McGrath SP, Zhao F, Crosland AR, Salmon SE: Sulphur status in British wheat grain and its relationship with quality parameters. Asp Appl Biol. 1993, 36: 317-326.
Google Scholar
Schnug E: Sulphur nutritional status of European crops and consequences for agriculture. Sulphur Agric. 1991, 15: 7-12.
Google Scholar
Zhao F, McGrath SP: Assessing the risk of sulphur deficiency in cereals. J Sci Food Agric. 1993, 63: 119-10.1002/jsfa.2740630106.
Article
Google Scholar
Buchner P, Takahashi H, Hawkesford MJ: Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot. 2004, 55: 1765-73. 10.1093/jxb/erh206.
Article
PubMed
CAS
Google Scholar
Kaiser G, Martinoia E, Schroppelmeier G, Heber U: Active-transport of sulfate into the vacuole of plant cells provides halotolerance and can detoxify SO2. J Plant Physiol. 1989, 133: 756-763.
Article
CAS
Google Scholar
Martinoia E, Massonneau A, Frangne N: Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiol. 2000, 41: 1175-1186. 10.1093/pcp/pcd059.
Article
PubMed
CAS
Google Scholar
Martinoia E, Maeshima M, Neuhaus HE: Vacuolar transporters and their essential role in plant metabolism. J Exp Bot. 2007, 58: 83-102. 10.1093/jxb/erl183.
Article
PubMed
CAS
Google Scholar
Tabe L, Droux M: Sulfur assimilation in developing lupin cotyledons could contribute significantly to the accumulation of organic sulfur reserves in the seed. Plant Physiol. 2001, 126: 176-187. 10.1104/pp.126.1.176.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rouached H, Berthomieu P, El Kassis E, Cathala N, Catherinot V, Labesse G, Davidian JC, Fourcroy P: Structural and Functional Analysis of the C-terminal STAS (Sulfate Transporter and Anti-sigma Antagonist) Domain of the Arabidopsis thaliana Sulfate Transporter SULTR1.2. J Biol Chem. 2005, 280: 15976-15983. 10.1074/jbc.M501635200.
Article
PubMed
CAS
Google Scholar
Tomatsu H, Takano J, Takahashi H, Watanabe-Takahashi A, Shibagaki N, Fujiwara T: An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proc Natl Acad Sci USA. 2007, 104: 18807-12. 10.1073/pnas.0706373104.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hawkesford MJ: Transporter gene families in plants: the sulphate transporter gene family: redundancy or specialization?. Physiol Plant. 2003, 117: 115-163. 10.1034/j.1399-3054.2003.00034.x.
Article
Google Scholar
Smith FW, Ealing PM, Hawkesford MJ, Clarkson T: Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci USA. 1995, 92: 9373-9377. 10.1073/pnas.92.20.9373.
Article
PubMed
CAS
PubMed Central
Google Scholar
Smith FW, Hawkesford MJ, Ealing PM, Clarkson DT, Vanden Berg PJ, Belcher AR, Warrilow AG: Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant J. 1997, 12: 875-84. 10.1046/j.1365-313X.1997.12040875.x.
Article
PubMed
CAS
Google Scholar
Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K: The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. The Plant J. 2000, 23: 171-182. 10.1046/j.1365-313x.2000.00768.x.
Article
PubMed
CAS
Google Scholar
Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP: Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J. 2002, 29: 475-486. 10.1046/j.0960-7412.2001.01232.x.
Article
PubMed
CAS
Google Scholar
Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K: Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J. 2002, 29: 465-473. 10.1046/j.0960-7412.2001.01231.x.
Article
PubMed
CAS
Google Scholar
El Kassis E, Cathala N, Rouached H, Fourcroy P, Berthomieu P, Terry N, Davidian JC: Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenate toxicity. Plant Physiol. 2007, 143: 1231-1241. 10.1104/pp.106.091462.
