Kende H, Bradford K, Brummell D, Cho HT, Cosgrove D, Fleming A, Gehring C, Lee Y, Queen-Mason S, Rose J, Voesenek LA: Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol. 2004, 55: 311-314. 10.1007/s11103-004-0158-6.
Article
PubMed
CAS
Google Scholar
McQueen-Mason SJ, Cosgrove DJ: Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol. 1995, 107: 87-100.
PubMed
CAS
PubMed Central
Google Scholar
Sampedro J, Carey RE, Cosgrove DJ: Genome histories clarify evolution of the expansin superfamily: new insights from the poplar genome and pine ESTs. J Plant Res. 2006, 119: 11-21. 10.1007/s10265-005-0253-z.
Article
PubMed
CAS
Google Scholar
Gehring CA, Irving HR: Natriuretic peptides--a class of heterologous molecules in plants. Int J Biochem Cell Biol. 2003, 35: 1318-1322. 10.1016/S1357-2725(03)00032-3.
Article
PubMed
CAS
Google Scholar
Ludidi NN, Heazlewood JL, Seoighe C, Irving HR, Gehring CA: Expansin-like molecules: novel functions derived from common domains. J Mol Evol. 2002, 54: 587-594. 10.1007/s00239-001-0055-4.
Article
PubMed
CAS
Google Scholar
Maryani MM, Morse MV, Bradley G, Irving HR, Cahill DM, Gehring CA: In situ localization associates biologically active plant natriuretic peptide immuno-analogues with conductive tissue and stomata. J Exp Bot. 2003, 54: 1553-1564. 10.1093/jxb/erg174.
Article
PubMed
CAS
Google Scholar
Boudart G, Jamet E, Rossignol M, Lafitte C, Borderies G, Jauneau A, Esquerre-Tugaye MT, Pont-Lezica R: Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: identification by mass spectrometry and bioinformatics. Proteomics. 2005, 5: 212-221. 10.1002/pmic.200400882.
Article
PubMed
CAS
Google Scholar
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W: GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 2004, 136: 2621-2632. 10.1104/pp.104.046367.
Article
PubMed
CAS
PubMed Central
Google Scholar
Maryani MM, Bradley G, Cahill DM, Gehring CA: Natriuretic peptides and immunoreactants modify the osmoticum-dependent volume changes in Solanum tuberosum L. mesophyll cell protoplasts. Plant Sci. 2001, 161: 443-452. 10.1016/S0168-9452(01)00423-X.
Article
CAS
Google Scholar
Ludidi N, Morse M, Sayed M, Wherrett T, Shabala S, Gehring C: A recombinant plant natriuretic peptide causes rapid and spatially differentiated K+, Na+ and H+ flux changes in Arabidopsis thaliana roots. Plant Cell Physiol. 2004, 45: 1093-1098. 10.1093/pcp/pch113.
Article
PubMed
CAS
Google Scholar
Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Blasing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible WR: Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ. 2007, 30: 85-112. 10.1111/j.1365-3040.2006.01608.x.
Article
PubMed
CAS
Google Scholar
Meier S, Bastian R, Donaldson L, Murray S, Bajic V, Gehring C: Co-expression and promoter content analyses assign a role in biotic and abiotic stress responses to plant natriuretic peptides. BMC Plant Biol. 2008, 8: 24. 10.1186/1471-2229-8-24.
Article
PubMed
PubMed Central
Google Scholar
Nembaware V, Seoighe C, Sayed M, Gehring C: A plant natriuretic peptide-like gene in the bacterial pathogen Xanthomonas axonopodis may induce hyper-hydration in the plant host: a hypothesis of molecular mimicry. BMC Evol Biol. 2004, 4: 10. 10.1186/1471-2148-4-10.
Article
PubMed
PubMed Central
Google Scholar
Gottig N, Garavaglia BS, Daurelio LD, Valentine A, Gehring C, Orellano EG, Ottado J: Xanthomonas axonopodis pv. citri uses a plant natriuretic peptide-like protein to modify host homeostasis. Proc Natl Acad Sci USA. 2008, 105: 18631-18636. 10.1073/pnas.0810107105.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gottig N, Garavaglia BS, Daurelio LD, Valentine A, Gehring C, Orellano EG, Ottado J: Modulating host homeostasis as a strategy in the plant-pathogen arms race. Commun Integr Biol. 2009, 2: 89-90.
Article
PubMed
CAS
PubMed Central
Google Scholar
Glazebrook J: Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol. 2005, 43: 205-227. 10.1146/annurev.phyto.43.040204.135923.
Article
PubMed
CAS
Google Scholar
Spoel SH, Dong X: Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe. 2008, 3: 348-351. 10.1016/j.chom.2008.05.009.
