Skip to main content
Fig. 4 | BMC Plant Biology

Fig. 4

From: A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties

Fig. 4

NMR data define secondary structure, dynamics and conformational heterogeneity of Ps-LTP1 in solution. From top to bottom: (δΔ) Root from the sum of squared differences in 1HN and 15NH chemical shifts for the two structural forms. Differences in the 15N chemical shifts were scaled by factor 0.2. The arbitrary taken cutoff value (0.25 ppm) shows residues subjected to large-amplitude motions in ms time scale. (Helix_p) Probability of helix conformation calculated in TALOS+. The secondary structure of Ps-LTP1 is shown below the protein sequence. The α- and probable 310-helical elements are shown by white and gray bars, respectively. The helices of the protein are numbered sequentially (H1-H5). The β-turns are denoted by wavy lines. The site of Met11Leu replacement is underlined. (3JH N H α) Large (>8 Hz), small (<6 Hz) and medium (others) J-couplings are indicated by the up pointing black-filled triangles, gray-filled squares, and down pointing open triangles, respectively. (H2OEX) Amide protons which demonstrate fast exchange with water protons are shown by filled circles. The corresponding cross-peaks on the water frequency were observed in the 3D 15N-TOCSY-HSQC spectrum (τm = 80 ms). (Δδ1HN/ΔT) Black-filled stars denote amide protons with temperature gradients less than −4.5 ppb/K. NOE connectivities observed in the 80 ms 3D NOESY spectra are denoted as usual. Steady-state 15N-{1H}-NOE values are shown on the bottom of the figure. Residues displaying NOE < 0.7 are subjected to enhanced motions in ps-ns time scale

Back to article page