Article
PubMed
CAS
PubMed Central
Google Scholar
Awazuhara M, Fujiwara T, Hayashi H, Watanabe-Takahashi A, Takahashi H, Saito K: The function of SULTR2;1 sulfate transporter during seed development in Arabidopsis thaliana. Plant Physiol. 2005, 125: 95-105. 10.1111/j.1399-3054.2005.00543.x.
Article
CAS
Google Scholar
Buchner P, Stuiver E, Westerman S, Wirtz M, Hell R, Hawkesford M, De Kok L: Regulation of Sulfate Uptake and Expression of Sulfate Transporter Genes in Brassica oleracea as Affected by Atmospheric H2S and Pedospheric Sulfate Nutrition. Plant Physiol. 2004, 136: 3396-3408. 10.1104/pp.104.046441.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kataoka T, Hayashi N, Yamaya T, Takahashi H: Root-to-shoot transport of sulfate in Arabidopsis: Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiol. 2004, 136: 4198-4204. 10.1104/pp.104.045625.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H: Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell. 2004, 16: 2693-2704. 10.1105/tpc.104.023960.
Article
PubMed
CAS
PubMed Central
Google Scholar
Toufighi K, Brady SM, Austin R, Ly E, Provart NJ: The Botany Array Resource: e-Northerns, Expression Angling, and promoter analyses. Plant J. 2005, 43: 153-163. 10.1111/j.1365-313X.2005.02437.x.
Article
PubMed
CAS
Google Scholar
Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Huaming C, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter D, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR: Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. 2003, 301: 653-657. 10.1126/science.1086391.
Article
PubMed
Google Scholar
Shibagaki N, Grossman AR: The role of the STAS domain in the function and biogenesis of a sulfate transporter as probed by random mutagenesis. J Biol Chem. 2006, 281: 22964-22973. 10.1074/jbc.M603462200.
Article
PubMed
CAS
Google Scholar
Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J, Job D: Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol. 2001, 126: 835-848. 10.1104/pp.126.2.835.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J, Job D: Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol. 2002, 129: 823-837. 10.1104/pp.002816.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D: The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol. 2004, 134: 1598-1613. 10.1104/pp.103.036293.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson SA, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl TM, Terryn N, Gielen J, Villarroel R, De Clerck R, Van Montagu M, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian KD, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Düsterhöft A, Moores T, Jones JD, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes HW, Klosterman S, Schueller C, Chalwatzis N: Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature. 1998, 391: 485-488. 10.1038/35140.
Article
PubMed
CAS
Google Scholar
Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH: The impact of oxidative stress on Arabidopsis mitochondria. Plant J. 2002, 32: 891-904. 10.1046/j.1365-313X.2002.01474.x.
Article
PubMed
CAS
Google Scholar
Bindschedler LV, Palmblad M, Cramer R: Hydroponic isotope labelling of entire plants (HILEP) for quantitative plant proteomics; an oxidative stress case study. Phytochem. 2008, 69: 1962-1972. 10.1016/j.phytochem.2008.04.007.
Article
CAS
Google Scholar
Desikan R, Mackerness SA-H, Hancock JT, Neill SJ: Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 2001, 127: 159-172. 10.1104/pp.127.1.159.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nikiforova V, Freitag J, Kempa S, Adamikn M, Hesse H, Hoefgen R: Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J. 2003, 33: 633-650. 10.1046/j.1365-313X.2003.01657.x.
Article
PubMed
CAS
Google Scholar
Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, Yamaya T, Takahashi H: Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol. 2003, 132: 597-605. 10.1104/pp.102.019802.
Article
PubMed
CAS
PubMed Central
Google Scholar
Higashi Y, Hirai MY, Fujiwara T, Naito S, Noji M, Saito K: Proteomic and transcriptomic analysis of Arabidopsis seeds: molecular evidence for successive processing of seed proteins and its implication in the stress response to sulfur nutrition. Plant J. 2006, 48: 557-571. 10.1111/j.1365-313X.2006.02900.x.
