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Abstract 

Background:  Carbohydrate accumulation of photosynthetic organs, mainly leaves, are the primary sources of grain 
yield in cereals. The flag leaf plays a vital role in seed development, which is probably the most neglected morpho-
logical characteristic during traditional selection processes.

Results:  In this experiment, four flag leaf morphological traits and seven yield-related traits were investigated in a DH 
population derived from a cross between a wild barley and an Australian malting barley cultivar. Flag leaf thickness 
(FLT) showed significantly positive correlations with grain size. Four QTL, located on chromosomes 1H, 2H, 3H, and 5H, 
respectively, were identified for FLT. Among them, a major QTL was located on chromosome 3H with a LOD value of 
18.4 and determined 32% of the phenotypic variation. This QTL showed close links but not pleiotropism to the previ-
ously reported semi-dwarf gene sdw1 from the cultivated barley. This QTL was not reported before and the thick leaf 
allele from the wild barley could provide a useful source for improving grain yield through breeding.

Conclusions:  Our results also provided valuable evidence that source traits and sink traits in barley are tightly con-
nected and suggest further improvement of barley yield potential with enhanced and balanced source and sink 
relationships by exploiting potentialities of the wild barley resources. Moreover, this study will provide a novel sight 
on understanding the evolution and development of leaf morphology in barley and improving barley production by 
rewilding for lost superior traits during plant evolution.
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Background
Barley (Hordeum vulgare L.) is one of the oldest culti-
vated cereals and is widely distributed in all agricultural 
regions [1]. Barley is also an important cereal which ful-
fils the increasing demand of raw materials for livestock 
food production, fermentable material for beer and cer-
tain distilled beverages, and as a component of various 

health foods [2–4]. Individual barley grain yield is the 
cumulative result of both source and sink strength for 
photoassimilates and nutrients over the course of seed 
development, where the source potentially reflects pho-
tosynthetic capacity, and the sink shows the potential 
capacity to accumulate photosynthate [5]. Strengthen-
ing source and sink and modifying sink-source rela-
tions could optimise crop yield. This is evidenced by 
the changes in source/sink of several crops during their 
domestication and transformation into modern cultivars, 
including rice, wheat, and barley [6–8].

Sources and sinks for both carbon and nitrogen are 
key components of plant productivity and yield, source–
sink interactions are regulated by feedback, feedforward 
and crosstalk mechanisms [9, 10]. As the most impor-
tant resource tissue, plant leaves are responsible for light 
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interception, photosynthesis, and assimilate storage 
thus play vital roles in crop yield [11], determining over 
50% carbohydrate accumulation in grains [12–14]. Leaf 
shapes arise within a developmental context that con-
strains both their evolution and environmental plastic-
ity [15]. A leaf represents an investment on the part of 
a plant with the return being reflected by net dry-mass 
gain per unit leaf area. A leaf return will stop when pho-
tosynthesis no longer exceeds the costs of leaf respiration 
and root and stem activity to support the leaf ’s photosyn-
thesis [16].

A leaf ’s physical strength depends on both its thick-
ness and its tissue density. Among all the morphologi-
cal traits of leaves, flag leaf thickness was reported to 
be positively correlated with the single-leaf net pho-
tosynthetic rate (Pn) in determining grain yield in rice 
[17, 18] as thicker leaves have higher chlorophyll (Chl) 
contents, which are the main pigments involved in light 
capture for photosynthesis [19]. Leaf thickness may 
also contribute to improved leaf angle and curvature 
[20]. Rice varieties with high yield potential and greater 
responsiveness to applied nitrogen (N) exhibited thick 
leaves along with short sturdy stems [21]. Positive cor-
relations have also been reported between leaf thickness 
and panicle traits, such as panicle length, grain density, 
grain weight per panicle, and the number of spikelets 
per panicle in rice [22]. Therefore, leaf thickness could 
be considered as an important index in high-yielding 
cultivars breeding [22]. Plant leaf area, which is com-
posed of leaf length and width, significantly influences 
plant growth, development, yield, and quality by affect-
ing photosynthetic assimilates [23–27]. Flag leaf length 
and width in wheat are positively correlated with yield 
components, such as spike number per plant and tiller 
number per plant [28, 29].