Article
PubMed
CAS
Google Scholar
Bender CL, arcon-Chaidez F, Gross DC: Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev. 1999, 63: 266-292.
PubMed
CAS
PubMed Central
Google Scholar
Staswick PE: JAZing up jasmonate signaling. Trends Plant Sci. 2008, 13: 66-71. 10.1016/j.tplants.2007.11.011.
Article
PubMed
CAS
Google Scholar
Koornneef A, Pieterse CM: Cross talk in defense signaling. Plant Physiol. 2008, 146: 839-844. 10.1104/pp.107.112029.
Article
PubMed
CAS
PubMed Central
Google Scholar
Melotto M, Underwood W, Koczan J, Nomura K, He SY: Plant stomata function in innate immunity against bacterial invasion. Cell. 2006, 126: 969-980. 10.1016/j.cell.2006.06.054.
Article
PubMed
CAS
Google Scholar
Robert-Seilaniantz A, Navarro L, Bari R, Jones JD: Pathological hormone imbalances. Curr Opin Plant Biol. 2007, 10: 372-379. 10.1016/j.pbi.2007.06.003.
Article
PubMed
CAS
Google Scholar
Chen Z, Agnew JL, Cohen JD, He P, Shan L, Sheen J, Kunkel BN: Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci USA. 2007, 104: 20131-20136. 10.1073/pnas.0704901104.
Article
PubMed
CAS
PubMed Central
Google Scholar
de Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Rodriguez EP, Bogre L, Grant M: Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J. 2007, 26: 1434-1443. 10.1038/sj.emboj.7601575.
Article
PubMed
CAS
PubMed Central
Google Scholar
Goel AK, Lundberg D, Torres MA, Matthews R, kimoto-Tomiyama C, Farmer L, Dangl JL, Grant SR: The Pseudomonas syringae type III effector HopAM1 enhances virulence on water-stressed plants. Mol Plant Microbe Interact. 2008, 21: 361-370. 10.1094/MPMI-21-3-0361.
Article
PubMed
CAS
Google Scholar
Garavaglia BS, Thomas L, Gottig N, Dunger G, Garofalo CG, Daurelio LD, Ndimba B, Orellano EG, Gehring C, Ottado J: A eukaryotic-acquired gene by a biotrophic phytopathogen allows prolonged survival on the host by counteracting the shut-down of plant photosynthesis. PLoS ONE. 2010, 5: e8950. 10.1371/journal.pone.0008950.
Article
PubMed
PubMed Central
Google Scholar
Baker NR, Rosenqvist E: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot. 2004, 55: 1607-1621. 10.1093/jxb/erh196.
Article
PubMed
CAS
Google Scholar
Morse M, Pironcheva G, Gehring C: AtPNP-A is a systemically mobile natriuretic peptide immunoanalogue with a role in Arabidopsis thaliana cell volume regulation. FEBS Lett. 2004, 556: 99-103. 10.1016/S0014-5793(03)01384-X.
Article
PubMed
CAS
Google Scholar
Wang YH, Gehring C, Cahill DM, Irving HR: Plant natriuretic peptide active site determination and effects on cGMP and cell volume regulation. Funct Plant Biol. 2007, 34: 653. 10.1071/FP06316.
Article
CAS
Google Scholar
Chernyad'ev II: Effect of water stress on the photosynthetic apparatus of plants and the protective role of cytokinins: A review. Appl Biochem Microbiol. 2005, 41: 115-128. 10.1007/s10438-005-0021-9.
Article
Google Scholar
Rivero RM, Shulaev V, Blumwald E: Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol. 2009, 150: 1530-1540. 10.1104/pp.109.139378.
Article
PubMed
CAS
PubMed Central
Google Scholar
Portis AR, Salvucci ME, Ogren WL: Activation of ribulosebisphosphate carboxylase/oxygenase at physiological CO(2) and ribulosebisphosphate concentrations by Rubisco activase. Plant Physiol. 1986, 82: 967-971. 10.1104/pp.82.4.967.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mate CJ, von Caemmerer S, Evans JR, Hudson GS, Andrews TJ: The relationship between CO2-assimilation rate, rubisco carbamylation and rubisco activase content in activase-deficient transgenic tobacco suggests a simple model of activase action. Planta. 1996, 198: 604-613. 10.1007/BF00262648.
Article
CAS
Google Scholar
Johnson EA: Altered expression of the chloroplast ATP synthase through site-directed mutagenesis in Chlamydomonas reinhardtii. Photosynth Res. 2008, 96: 153-162. 10.1007/s11120-008-9296-z.
Article
PubMed
CAS
Google Scholar
Avni A, Avital S, Gromet-Elhanan Z: Reactivation of the chloroplast CF1-ATPase beta subunit by trace amounts of the CF1 alpha subunit suggests a chaperonin-like activity for CF1 alpha. J Biol Chem. 1991, 266: 7317-7320.