Article
PubMed
CAS
Google Scholar
Chen W, Singh K: The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J. 1999, 19: 667-677. 10.1046/j.1365-313x.1999.00560.x.
Article
PubMed
CAS
Google Scholar
Job C, Rajjou L, Lovigny Y, Belghazi M, Job D: Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol. 2005, 138: 790-802. 10.1104/pp.105.062778.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rajjou L, Debeaujon I: Seed longevity: Survival and maintenance of high germination ability of dry seeds. C R Biol. 2008, 331: 796-805. 10.1016/j.crvi.2008.07.021.
Article
PubMed
Google Scholar
Bailly C, El-Maarouf-Bouteau H, Corbineau F: From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C R Biol. 2008, 331: 806-814. 10.1016/j.crvi.2008.07.022.
Article
PubMed
CAS
Google Scholar
Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N: Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie. 2006, 88: 1751-1765. 10.1016/j.biochi.2006.04.018.
Article
PubMed
CAS
Google Scholar
Cho UH, Seo NH: Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci. 2005, 168: 113-120. 10.1016/j.plantsci.2004.07.021.
Article
CAS
Google Scholar
Srivastava S, Srivastava AK, Suprasanna P, D'Souza SF: Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Exp Bot. 2009, 60: 3419-3431. 10.1093/jxb/erp181.
Article
PubMed
CAS
Google Scholar
Mascher R, Lippmann B, Holzinger S, Bergmann H: Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci. 2002, 163: 961-969. 10.1016/S0168-9452(02)00245-5.
Article
CAS
Google Scholar
Li F, Asami T, Wu X, Tsang EWT, Cutler A: A Putative Hydroxysteroid Dehydrogenase Involved in Regulating Plant Growth and Development. Plant Physiol. 2007, 145: 87-97. 10.1104/pp.107.100560.
Article
PubMed
CAS
PubMed Central
Google Scholar
Baud S, Lepiniec L: Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis. Plant Physiology and Biochemistry. 2009, 47: 448-455. 10.1016/j.plaphy.2008.12.006.
Article
PubMed
CAS
Google Scholar
Higgins TJ, Chandler PM, Randall PJ, Spencer D, Beach LR, Blagrove RJ, Kortt AA, Inglis AS: Gene structure, protein structure, and regulation of the synthesis of a sulfur-rich protein in pea seeds. J Biol Chem. 1986, 261: 11124-11130.
PubMed
CAS
Google Scholar
Hirai MY, Fujiwara T, Chino M, Naito S: Effects of sulfate concentrations on the expression of a soybean seed storage protein gene and its reversibility in transgenic Arabidopsis thaliana. Plant Cell Physiol. 1995, 36: 1331-1339.
PubMed
CAS
Google Scholar
Tabe L, Droux M: Limits to sulfur accumulation in transgenic lupin seeds expressing a foreign sulfur-rich protein. Plant Physiol. 2002, 128: 1137-1148. 10.1104/pp.010935.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse H, Hoefgen R: Systems Rebalancing of Metabolism in Response to Sulfur Deprivation, as Revealed by Metabolome Analysis of Arabidopsis Plants. Plant Physiol. 2005, 138: 304-318. 10.1104/pp.104.053793.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nikiforova VJ, Bielecka M, Gakière B, Krueger S, Rinder J, Kempa S, Morcuende R, Scheible WR, Hesse H, Hoefgen R: Effect of sulfur availability on the integrity of amino acid biosynthesis in plants. Amino acids. 2006, 30: 173-183. 10.1007/s00726-005-0251-4.
Article
PubMed
CAS
Google Scholar
Ravanel S, Gakière B, Job D, Douce R: The specific features of methionine biosynthesis and metabolism in plants. Proc Nat Acad Sci USA. 1998, 95: 7805-7812. 10.1073/pnas.95.13.7805.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ravanel S, Block MA, Rippert P, Jabrin S, Curien G, Rébeillé F, Douce R: Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol. J Biol Chem. 2004, 279: 22548-22557. 10.1074/jbc.M313250200.