Crop yield could be dissected into several components: 
number of ears per ha, grain number per ear and thou-
sand-grain weight. So far, many genes or QTL related 
to grain yield and yield components have been reported 
in barley [30–37]. However, relatively fewer QTL were 
reported in barley for net photosynthetic rate and leaf 
morphological traits [38–41] compared with rice [42–46] 
and wheat [28, 29, 47–51]. The association between leaf 
morphological traits and yield potential has not been 
fully discovered in barley.

Crop domestication is one of the key approaches 
leading to currently cultivated crops [52]. The process 
of domestication, i.e. from wild barley to cultivated 
barley, has resulted in gene loss or changes in gene 
regulation/activity (i.e. via variations in the coding 
sequence) which imposes constraints on our ability to 
further improve cultivated varieties [52]. Breeders have 
been focusing on morphological characteristics for 

sink-related traits, such as grain size, with less efforts 
on source-related traits, in particular leaf thickness 
which is hard to select in the field. Thus the thicker leaf 
alleles could be easily lost or neglected during domes-
tication and selection. Leaf shape could be seen as a 
functional response of plants to changes in the envi-
ronment, understanding the potential adaptive value of 
leaf shape, and the genetic and molecular approaches 
to manipulate it will prove to be invaluable in breeding 
the next generation of crops and sustainably maintain-
ing biodiversity and crop yield in future climates [15].

Our preliminary results showed that a wild barley 
accession, SYR01 (Hordeum spontaneum), showed much 
thicker flag leaf than the cultivated barley, Gairdner (Hor-
deum vulgare L.). Thus, the DH (doubled haploid) popu-
lation from the cross between SYR01 and Gairdner was 
selected to identify QTL and linked molecular mark-
ers for flag leaf thickness and their potential links with 
other flag leaf traits, plant height and grain size. As it is 
too hard to select leaf thickness in the field, these mark-
ers can assist in selecting thicker leaf thus improve the 
source of cultivated barley.

Result
Phenotypic variations and correlations
Gairdner had a significantly longer, wider leaf and larger 
flag leaf area than SYR01 (Fig. 1). In contrast, SYR01 had 
a much thicker flag leaf than Gairdner (Fig.  1). All flag 
leaf traits showed large variations among DH lines across 
different years or trials, displaying continuous and near 
normal distribution (Fig.  1). Similar performances were 
also found in other traits (Supplementary Figures S1, S2). 
SYR01 showed taller plants, longer grains, while lower PL 
(panicle length), GWP (grain weight per panicle), TGW 
(thousand grain weight), GW (grain width), GT (grain 
thickness) and ASA (average seed area) than Gairdner 
(Supplementary Figures S1, S2). Field trials showed much 
thicker, longer and wider flag leaf than the glasshouse tri-
als (Fig.  1) due to prolonged growth period in the field 
trials, suggesting a significant environmental effect on 
leaf development.

From the average values of 2020 field and 2020 glass-
house trials, FLT (flag leaf thickness) showed weak but 
significant correlation with FLL (flag leaf length, r = 0.25, 
P < 0.01) and FLA (flag leaf area, r = 0.20, P < 0.05). FLT 
had a closer correlation with grain size than FLL and 
FLW (flag leaf width) while FLL and FLW were signifi-
cantly correlated with PL and GWP (Fig. 2). All these leaf 
traits were highly inheritable with narrow-sense herit-
ability ranging from 0.70 for FLT to 0.81 for FLL (Sup-
plementary Table S1).
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Fig. 1  Frequency distribution of flag leaf traits in the DH population of SYR01 × Gairdner. Arrows indicate the phenotypes of SYR01 and Gairdner, 
respectively. FLT, flag leaf thickness; FLL, flag leaf length; FLW, flag leaf width; FLA, flag leaf area

Fig. 2  Correlations between flag leaf-related traits and yield-related traits. The number in the middle of the cell is the correlation coefficient; ‘*’, ‘**’ 
and ‘***’ refer to significant correlations (P < 0.05, P < 0.01 and P < 0.001). FLT, flag leaf thickness; FLL, flag leaf length; FLW, flag leaf width; FLA, flag 
leaf area; PL, panicle length; GWP, grain weight per panicle; TGW, thousand grain weight; GL, grain length; GW, grain width; GT, grain thickness, ASA, 
average seed area
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QTL for flag leaf traits
QTL identified for flag leaf-related traits were widely 
distributed on all barley chromosomes (Table  1; Fig.  3). 
One major QTL for FLT was identified on chromosome 
3H (Qflt-3H) with a LOD value of 18.4, determining 
more than 30% of the phenotypic variation. Three minor 
QTL (Qflt-1H, Qflt-2H, Qflt-5H) for FLT were located on 