PubMed
CAS
Google Scholar
Mohr G, Lambowitz AM: Putative proteins related to group II intron reverse transcriptase/maturases are encoded by nuclear genes in higher plants. Nucleic Acids Res. 2003, 31: 647-652. 10.1093/nar/gkg153.
Article
PubMed
CAS
PubMed Central
Google Scholar
Neuhaus H, Link G: The chloroplast tRNALys(UUU) gene from mustard (Sinapis alba) contains a class II intron potentially coding for a maturase-related polypeptide. Curr Genet. 1987, 11: 251-257. 10.1007/BF00355398.
Article
PubMed
CAS
Google Scholar
Ems SC, Morden CW, Dixon CK, Wolfe KH, dePamphilis CW, Palmer JD: Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. Plant Mol Biol. 1995, 29: 721-733. 10.1007/BF00041163.
Article
PubMed
CAS
Google Scholar
Vogel J, Borner T, Hess WR: Comparative analysis of splicing of the complete set of chloroplast group II introns in three higher plant mutants. Nucleic Acids Res. 1999, 27: 3866-3874. 10.1093/nar/27.19.3866.
Article
PubMed
CAS
PubMed Central
Google Scholar
Barthet MM, Hilu KW: Expression of matK: functional and evolutionary implications. Am J Bot. 2007, 94: 1402-1412. 10.3732/ajb.94.8.1402.
Article
PubMed
CAS
Google Scholar
Jenkins BD, Kulhanek DJ, Barkan A: Nuclear mutations that block group II RNA splicing in maize chloroplasts reveal several intron classes with distinct requirements for splicing factors. Plant Cell. 1997, 9: 283-296. 10.1105/tpc.9.3.283.
Article
PubMed
CAS
PubMed Central
Google Scholar
du Jardin P, Portetelle D, Harvengt L, Dumont M, Wathelet B: Expression of intron-encoded maturase-like polypeptides in potato chloroplasts. Curr Genet. 1994, 25: 158-163. 10.1007/BF00309542.
Article
PubMed
CAS
Google Scholar
Liere K, Link G: RNA-binding activity of the matK protein encoded by the chloroplast trnK intron from mustard (Sinapis alba L.). Nucleic Acids Res. 1995, 23: 917-921. 10.1093/nar/23.6.917.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mayer U, Jurgens G: Microtubule cytoskeleton: a track record. Curr Opin Plant Biol. 2002, 5: 494-501. 10.1016/S1369-5266(02)00302-3.
Article
PubMed
CAS
Google Scholar
Silflow CD, Oppenheimer DG, Kopczak SD, Ploense SE, Ludwig SR, Haas NA, Snustad DP: Plant tubulin genes: structure and differential expression during development. Dev Genet. 1987, 8: 435-460. 10.1002/dvg.1020080511.
Article
CAS
Google Scholar
Marks MD, West J, Weeks DP: The relative large β-tubulin gene family of Arabidopsis contains a member with an unusual transcribed 5' noncoding sequence. Plant Mol Biol. 1987, 10: 91-104. 10.1007/BF00016147.
Article
PubMed
CAS
Google Scholar
Kopczak SD, Haas NA, Hussey PJ, Silflow CD, Snustad DP: The small genome of Arabidopsis contains at least six expressed alpha-tubulin genes. Plant Cell. 1992, 4: 539-547. 10.1105/tpc.4.5.539.
PubMed
CAS
PubMed Central
Google Scholar
Snustad DP, Haas NA, Kopczak SD, Silflow CD: The small genome of Arabidopsis contains at least nine expressed beta-tubulin genes. Plant Cell. 1992, 4: 549-556. 10.1105/tpc.4.5.549.
PubMed
CAS
PubMed Central
Google Scholar
Hussey PJ, Lloyd CW, Gull K: Differential and developmental expression of beta-tubulins in a higher plant. J Biol Chem. 1988, 263: 5474-5479.
PubMed
CAS
Google Scholar
Ludwig SR, Oppenheimer DG, Silflow CD, Snustad DP: The α1-tubulin gene of Arabidopsis thaliana L. Plant Cell Rep. 1988, 7: 495-498. 10.1007/BF00272740.
Article
Google Scholar
Oppenheimer DG, Haas N, Silflow CD, Snustad DP: The beta-tubulin gene family of Arabidopsis thaliana: preferential accumulation of the beta 1 transcript in roots. Gene. 1988, 63: 87-102. 10.1016/0378-1119(88)90548-3.
Article
PubMed
CAS
Google Scholar
Carpenter JL, Ploense SE, Snustad DP, Silflow CD: Preferential expression of an alpha-tubulin gene of Arabidopsis in pollen. Plant Cell. 1992, 4: 557-571. 10.1105/tpc.4.5.557.
