He C, Munster T, Saedler H: On the origin of floral morphological novelties. FEBS Lett. 2004, 567 (1): 147-151. 10.1016/j.febslet.2004.02.090.
Article
PubMed
CAS
Google Scholar
Kanno A, Nakada M, Akita Y, Hirai M: Class B gene expression and the modified ABC model in nongrass monocots. ScientificWorldJournal. 2007, 7: 268-279. 10.1100/tsw.2007.86.
Article
PubMed
CAS
Google Scholar
Kanno A, Saeki H, Kameya T, Saedler H, Theissen G: Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Molecular Biology. 2003, 52 (4): 831-841. 10.1023/A:1025070827979.
Article
PubMed
CAS
Google Scholar
Hirai M, Kamimura T, Kanno A: The expression patterns of three class B genes in two distinctive whorls of petaloid tepals in Alstroemeria ligtu. Plant Cell Physiol. 2007, 48 (2): 310-321. 10.1093/pcp/pcm004.
Article
PubMed
CAS
Google Scholar
Park JH, Ishikawa Y, Ochiai T, Kanno A, Kameya T: Two GLOBOSA-like genes are expressed in second and third whorls of homochlamydeous flowers in Asparagus officinalis L. Plant Cell Physiol. 2004, 45 (3): 325-332. 10.1093/pcp/pch040.
Article
PubMed
Google Scholar
Irish VF, Kramer EM: Genetic and molecular analysis of angiosperm flower development. Advances in Botanical Research. 1998, 28: 197-230. full_text.
Article
CAS
Google Scholar
He C, Saedler H: Hormonal control of the inflated calyx syndrome, a morphological novelty, in Physalis. Plant J. 2007, 49 (5): 935-946. 10.1111/j.1365-313X.2006.03008.x.
Article
PubMed
CAS
Google Scholar
He C, Saedler H: Heterotopic expression of MPF2 is the key to the evolution of the Chinese lantern of Physalis, a morphological novelty in Solanaceae. Proc Natl Acad Sci USA. 2005, 102 (16): 5779-5784. 10.1073/pnas.0501877102.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kramer EM, Holappa L, Gould B, Jaramillo MA, Setnikov D, Santiago PM: Elaboration of B Gene Function to Include the Identity of Novel Floral Organs in the Lower Eudicot Aquilegia. Plant Cell. 2007, 19 (3): 750-766. 10.1105/tpc.107.050385.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky M, Schmidt RJ: Molecular and genetic analysis of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell. 2000, 5: 569-579. 10.1016/S1097-2765(00)80450-5.
Article
PubMed
CAS
Google Scholar
Kyozuka J, Kobayashi T, Morita M, Shimamoto K: Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol. 2000, 41: 710-718.
Article
PubMed
CAS
Google Scholar
Munster T, Ursula Wingen L, Faigl W, Werth S, Saedler H, Thei[ss]en G: Characterization of three GLOBOSA-like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses. Gene. 2001, 262 (1-2): 1-13. 10.1016/S0378-1119(00)00556-4.
Article
PubMed
CAS
Google Scholar
Whipple CJ, Ciceri P, Padilla CM, Ambrose BA, Bandong SL, Schmidt RJ: Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development. 2004, 131 (24): 6083-6091. 10.1242/dev.01523.
Article
PubMed
CAS
Google Scholar
Xiao H, Wang Y, Liu D, Wang W, Li X, Zhao X, Xu J, Zhai W, Zhu L: Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference. Plant Molecular Biology. 2003, 52: 957-966. 10.1023/A:1025401611354.
Article
PubMed
CAS
Google Scholar
Davies B, Motte P, Keck E, Saedler H, Sommer H, Schwarz-Sommer Z: PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. Embo J. 1999, 18 (14): 4023-4034. 10.1093/emboj/18.14.4023.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yamaguchi T, Lee DY, Miyao A, Hirochika H, An G, Hirano H-Y: Functional Diversification of the Two C-Class MADS Box Genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell. 2006, 18 (1): 15-28. 10.1105/tpc.105.037200.
Article
PubMed
CAS
PubMed Central
Google Scholar
Heslop-Harrison J: Sex expression in flowering plants. Brookhaven Symposia in Biology Volume 16. Upton, NY.: Brookhaven National Laboratory; 1964: 109-125.
Google Scholar
Golenberg EM, Freeman DC: Environmental sex expression, sexual lability, biased sex ratios and other X-rated stories from the far-red side of the garden. Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues. Edited by: Silva JATd. Japan: Global Science Books; 2006: 280-291.
Google Scholar
Delong A, Calderon-Urrea A, Dellaporta S: Sex-determination gene Tasselseed2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell. 1993, 74: 757-768. 10.1016/0092-8674(93)90522-R.
