Bishop GJ: Brassinosteroid Mutants of Crops. J Plant Growth Regul. 2003, 22 (4): 325-335. 10.1007/s00344-003-0064-1.
Article
PubMed
CAS
Google Scholar
Choe S: Brassinosteroid biosynthesis and metabolism. Plant Hormones: Biosynthesis, Signal transduction, Action!. Edited by: Davies PJ. Dordrecht: Kluwer Academic Publishers:2004. 156-178.
Google Scholar
Chono M, Honda I, Zeniya H, Yoneyama K, Saisho D, Takeda K, Takatsuto S, Hoshino T, Watanabe Y: A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol. 2003, 133 (3): 1209-1219. 10.1104/pp.103.026195.
Article
PubMed
CAS
PubMed Central
Google Scholar
Suzuki Y, Saso K, Fujioka S, Yoshida S, Nitasaka E, Nagata S, Nagasawa H, Takatsuto S, Yamaguchi I: A dwarf mutant strain of Pharbitis nil, Uzukobito (kobito), has defective brassinosteroid biosynthesis. Plant J. 2003, 36 (3): 401-410. 10.1046/j.1365-313X.2003.01887.x.
Article
PubMed
CAS
Google Scholar
Vert G, Nemhauser J, Geldner N, Hong F, Chory J: Molecular mechanisms of steroid hormone signaling in plants. Annu Rev Cell Dev Biol. 2005, 21: 177-201. 10.1146/annurev.cellbio.21.090704.151241.
Article
PubMed
CAS
Google Scholar
Fujioka S, Yokota T: Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol. 2003, 54: 137-164. 10.1146/annurev.arplant.54.031902.134921.
Article
PubMed
CAS
Google Scholar
Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA: The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell. 1998, 10 (2): 231-243. 10.1105/tpc.10.2.231.
PubMed
CAS
PubMed Central
Google Scholar
Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA: Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J. 2001, 26 (6): 573-582. 10.1046/j.1365-313x.2001.01055.x.
Article
PubMed
CAS
Google Scholar
Choe S, Dilkes BP, Gregory BD, Ross AS, Yuan H, Noguchi T, Fujioka S, Takatsuto S, Tanaka A, Yoshida S, et al: The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiol. 1999, 119 (3): 897-907. 10.1104/pp.119.3.897.
Article
PubMed
CAS
PubMed Central
Google Scholar
Choe S, Tanaka A, Noguchi T, Fujioka S, Takatsuto S, Ross AS, Tax FE, Yoshida S, Feldmann KA: Lesions in the sterol Δ7 reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. Plant J. 2000, 21 (5): 431-443. 10.1046/j.1365-313x.2000.00693.x.
Article
PubMed
CAS
Google Scholar
Choe S, Noguchi T, Fujioka S, Takatsuto S, Tissier CP, Gregory BD, Ross AS, Tanaka A, Yoshida S, Tax FE, et al: The Arabidopsis dwf7/ste1 mutant is defective in the delta7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell. 1999, 11 (2): 207-221. 10.1105/tpc.11.2.207.
PubMed
CAS
PubMed Central
Google Scholar
Fujioka S, Li J, Choi YH, Seto H, Takatsuto S, Noguchi T, Watanabe T, Kuriyama H, Yokota T, Chory J, et al: The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell. 1997, 9 (11): 1951-1962. 10.1105/tpc.9.11.1951.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li J, Biswas MG, Chao A, Russell DW, Chory J: Conservation of function between mammalian and plant steroid 5alpha-reductases. Proc Natl Acad Sci USA. 1997, 94 (8): 3554-3559. 10.1073/pnas.94.8.3554.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li J, Nagpal P, Vitart V, McMorris TC, Chory J: A role for brassinosteroids in light-dependent development of Arabidopsis. Science. 1996, 272 (5260): 398-401. 10.1126/science.272.5260.398.
Article
PubMed
CAS
Google Scholar
Mathur J, Molnar G, Fujioka S, Takatsuto S, Sakurai A, Yokota T, Adam G, Voigt B, Nagy F, Maas C, et al: Transcription of the Arabidopsis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. Plant J. 1998, 14 (5): 593-602. 10.1046/j.1365-313X.1998.00158.x.