chromosomes 1H, 2H, and 5H, respectively, determining 
5.8 to 7.6% of the phenotypic variation. The wild barley 
contributed thicker leaf alleles for all the QTL. Five QTL 
(Qfll-1H, Qfll-2H, Qfll-3H, Qfll-4H, Qfll-6H) were identi-
fied for FLL, determining 5.8 to 17.9% of the phenotypic 
variation. Qfll-2H was located at a similar position to a 
minor QTL for FLT (Qflt-2H). Two QTL on chromosome 

Table 1  QTL for flag leaf related traits and yield related traits

a For trait abbreviations, see Figs. 1 and 2; PH: plant height
b Percentage of the phenotypic variation explained by the QTL
c Additive effect: positive values mean SYR01 alleles increased phenotypic values while negative values of the additive effect mean SYR01 alleles decreased trait scores

Traitsa QTL Chr. Position
(cM)

Nearest marker 2-LOD interval (cM) LOD R2 (%)b Additive effectc

FLT Qflt-1H 1H 72.6 11118295D1 64.7–76.3 5.28 7.6 6.98

Qflt-2H 2H 79.1 3811670D2 58.0-85.5 4.8 6.9 6.86

Qflt-3H 3H 72.0 5,258,214 S 70.8–73.1 18.38 32.7 14.41

Qflt-5H 5H 0.0 13142319D5 0-1.1 4.11 5.8 6.01

FLL Qfll-1H 1H 70.5 3430654D1 63.0-78.6 4.06 5.8 0.60

Qfll-2H 2H 65.0 4791044D2 51.7–65.0 11.44 17.9 -1.08

Qfll-3H 3H 64.2 4007500D3 63.2–71.0 5.51 8.1 -0.74

Qfll-4H 4H 94.8 4000059D4 94.2–94.6 10.37 16.4 -1.02

Qfll-6H 6H 35.4 4415412D6 28.0–40.0 5.32 7.8 0.68

FLW Qflw-2H.1 2H 51.7 5254141D2 51.2–60.3 5.70 15.7 -0.05

Qflw-2 H.2 2H 117.7 6436762D2 116.8–132.0 3.62 10.3 -0.04

FLA Qfla-1H 1H 107.1 3987047D1 106.0-108.0 7.68 13.3 1.01

Qfla-2H 2H 51.7 5254141D2 50.7–60.3 13.66 25.9 -1.52

Qfla-6H 6H 38.0 3930328D6 35.1–41.2 5.94 10.0 -0.95

Qfla-7H 7H 64.0 4187271D7 59.0–69.0 3.62 5.9 1.07

PL Qpl-1H 1H 48.6 3433594D1 41.0–52.0 7.69 10.4 0.36

Qpl-2H 2H 58.3 100000209D2 58.0-58.4 15.56 23.8 -0.56

Qpl-3H 3H 43.6 4188491D3 39.0–50.0 4.49 5.7 0.32

Qpl-4H 4H 86.9 3271417D4 85.8–89.6 8.49 11.6 -0.38

Qpl-5H 5H 36.6 3667033D5 21.0–41.0 3.47 4.4 0.24

TGW​ Qtgw-1H 1H 115.8 7932258D1 113.8-118.7 5.79 11.4 1.65

Qtgw-3H 3H 80.6 5256808D3 79.7–89.0 3.27 6.2 1.20

Qtgw-6H 6H 101.0 3258371S6 94.0-111.0 5.54 10.8 -1.60

Qtgw-7H 7H 116.4 3272131D7 94.0-120.0 3.67 7.0 -1.30

GL Qgl-1H 1H 115.8 7932258D1 113.8-118.7 5.79 11.4 1.65

Qgl-3H 3H 80.6 5256808D3 79.7–89.0 3.27 6.2 1.20

Qgl-6H 6H 101.0 3258731S6 94.1-109.6 5.54 10.8 -1.60

Qgl-7H 7H 116.4 3272131D7 99.0-121.0 3.67 7.0 -1.3

GW Qgw-4H 4H 77.8 5248953D 60.0–77.0 3.26 7.3 -0.03

Qgw-5H 5H 126.0 3257892D5 118.0-133.0 3.55 8.0 -0.03

Qgw-6H 6H 106.3 3255067S6 97.0-110.0 5.46 12.6 -0.04

GT Qgt-4H 4H 65.2 3259719D4 64.5-65.63 6.91 16.7 -0.03

Qgt-7H 7H 96.1 3259168D7 85.0-105.0 3.5 8.1 -0.02

ASA Qasa-1H 1H 108.1 3267839D1 107.7-108.4 12.97 26.3 0.70

Qasa-3H 3H 67.9 3258789S3 62.0–74.0 4.22 7.5 0.38

Qasa-6H 6H 111.3 15322541D7 106.0-114.0 5.95 10.8 -0.45

PH Qph-3H 3H 72.0 3255135S3 71.9–72.1 31.01 62.9 14.72
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2H (Qflw-2H.1, Qflw-2H.2) were identified for FLW, 
determining 15.7 and 10.3% of the phenotypic variation, 
respectively. FLA was calculated from FLL and FLW, and 
the major QTL for FLA was located at the same positions 
of these QTL for FLL and/or FLW. These four QTL deter-
mined more than 50% of the phenotypic variation. At the 
genetic map position of 50–80 cM on chromosome 2H, 
QTL for all the flag leaf traits, FLT (Qflt-2H), FLL (Qfll-