Article
PubMed
CAS
Google Scholar
Ainsworth C, Crossley S, Buchanan Wollaston V, Thangavelu M, Parker J: Male and female flowers of the dioecious plant sorrel show different patterns of MADS box gene expression. Plant Cell. 1995, 7 (10): 1583-1598. 10.1105/tpc.7.10.1583.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kater M, Franken J, Carney K, Colombo L, Angenent G: Sex determination in the monoecious species cucumber is confined to specific floral whorls. Plant Cell. 2001, 13: 481-493. 10.1105/tpc.13.3.481.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hardenack S, Ye D, Saedler H, Grant S: Comparison of MADS box gene expression in developing male and female flowers of the dioecious plant White Campion. Plant Cell. 1994, 6: 1775-1787. 10.1105/tpc.6.12.1775.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hobza R, Hrusakova P, Safar J, Bartos J, Janousek B, Zluvova J, Michu E, Dolezel J, Vyskot B: MK17, a specific marker closely linked to the gynoecium suppression region on the Y chromosome in Silene latifolia. Theor Appl Genet. 2006, 113 (2): 280-287. 10.1007/s00122-006-0293-3.
Article
PubMed
CAS
Google Scholar
Zluvova J, Nicolas M, Berger A, Negrutiu I, Moneger F: Premature arrest of the male flower meristem precedes sexual dimorphism in the dioecious plant Silene latifolia. Proc Natl Acad Sci USA. 2006, 103 (49): 18854-18859. 10.1073/pnas.0606622103.
Article
PubMed
CAS
PubMed Central
Google Scholar
Di Stilio VS, Kramer EM, Baum DA: Floral MADS box genes and homeotic gender dimorphism in Thalictrum dioicum (Ranunculaceae) - a new model for the study of dioecy. Plant J. 2005, 41 (5): 755-766. 10.1111/j.1365-313X.2005.02336.x.
Article
PubMed
CAS
Google Scholar
Pfent C, Pobursky KJ, Sather DN, Golenberg EM: Characterization of SpAPETALA3 and SpPISTILLATA, B Class Floral Identity Genes in Spinacia oleracea, and Their Relationship to Sexual Dimorphism. Development Genes and Evolution. 2005, 215: 132-142. 10.1007/s00427-004-0459-4.
Article
PubMed
CAS
Google Scholar
Sather DN, York A, Pobursky KJ, Golenberg EM: Sequence evolution and sex-specific expression patterns of the C class floral identity gene, SpAGAMOUS, in dioecious Spinacia oleracea L. Planta. 2005, 222: 284-292. 10.1007/s00425-005-1544-2.
Article
PubMed
CAS
Google Scholar
Sherry RA, Eckard KJ, Lord EM: Flower development in dioecious Spinacia oleracea (Chenopodiaceae). American Journal of Botany. 1993, 80: 283-291. 10.2307/2445351.
Article
Google Scholar
Golenberg EM, Sather DN, Hancock LC, Buckley KJ, Villafranco NM, Bisaro DM: Development of a gene silencing DNA vector derived from a broad host range geminivirus. Plant Methods. 2009, 5 (1): 9. 10.1186/1746-4811-5-9.
Article
PubMed
PubMed Central
Google Scholar
Goto K, Meyerowitz EM: Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes and Development. 1994, 8 (13): 1548-1560. 10.1101/gad.8.13.1548.
Article
PubMed
CAS
Google Scholar
Devon RS, Porteous DJ, Brookes AJ: Splinkerettes--improved vectorettes for greater efficiency in PCR walking. Nucl Acids Res. 1995, 23 (9): 1644-1645. 10.1093/nar/23.9.1644.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hill TA, Day CD, Zondlo SC, Thackeray AG, Irish VF: Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development. 1998, 125: 1711-1721.
PubMed
CAS
Google Scholar
Folter Sd, Angenent GC: trans meets cis in MADS science. Trends in Plant Science. 2006, 11 (5): 224-231. 10.1016/j.tplants.2006.03.008.
Article
PubMed
Google Scholar
Lamb RS, Hill TA, Tan QK-G, Irish VF: Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development. 2002, 129 (9): 2079-2086.
PubMed
CAS
Google Scholar
Busch MA, Bomblies K, Weigel D: Activation of a floral homeotic gene in Arabidopsis. Science. 1999, 285 (5427): 585-587. 10.1126/science.285.5427.585.