Article
PubMed
CAS
Google Scholar
Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C: Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell. 1996, 85 (2): 171-182. 10.1016/S0092-8674(00)81094-6.
Article
PubMed
CAS
Google Scholar
Kim GT, Fujioka S, Kozuka T, Tax FE, Takatsuto S, Yoshida S, Tsukaya H: CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. Plant J. 2005, 41 (5): 710-721. 10.1111/j.1365-313X.2004.02330.x.
Article
PubMed
CAS
Google Scholar
Kim GT, Tsukaya H, Uchimiya H: The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes Dev. 1998, 12 (15): 2381-2391. 10.1101/gad.12.15.2381.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ohnishi T, Szatmari AM, Watanabe B, Fujita S, Bancos S, Koncz C, Lafos M, Shibata K, Yokota T, Sakata K, et al: C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. Plant Cell. 2006, 18 (11): 3275-3288. 10.1105/tpc.106.045443.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kim BK, Fujioka S, Takatsuto S, Tsujimoto M, Choe S: Castasterone is a likely end product of brassinosteroid biosynthetic pathway in rice. Biochem Biophys Res Commun. 2008, 374 (4): 614-619. 10.1016/j.bbrc.2008.07.073.
Article
PubMed
CAS
Google Scholar
Bishop GJ, Harrison K, Jones JD: The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family. Plant Cell. 1996, 8 (6): 959-969. 10.1105/tpc.8.6.959.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JD, Kamiya Y: The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci USA. 1999, 96 (4): 1761-1766. 10.1073/pnas.96.4.1761.
Article
PubMed
CAS
PubMed Central
Google Scholar
Castle J, Szekeres M, Jenkins G, Bishop GJ: Unique and overlapping expression patterns of Arabidopsis CYP85 genes involved in brassinosteroid C-6 oxidation. Plant Mol Biol. 2005, 57 (1): 129-140. 10.1007/s11103-004-6851-7.
Article
PubMed
CAS
Google Scholar
Nomura T, Kushiro T, Yokota T, Kamiya Y, Bishop GJ, Yamaguchi S: The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. J Biol Chem. 2005, 280 (18): 17873-17879. 10.1074/jbc.M414592200.
Article
PubMed
CAS
Google Scholar
Mori M, Nomura T, Ooka H, Ishizaka M, Yokota T, Sugimoto K, Okabe K, Kajiwara H, Satoh K, Yamamoto K, et al: Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol. 2002, 130 (3): 1152-1161. 10.1104/pp.007179.
Article
PubMed
CAS
PubMed Central
Google Scholar
Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop GJ, Yoshida S: Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol. 2001, 126 (2): 770-779. 10.1104/pp.126.2.770.
Article
PubMed
CAS
PubMed Central
Google Scholar
Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S: Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol. 2003, 131 (1): 287-297. 10.1104/pp.013029.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tanaka K, Asami T, Yoshida S, Nakamura Y, Matsuo T, Okamoto S: Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism. Plant Physiol. 2005, 138 (2): 1117-1125. 10.1104/pp.104.058040.
Article
PubMed
CAS
PubMed Central
Google Scholar
Clouse SD, Langford M, McMorris TC: A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol. 1996, 111 (3): 671-678. 10.1104/pp.111.3.671.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li J, Chory J: A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell. 1997, 90 (5): 929-938. 10.1016/S0092-8674(00)80357-8.
Article
PubMed
CAS
Google Scholar
Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J: BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature. 2001, 410 (6826): 380-383. 10.1038/35066597.
Article
PubMed
CAS
Google Scholar
Kinoshita T, Cano-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, Chory J: Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature. 2005, 433 (7022): 167-171. 10.1038/nature03227.
Article
PubMed
CAS
Google Scholar
Wang X, Chory J: Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science. 2006, 313 (5790): 1118-1122. 10.1126/science.1127593.
Article
PubMed
CAS
Google Scholar
Kim TW, Guan S, Sun Y, Deng Z, Tang W, Shang JX, Burlingame AL, Wang ZY: Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol. 2009, 11 (10): 1254-1260. 10.1038/ncb1970.