2H), FLW (Qflw-2H.1), and FLA (Qfla-2H), were iden-
tified (Table  1). This region is around the centromere. 
Qflt-3H, Qfll-4H, and Qfla-2H were identified in both 
field trials and glasshouse trials.

QTL for grain size, PL and PH
Five QTL for PL were identified on chromosomes 1H, 
2H, 3H, 4H, and 5H, respectively, explaining a total of 
50% of phenotypic variation (Table 1). Qpl-1H and Qpl-
2H were located at similar positions to two QTL (Qflt-
1H, Qflt-2H) for FLT. Two QTL for TGW, GL, and GT, 
and three QTL for GW, and ASA were identified respec-
tively (Table  1). The interval of the major QTL for GL 
(Qgl-1H) overlapped with Qtgw-1H, locating at similar 
positions to Qasa-1H and Qfla-1H. The allele from the 
wild parent SYR01 increased TGW, GL and ASA. The 
major QTL for TGW, Qtgw-6H, was located at a simi-
lar position to QTL for GW and ASA with Gairdner 
allele contributing the higher values. Qgl-3H for GL was 
located at a similar position to Qasa-3H for ASA on 3H. 
Qgw-4H for GW and Qgt-4H for GT are located at simi-
lar positions on 4H.

Discussion
Usefulness of FLT QTL
Morphological traits of flag leaf play important roles in 
determining crop grain yield and biomass, contributing a 
significant proportion of “the source” during grain filling 

stage. Many QTL have been reported for flag leaf length, 
width, and area [38, 40, 41]. These QTL are distributed 
on chromosomes 2H, 3H, 4H, 5H, 6H, and 7H. Our 
results also identified QTL for these traits on all the chro-
mosomes (Fig.  3). According to the marker information 
in our study, Qfll-2H (55.7‒65.5 cM) is in similar regions 
to qFLL2-2 and qFLA2-2 for FLL and FLA, respectively, 
reported by Du et al. [38]. Qflt-2H (52.8‒73.7 cM), Qflw-
2H.1 (55.7‒67.1  cM) and Qfla-2H (56.7‒58.5  cM) for 
FLT, FLW and FLA, respectively, were also located in this 
region. Qfla-5H (51.8‒96.5 cM) for FLA in our study was 
likely the same locus to the QTL qFW5.1 (44.1‒46.4 cM) 
for FLW reported earlier [41]. In a previous study, QTL 
“D1Q1FLL2H”, “D1Q3FLL2H” and “D2Q4FLL2H” for 
FLL [40] coincided with Qflw-2H.2 (101.0‒139.2 cM) for 
FLW identified in our study. Zheng et  al. [53] recently 
reported some QTL for FLT but the major QTL was 
different that identified in our study and the allele for 
increasing leaf thickness is from a cultivated barley. 
In this study, we have identified four QTL for FLT. The 
major one on 3H (631.9‒641.7  Mb) overlapped a semi-
dwarf gene, sdw1(chr3H: 634,077,598–634,081,600) [54]. 
Our mapping results from this population also indicated 
a single major QTL, Qph-3H (R2 = 0.63), for plant height. 
This QTL was also located on 3H at a physical position 
of 633.98 Mb (72.0 cM), the same position of Qflt-3H for 
FLT. To further investigate the relationship between flag 
leaf thickness and plant height, we used plant height as a 
covariate to re-analyse QTL for FLT and the LOD value 
of Qflt-3H decreased from 16.91 to 6.33 and R2 reduced 
from 31.6 to 10.2% (Fig. 4). This suggests a close linkage 
between plant height and FLT. This is confirmed by the 
significant correlation between flag leaf thickness and 
plant height (r = 0.51) (Supplementary Figure S3a). How-
ever, when we grouped all the lines according to plant 
height, wide variations in FLT were shown in each group. 