Article
PubMed
CAS
Google Scholar
Levine RL, Mosoni L, Berlett BS, Stadtman ER: Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci USA. 1996, 93: 15036-15040. 10.1073/pnas.93.26.15036.
Article
PubMed
CAS
PubMed Central
Google Scholar
Levine R, Berlett B, Moskovitz J, Mosoni L, Stadtman ER: Methionine residues may protect proteins from critical oxidative damage. Mechanisms of Ageing and Development. 1999, 107: 323-332. 10.1016/S0047-6374(98)00152-3.
Article
PubMed
CAS
Google Scholar
Bewley JD, Black M: Seeds: Physiology of development and germination. 1994, New York Plenum Press
Book
Google Scholar
Kranner I, Birtic S: Modulating Role for Antioxidants in Desiccation Tolerance. Integrative and Comparative Biology. 2005, 45: 734-740. 10.1093/icb/45.5.734.
Article
PubMed
CAS
Google Scholar
Bräutigam K, Dietzel L, Kleine T, Ströher E, Wormuth D, Dietz KJ, Radke D, Wirtz M, Hell R, Dörmann P, Nunes-Nesi A, Schauer N, Fernie AR, Oliver SN, Geigenberger P, Leister D, Pfannschmidt T: Dynamic Plastid Redox Signals Integrate Gene Expression and Metabolism to Induce Distinct Metabolic States in Photosynthetic Acclimation in Arabidopsis. Plant Cell. 2009, 21: 2715-32. 10.1105/tpc.108.062018.
Article
PubMed
PubMed Central
Google Scholar
Fey V, Wagner R, Bräutigam K, Wirtz M, Hell R, Dietzmann A, Leister D, Oelmüller R, Pfannschmidt T: Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana. J Biol Chem. 2005, 280: 5318-5328. 10.1074/jbc.M406358200.
Article
PubMed
CAS
Google Scholar
Meyer AJ: The integration of glutathione homeostasis and redox signaling. J Plant Physiol. 2008, 165: 1390-1403. 10.1016/j.jplph.2007.10.015.
Article
PubMed
CAS
Google Scholar
Schwarzländer M, Fricker MD, Müller C, Marty L, Brach T, Novak J, Sweetlove LJ, Hell R, Meyer AJ: Confocal imaging of glutathione redox potential in living plant cells. J Microsc. 2008, 231: 299-316. 10.1111/j.1365-2818.2008.02030.x.
Article
PubMed
Google Scholar
Doyle JL, Doyle JJ: Isolation of plant DNA from fresh tissue. Focus. 1990, 12: 13-15.
Google Scholar
Chang S, Puryear J, Cairney J: A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep. 1993, 11: 113-116. 10.1007/BF02670468.
Article
CAS
Google Scholar
Wirtz M, Droux M, Hell R: O-Acetylserine (thiol) lyase: An enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. J Exp Bot. 2004, 55: 1785-1798. 10.1093/jxb/erh201.
Article
PubMed
CAS
Google Scholar
Gallardo K, Le Signor C, Vandekerckhove J, Thompson RD, Burstin J: Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol. 2003, 133: 664-82. 10.1104/pp.103.025254.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bradford M: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.
Article
PubMed
CAS
Google Scholar
Mathesius U, Keijzers G, Natera SH, Weinman JJ, Djordjevic MA, Rolfe BG: Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics. 2001, 1: 1424-1240. 10.1002/1615-9861(200111)1:11<1424::AID-PROT1424>3.0.CO;2-J.
Article
PubMed
CAS
Google Scholar
Gallardo K, Firnhaber C, Zuber H, Héricher D, Belghazi M, Henry C, Küster H, Thompson R: A Combined Proteome and Transcriptome Analysis of Developing Medicago truncatula Seeds: Evidence for Metabolic Specialization of Maternal and Filial Tissues. MCP. 2007, 6: 2165-2179.
PubMed
CAS
Google Scholar