
Article
PubMed
CAS
Google Scholar
Thoma S, Hecht U, Kippers A, Botella J, Devries S, Somerville C: Tissue-Specific Expression of a Gene Encoding a Cell Wall-Localized Lipid Transfer Protein from Arabidopsis. Plant Physiol. 1994, 105 (1): 35-45. 10.1104/pp.105.1.35.
Article
PubMed
CAS
PubMed Central
Google Scholar
Clark AM, Bohnert HJ: Cell-specific expression of genes of the lipid transfer protein family from Arabidopsis thaliana. Plant Cell Physiol. 1999, 40 (1): 69-76.
Article
PubMed
CAS
Google Scholar
Arondel V, Vergnolle C, Cantrel C, Kader JC: Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana. Plant Sci. 2000, 157 (1): 1-12. 10.1016/S0168-9452(00)00232-6.
Article
CAS
Google Scholar
Garcia-Olmedo F, Molina A, Segura A, Moreno M: The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol. 1995, 3 (2): 72-74. 10.1016/S0966-842X(00)88879-4.
Article
PubMed
CAS
Google Scholar
Kus JV, Zaton K, Sarkar R, Cameron RK: Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. Plant Cell. 2002, 14 (2): 479-490. 10.1105/tpc.010481.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cameron RK, Zaton K: Intercellular salicylic acid accumulation is important for age-related resistance in Arabidopsis to Pseudomonas syringae. Physiol Mol Plant P. 2004, 65 (4): 197-209. 10.1016/j.pmpp.2005.02.002.
Article
CAS
Google Scholar
Jefferson RA, Kavanagh TA, Bevan MW: Beta-Glucuronidase (Gus) as a Sensitive and Versatile Gene Fusion Marker in Plants. J Cell Biochem. 1987, 57-57.
Google Scholar
Clough SJ, Bent AF: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16 (6): 735-743. 10.1046/j.1365-313x.1998.00343.x.
Article
PubMed
CAS
Google Scholar
Curtis MD, Grossniklaus U: A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 2003, 133 (2): 462-469. 10.1104/pp.103.027979.
Article
PubMed
CAS
PubMed Central
Google Scholar