Fig. 3  QTL for flag leaf traits in the DH population of SYR01 × Gairdner
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For example, in the group with plant height between 85 
and 95 (most likely to have the semi-dwarf gene), the 
FLT ranged from 220 to 320 (Supplementary Figure S3b). 
Therefore, this thick leaf QTL can be combined with the 
dwarf gene in breeding programs.

Based on correlation analysis, flag leaf thickness had 
significant positive correlations with grain weight, grain 
length, and seed area (Fig. 2). When using FLT as covari-
ates, Qpl-3H, Qgl-3H, and Qasa-3H became insignificant. 
All results demonstrated the significant contribution of 
flag leaf thickness to yield-related traits in barley.

Candidate genes for FLT
Leaf thickness scaled with cell sizes, cell wall thicknesses 
and the thicknesses of component mesophyll tissues, spe-
cifically with the size of palisade mesophyll cells [55, 56]. 
Increased palisade cell height leads to improved uptake of 
carbon dioxide (CO2) into mesophyll cells, and improved 
photosynthesis in thick leaves was witnessed [57]. Simi-
larly, another study in the Arabidopsis Cvi ecotype found 
increased palisade mesophyll cell length contributed to 
increase of leaf thickness [58].

The QTL cluster regions of Qflt-2H and Qflt-3H not 
only affected the morphology of flag leaf but also had a 
positive effect on grain yield-related traits. From the 
annotation database (https://​webbl​ast.​ipk-​gater​sleben.​
de/​downl​oads/​barley/), a gene that encodes LONGIFO-
LIA ½ protein (HORVU.MOREX.r3.2HG0126960.1 (108, 
708, 757˗108, 713, 879, Morex V3, 2021)) were found 
within the interval of Qflt-2H on chromosome 2H. Previ-
ously, a cell wall invertase gene GIF1 (OsCIN2) for rice 
has been reported to determine grain-filling, which also 
contributes to seed development. In Arabidopsis, LONGI-
FOLIA1 and LONGIFOLIA2 are two homologous genes, 
and regulate leaf morphology by positively promoting 

longitudinal polar cell elongation [59]. HORVU.MOREX.
r3.3HG0307040 (563, 634, 754˗563, 636, 989, Morex V3, 
2021)) on chromosome 3H, encodes NAC domain pro-
teins, which are associated with secondary wall thicken-
ing in Arabidopsis [60, 61]. Secondary walls also have 
specialized functions in determining pollen release 
from anther, and fiber elongation in seed trichomes 
[60, 62]. Therefore, HORVU.MOREX.r3.2HG0126960 
and HORVU.MOREX.r3.3HG0307040 have potential 
impacts on FLT and seed development. Other genes, 
such as HORVU.MOREX.r3.2HG0126390 (Gibberel-
lin receptor GID1A), HORVU.MOREX.r3.2HG0127670 
(Vegetative cell wall protein gp1), and HORVU.MOREX.
r3.3HG0308590 (SAUR-like auxin-responsive protein 
family) within QTL intervals of Qflt-2H and Qflt-3H are 
listed in Supplementary Tables S2 and 3, respectively.

