Skip to main content
Fig. 3 | BMC Plant Biology

Fig. 3

From: Comparative physiological and full-length transcriptome analyses reveal the molecular mechanism of melatonin-mediated salt tolerance in okra (Abelmoschus esculentus L.)

Fig. 3

Effects of 50 μM melatonin pretreatment on chlorophyll content, lipid peroxidation, and ROS accumulation in the second leaf of okra exposed for 7 d either to salt stress (by irrigating with 300 mM NaCl) or to optimum conditions. a Total chlorophyll content. b Malondialdehyde (MDA) content. c The content of hydrogen peroxide (H2O2). d The production rate of super oxide (O2•-). Data are means ± SD of four replicates. Bars with different letters are significantly different according to Duncan’s multiple range tests (P < .05). Mock, pretreatment with water and grown under optimum conditions; NaCl, pretreatment with water and subsequently subjected to salt stress; MT, pretreatment with 50 μM melatonin and grown under optimum conditions; MT + NaCl, pretreatment with 50 μM melatonin and subsequently subjected to salt stress

Back to article page