Article
PubMed
CAS
Google Scholar
Schmidt RJ, Veit B, Mandel MA, Mena M, Hake S, Yanofsky MF: Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Plant Cell. 1993, 5 (7): 729-737. 10.1105/tpc.5.7.729.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ainsworth C, Rahman A, Parker J, Edwards G: Intersex inflorescences of Rumex acetosa demonstrate that sex determination is unique to each flower. New Phytol. 2005, 165 (3): 711-720. 10.1111/j.1469-8137.2005.01281.x.
Article
PubMed
CAS
Google Scholar
Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann JL, Meyerowitz EM: The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature. 2004, 430 (6997): 356-360. 10.1038/nature02733.
Article
PubMed
CAS
Google Scholar
Bowman JL, Smyth DR, Meyerowitz EM: Genetic interactions among floral homeotic genes of Arabidopsis. Development. 1991, 112: 1-20.
PubMed
CAS
Google Scholar
Sather D, Golenberg E: Duplication of AP1 within the Spinacia oleracea L. AP1/FUL clade is followed by rapid amino acid and regulatory evolution. Planta. 2009, 229 (3): 507-521. 10.1007/s00425-008-0851-9.
Article
PubMed
CAS
Google Scholar
Riechmann JL, Krizek BA, Meyerowitz EM: Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci USA. 1996, 93: 4793-4798. 10.1073/pnas.93.10.4793.
Article
PubMed
CAS
PubMed Central
Google Scholar
Riechmann JL, Meyerowitz EM: Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity. Mol Biol Cell. 1997, 8: 1243-1259.
Article
PubMed
CAS
PubMed Central
Google Scholar
Riechmann JL, Wang M, Meyerowitz EM: DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res. 1996, 24 (16): 3134-3141. 10.1093/nar/24.16.3134.
Article
PubMed
CAS
PubMed Central
Google Scholar
Honma T, Goto K: The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals. Development. 2000, 127: 2021-2030.
PubMed
CAS
Google Scholar
Schwarz-Sommer Z, Hue I, Huijser P, Flor P, Hansen R, Tetens F, Lonnig W, Saedler H, Sommer H: Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 1992, 11 (1): 251-263.
PubMed
CAS
PubMed Central
Google Scholar
Freeman DC, Vitale JJ: The influence of environment on the sex ratio and fitness of spinach. Botanical Gazette. 1985, 146: 137-142. 10.1086/337508.
Article
Google Scholar
Yu H, Ito T, Zhao Y, Peng J, Kumar P, Meyerowitz EM: Floral homeotic genes are targets of gibberellin signaling in flower development. Proc Natl Acad Sci USA. 2004, 101 (20): 7827-7832. 10.1073/pnas.0402377101.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chailakhyan MK: Genetic and hormonal regulation of growth, flowering, and sex expression in plants. American Journal of Botany. 1979, 66: 717-736. 10.2307/2442417.
Article
CAS
Google Scholar
Pobursky KJ: Early flower development and the influence of gibberellic acid on sex expression in Spinacia oleracea. Master of Science. Detroit, MI: Wayne State University; 2000.
Google Scholar
Charlesworth B, Charlesworth D: A model for the evolution of the dioecy and gynodioecy. Am Nat. 1978, 112: 975-997. 10.1086/283342.
Article
Google Scholar
Rosa JT: Sex expression in spinach. Hilgardia. 1925, 1: 259-274.
Article
Google Scholar
Janick J, Stevenson EC: A genetic study of the heterogametic nature of the staminate plant in spinach. Proc Am Soc Hort Sci. 1954, 63: 444-446.
Google Scholar
Janick J, Mahoney DL, Pfahler PL: The trisomics of Spinacia oleracea L. Journal of Heredity. 1959, 50: 46-50.
Google Scholar
Mahoney DL, Janick J, Stevenson EC: Sex determination in diploid-triploid crosses of Spinacia oleracea. American Journal of Botany. 1959, 46: 372-375. 10.2307/2439198.
Article
Google Scholar
Ellis JR, Janick J: The chromosomes of Spinacia oleracea. American Journal of Botany. 1960, 47: 210-214. 10.2307/2439251.
Article
Google Scholar
Iizuka M, Janick J: Sex chromosome variation in Spinacia oleracea L. J Heredity. 1971, 62: 349-352.
Google Scholar
Ramanna MS: Are there heteromorphic sex chromosomes in spinach (Spinacia oleracea L.)?. Euphytica. 1976, 25: 277-284. 10.1007/BF00041557.
Article
Google Scholar
Khattak J, Torp A, Andersen S: A genetic linkage map of Spinacia oleracea and localization of a sex determination locus. Euphytica. 2006, 148 (3): 311-318. 10.1007/s10681-005-9031-1.
Article
CAS
Google Scholar
Chailakhyan MK, Khrianin VN: Sexuality in plants and its hormonal regulation. New York: Springer-Verlag; 1987.
Chapter
Google Scholar