Improving barley production by rewilding for lost superior 
traits
Wild barley has been reported to contain great genetic 
variation which provides valuable genetic resources for 
the improvement of cultivated barley [63–65]. Dur-
ing the process of domestication for selected agronomic 
traits many of the inherited traits, in particular, biotic 
and abiotic stress tolerance, may have been weakened or 
lost [52]. Barley is one of the major crops with many lost 
traits during domestication through artificial selection 
by breeders to meet human needs. Identification of these 
“missing” beneficial genes/alleles in wild barley species 
would provide promising genetic resources for barley 
breeding in the future. Recent research have paid more 
attention to discovering biotic and abiotic stress toler-
ance genes from wild relatives [66, 67] which have been 
successfully used in breeding programs [68]. Domestica-
tion also caused the loss of many morphological traits, 
such as leaf thickness, which are hard to select based on 
field performance. The relationship between leaf mor-
phology and climate can evolve repeatedly in response 
to similar environments [15]. Results from our prelimi-
nary screening of 700 barley genotypes also supported 
the hypothesis with most of the 30 genotypes that have 
the thickest flag leaves (over 310  μm) being wild barley 
of landraces. In contrast, the FLT of commercial varieties 
was around 250  μm with several of them being around 
200  μm (Supplementary Table S4). However, some wild 
barley type may also have much thinner flag leaves phe-
notypes. A recent report showed that the FLT of a wild 
barley AWCS276 was less than 150 μm [53].

During the process of selection under resource-poor 
environments, seedlings of species or ecotypes with 
greater leaf dry mass per unit area will be chosen for 
longer leaf longevity, rather than selection acting on 
growth rates themselves, such as internode length [69]. 

Fig. 4  Changes of LOD and R2 of Qflt-3H before (red line) and after 
(green line) using plant height as a covariate

https://webblast.ipk-gatersleben.de/downloads/barley/
https://webblast.ipk-gatersleben.de/downloads/barley/
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Even when grown under favourable conditions, the plants 
will keep low growth rates [70]. Species with higher leaf 
mass per leaf area (LMA) have thicker laminas, veins that 
protrude more, higher tissue density, or combinations 
of these [71, 72]. High-LMA species tend to achieve a 
longer average leaf lifespan in a variety of habitats [16]. 
Thicker, tougher leaves are the most common and gen-
eral-purpose of plants defence [73]. However, long leaf 
lifespan may also be correlated with greater relative allo-
cation to tannins, phenols, or other defensive compounds 
[74].

Although QTL have recently been reported, genes 
regulating FLT in barley have not been identified. The 
identification of the genes can greatly facilitate crop 
development [22, 53, 57]. In this study, we identified 
four QTL for flag leaf thickness with all the alleles for 
increasing leaf thickness being from the wild accession. 
Pan-genomics which contains multiple high-quality 
sequences to show genetic diversity is now widely used 
in crops, including rice [75, 76], wheat [77], barley [78], 
soybean [79], and maize [80]. However, barley pan-
genomic studies so far have been limited mostly to cul-
tivated accessions, with only a few wild species [78, 81]. 
Wild species as sources of novel genes now present great 
potential for crop improvement by reintroducing into 
modern cultivars [52]. The candidate genes for Qflt-2H 
and Qflt-3H were used to blast the recently released bar-
ley pan-genome [78] at IPK barley blast server (http://​
webbl​ast.​ipk-​gater​sleben.​de/​barley_​ibsc/). One of them, 
HORVU2Hr1G031980, was only found in the Morex ref-
erence genome rather than other wild or landrace barley 
varieties. Therefore, more attention should be paid to 
the exploration and mining of favourable alleles in wild 
barley resources, including these alleles to improve leaf 
traits thus producing a better trade-off between sink and 
source.

In conclusion, for the first time a major QTL was iden-
tified for flag leaf thickness with the thick leaf allele from 
a wild barley accession, which has been lost during evo-
lution. The introduction of the allele to cultivated barley 
could have a potential in significantly increasing grain 
yield by improving source for grain filling. It also pre-
sents a great opportunity for scientists to conduct their 
functional studies of leaves by incorporating genetic and 
molecular approaches.

Materials and methods
Plant material
A barley DH population consisting of 155 lines was 
derived from a cross between Australian malting barley 
cultivar Gairdner (Hordeum vulgare L.) (two-rowed and 
short stature and Syrian wild barley SYR01 (Hordeum 
spontaneum)(two-rowed and tall plant) obtained from 

China. The population was constructed by the Tasma-
nian Institute of Agriculture, University of Tasmania.