PubMed
CAS
PubMed Central
Google Scholar
Blancaflor EB, Jones DL, Gilroy S: Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize. Plant Physiol. 1998, 118: 159-172. 10.1104/pp.118.1.159.
Article
PubMed
CAS
PubMed Central
Google Scholar
Giani S, Qin X, Faoro F, Brevario D: In rice, oryzalin and abscisic acid differentially affect tubulin mRNA and protein levels. Planta. 1988, 205: 334-341.
Google Scholar
Heinlein M, Epel BL, Padgett HS, Beachy RN: Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science. 1995, 270: 1983-1985. 10.1126/science.270.5244.1983.
Article
PubMed
CAS
Google Scholar
Gross P, Julius C, Schmelzer E, Hahlbrock K: Translocation of cytoplasm and nucleus to fungal penetration sites is associated with depolymerization of microtubules and defence gene activation in infected, cultured parsley cells. EMBO J. 1993, 12: 1735-1744.
PubMed
CAS
PubMed Central
Google Scholar
Meier S, Gehring C: A guide to the integrated application of on-line data mining tools for the inference of gene functions at the systems level. Biotechnol J. 2008, 3: 1375-1387. 10.1002/biot.200800142.
Article
PubMed
CAS
Google Scholar
Yamaguchi-Shinozaki K, Shinozaki K: Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci. 2005, 10: 88-94. 10.1016/j.tplants.2004.12.012.
Article
PubMed
CAS
Google Scholar
Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K: Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA. 2000, 97: 11632-11637. 10.1073/pnas.190309197.
Article
PubMed
CAS
PubMed Central
Google Scholar
Staiger D, Kaulen H, Schell J: A CACGTG motif of the Antirrhinum majus chalcone synthase promoter is recognized by an evolutionarily conserved nuclear protein. Proc Natl Acad Sci USA. 1989, 86: 6930-6934. 10.1073/pnas.86.18.6930.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ton J, Flors V, Mauch-Mani B: The multifaceted role of ABA in disease resistance. Trends Plant Sci. 2009, 14: 310-317. 10.1016/j.tplants.2009.03.006.
Article
PubMed
CAS
Google Scholar
Meinke DW, Franzmann LH, Nickle TC, Yeung EC: Leafy cotyledon mutants of Arabidopsis. Plant Cell. 1994, 6: 1049-1064. 10.1105/tpc.6.8.1049.
Article
PubMed
CAS
PubMed Central
Google Scholar
Braybrook SA, Harada JJ: LECs go crazy in embryo development. Trends Plant Sci. 2008, 13: 624-630. 10.1016/j.tplants.2008.09.008.
Article
PubMed
CAS
Google Scholar
Casson SA, Lindsey K: The turnip mutant of Arabidopsis reveals that LEAFY COTYLEDON1 expression mediates the effects of auxin and sugars to promote embryonic cell identity. Plant Physiol. 2006, 142: 526-541. 10.1104/pp.106.080895.
Article
PubMed
CAS
PubMed Central
Google Scholar
Qiu JL, Zhou L, Yun BW, Nielsen HB, Fiil BK, Petersen K, Mackinlay J, Loake GJ, Mundy J, Morris PC: Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol. 2008, 148: 212-222. 10.1104/pp.108.120006.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ceccardi TL, Barthe GA, Derrick KS: A novel protein associated with citrus blight has sequence similarities to expansin. Plant Mol Biol. 1998, 38: 775-783. 10.1023/A:1006039016393.
Article
PubMed
CAS
Google Scholar
Mohr PG, Cahill DM: Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct Integr Genomics. 2007, 7: 181-191. 10.1007/s10142-006-0041-4.
Article
PubMed
CAS
Google Scholar
Wright CA, Beattie GA: Pseudomonas syringae pv. tomato cells encounter inhibitory levels of water stress during the hypersensitive response of Arabidopsis thaliana. Proc Natl Acad Sci USA. 2004, 101: 3269-3274. 10.1073/pnas.0400461101.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pharmawati M, Gehring CA, Irving HR: An immunoaffinity purified plant natriuretic peptide analogue modulates cGMP levels in the Zea mays root stele. Plant Sci. 1998, 137: 107-115. 10.1016/S0168-9452(98)00135-6.
Article
CAS
Google Scholar
Loake G, Grant M: Salicylic acid in plant defence--the players and protagonists. Curr Opin Plant Biol. 2007, 10: 466-472. 10.1016/j.pbi.2007.08.008.
Article
PubMed
CAS
Google Scholar
Sedmak JJ, Grossberg SE: A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977, 79: 544-552. 10.1016/0003-2697(77)90428-6.
Article
PubMed
CAS
Google Scholar