Article
PubMed
CAS
PubMed Central
Google Scholar
Choe S, Schmitz RJ, Fujioka S, Takatsuto S, Lee MO, Yoshida S, Feldmann KA, Tax FE: Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3β-like kinase. Plant Physiol. 2002, 130 (3): 1506-1515. 10.1104/pp.010496.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li J, Nam KH: Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science. 2002, 295 (5558): 1299-1301.
PubMed
CAS
Google Scholar
Peng P, Yan Z, Zhu Y, Li J: Regulation of the Arabidopsis GSK3-like Kinase BRASSINOSTEROID-INSENSITIVE 2 through Proteasome-Mediated Protein Degradation. Mol Plant. 2008, 1 (2): 338-346. 10.1093/mp/ssn001.
Article
PubMed
CAS
PubMed Central
Google Scholar
Perez-Perez JM, Ponce MR, Micol JL: The ULTRACURVATA2 gene of Arabidopsis encodes an FK506-binding protein involved in auxin and brassinosteroid signaling. Plant Physiol. 2004, 134 (1): 101-117. 10.1104/pp.103.032524.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, et al: Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell. 2002, 2 (4): 505-513. 10.1016/S1534-5807(02)00153-3.
Article
PubMed
CAS
Google Scholar
Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J: A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell. 2005, 120 (2): 249-259. 10.1016/j.cell.2004.11.044.
Article
PubMed
CAS
Google Scholar
Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J: BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell. 2002, 109 (2): 181-191. 10.1016/S0092-8674(02)00721-3.
Article
PubMed
CAS
Google Scholar
He JX, Gendron JM, Sun Y, Gampala SS, Gendron N, Sun CQ, Wang ZY: BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science. 2005, 307 (5715): 1634-1638. 10.1126/science.1107580.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mandava NB: Plant Growth-Promoting Brassinosteroids. Ann Rev Plant Physiol. 1988, 39: 23-52. 10.1146/annurev.pp.39.060188.000323.
Article
CAS
Google Scholar
Willemse J, Kulikova O, de Jong H, Bisseling T: A new whole-mount DNA quantification method and the analysis of nuclear DNA content in the stem-cell niche of Arabidopsis roots. Plant J. 2008, 55 (5): 886-894. 10.1111/j.1365-313X.2008.03548.x.
Article
PubMed
CAS
Google Scholar
Francis D: The plant cell cycle--15 years on. New Phytol. 2007, 174 (2): 261-278. 10.1111/j.1469-8137.2007.02038.x.
Article
PubMed
CAS
Google Scholar
Yoo MJ, Albert VA, Soltis PS, Soltis DE: Phylogenetic diversification of glycogen synthase kinase 3/SHAGGY-like kinase genes in plants. BMC Plant Biol. 2006, 6: 3-10.1186/1471-2229-6-3.
Article
PubMed
PubMed Central
Google Scholar
Hu Y, Bao F, Li J: Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant J. 2000, 24 (5): 693-701. 10.1046/j.1365-313x.2000.00915.x.
Article
PubMed
CAS
Google Scholar
Ibanes M, Fabregas N, Chory J, Cano-Delgado AI: Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles. Proc Natl Acad Sci USA. 2009, 106 (32): 13630-13635. 10.1073/pnas.0906416106.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kim HB, Kwon M, Ryu H, Fujioka S, Takatsuto S, Yoshida S, An CS, Lee I, Hwang I, Choe S: The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol. 2006, 140 (2): 548-557. 10.1104/pp.105.067918.
Article
PubMed
CAS
PubMed Central
Google Scholar
Banno H, Ikeda Y, Niu QW, Chua NH: Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell. 2001, 13 (12): 2609-2618. 10.1105/tpc.13.12.2609.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ikeda Y, Banno H, Niu QW, Howell SH, Chua NH: The ENHANCER OF SHOOT REGENERATION 2 gene in Arabidopsis regulates CUP-SHAPED COTYLEDON 1 at the transcriptional level and controls cotyledon development. Plant Cell Physiol. 2006, 47 (11): 1443-1456. 10.1093/pcp/pcl023.
Article
PubMed
CAS
Google Scholar