Trials and trait measurements
Field trials were conducted at Mt Pleasant Labora-
tory in Tasmania, Australia (147°08’E, 41°280’S). In the 
field condition, fifteen seeds of each line were sown in 
a 0.6  m row with a row spacing of 0.25  m on 20 April 
2019 and 25 April 2020. The field management followed 
the local farmers’ practices. In the glasshouse condition, 
five seeds of each line were sown in a 2-L pot filled with 
commercial potting mixture on 10 May 2020, at a spac-
ing of 0.2 m between each pot. All the trials were carried 
out following a randomized complete block design with 
three replications. At the full-ripe stage, ten main pani-
cles of each line were collected from field trials in both 
2019 and 2020. Then the seeds were used for measuring 
thousand grain weight (TGW, g), grain length (GL, mm), 
grain width (GW, mm), grain thickness (GT, mm), and 
average seed area (ASA, mm2) by using the stand-alone 
digital image analyser with inbuilt software for image 
analysis in 2019 and 2020. Grains weight per panicle 
(GWP, g) was subsequently calculated. Flag leaf thick-
ness (FLT, µm) was measured by a non-destructive leaf 
thickness instrument after anthesis in both glasshouse 
and the field in 2020, following the method previously 
described [22]. Taking the main vein as the vertical cen-
tre line of the blade, we measured the thickness of the left 
(x1) and right (x2) side of the middle part of the leaf blade 
and calculated the value of (x1 + x2)/2 as the thickness 
of the leaf blade. Flag leaf length (FLL, cm), width (FLW, 
cm) and panicle length (PL, cm) of the same plants were 
also measured. We followed the equation FLA = 0.69 × 
FLL × FLW to calculate the flag leaf area (FLA, cm2) [27]. 
Plant height (PH, cm) was measured from soil surface 
to the top of the spike excluding the awns in the field in 
2019 and 2020.

Statistical analysis
The narrow-sense heritability (h2) was estimated as 
h2 = Vg/ (Vg +Vgei/s + Ve/sr), where Vg, Vgei, and Ve are 
the variance contributed by genotype, genotype-by-
environment interaction, and residual error, respectively, 
while s is the number of environments and r is the num-
ber of replicates. The best linear unbiased predictions 
(BLUPs) for sink and source characteristics of each line 
across different environments were calculated using 
mixed linear models in the R package ‘lme4’ [82]. Then, 
the mean value of BLUPs of each line were used for sta-
tistical analysis and QTL mapping. The Pearson’s cor-
relation coefficients were computed with the R package 
‘Hmisc’.

http://webblast.ipk-gatersleben.de/barley_ibsc/
http://webblast.ipk-gatersleben.de/barley_ibsc/
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Genotyping and QTL mapping
Genomic DNA of each line was extracted and puri-
fied from approximately 100  mg leaf tissue via a modi-
fied cetyltrimethylammonium bromide (CTAB) method 
(Murray and Thompson 1980). Whole genome diversity 
array technology (DArT) and single nucleotide polymor-
phism (SNP) genotyping based on the 2017 Morex barley 
reference genome assembly were conducted by Diversity 
Arrays Technology (Canberra, Australia; https://​www.​
diver​sitya​rrays.​com). A total of around 22,000 DArT 
markers and 13,000 SNPs evenly distributed on the seven 
barley chromosomes were used to genotype the parents 
and 155 DH lines (Supplementary Figure S4). After fil-
tering out low-quality markers (missing rate ≥ 10%) and 
those showing non-polymorphic in the two parents or 
progenies, a set of 8,334 DArT markers and 4,485 SNPs 
were generated. Then, the 12,819 markers were screened 
for similarities to remove redundant markers, and sig-
nificantly distorted (P < 0.01) markers were also removed. 
Finally, 5052 markers were used for genetic map con-
struction [64, 66] and QTL mapping. Genetic and physi-
cal positions of markers were aligned with the 2017 
Morex barley reference genome assembly [83] as well as 
the most recent assembly [84] (Figure S5) using 2H as an 
example.

MapQTL 6.0 [85] was used for QTL analysis. The 
procedures of QTL detection have been well described 
before [86]. Briefly, the interval mapping (IM) function 
was applied for initial QTL scanning. A QTL was claimed 
to be significant at a LOD value higher than 3.0. Then 
the approximate multiple QTL model (MQM) was used 
for genetic background control. The percentage of total 
phenotypic variance explained by each QTL (R2) and the 
additive effect was obtained using the restricted MQM 
(rMQM) function. Interval of each QTL was calculated 
as the 95% confidence interval (1 LOD drop-off). Map-
Chart 2.32 [87] was used for the graphical representation 
of linkage groups and QTL locations.
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