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Abstract 

Background:  Pre-harvest sprouting (PHS) refers to a phenomenon, in which the physiologically mature seeds are 
germinated on the spike before or during the harvesting practice owing to high humidity or prolonged period of 
rainfall. Pre-harvest sprouting (PHS) remarkably decreases seed quality and yield in wheat; hence it is imperative to 
uncover genomic regions responsible for PHS tolerance to be used in wheat breeding. A genome-wide association 
study (GWAS) was carried out using 298 bread wheat landraces and varieties from Iran to dissect the genomic regions 
of PHS tolerance in a well-irrigated environment. Three different approaches (RRBLUP, GBLUP and BRR) were followed 
to estimate prediction accuracies in wheat genomic selection.

Results:   Genomes B, A, and D harbored the largest number of significant marker pairs (MPs) in both landraces 
(427,017, 328,006, 92,702 MPs) and varieties (370,359, 266,708, 63,924 MPs), respectively. However, the LD levels were 
found the opposite, i.e., genomes D, A, and B have the highest LD, respectively. Association mapping by using GLM 
and MLM models resulted in 572 and 598 marker-trait associations (MTAs) for imputed SNPs (− log10 P > 3), respec-
tively. Gene ontology exhibited that the pleitropic MPs located on 1A control seed color, α-Amy activity, and PHS. 
RRBLUP model indicated genetic effects better than GBLUP and BRR, offering a favorable tool for wheat genomic 
selection.

Conclusions:  Gene ontology exhibited that the pleitropic MPs located on 1A can control seed color, α-Amy activity, 
and PHS. The verified markers in the current work can provide an opportunity to clone the underlying QTLs/genes, 
fine mapping, and genome-assisted selection.Our observations uncovered key MTAs related to seed color, α-Amy 
activity, and PHS that can be exploited in the genome-mediated development of novel varieties in wheat.
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Background
Wheat (Triticum aestivum L.) has gradually become the 
global pioneer in supplying human nutrition and calo-
ries [1, 2]. The seeds of this crop are prone to sprouting 
at maturity when reiterated rainfall happens in the time 
of harvest in the field, leading to a remarkable decrease in 
flour quality and grain yield [3]. As a result, pre-harvest 
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sprouting (PHS) is known as a detrimental restricting 
factor in wheat productivity [4]. Given this challenge, 
genetic improvements in PHS tolerance have become a 
serious focus of wheat breeders.

PHS tolerance depends on several factors, includ-
ing i) environmental factors, such as relative humid-
ity and temperature [4]; ii) biophysiological traits, such 
as germination-inhibitory compounds in the glumes, 
α-amylase (α-Amy) activity, grain structure and color, 
phytohormones, and seed dormancy [5]; iii) morpholog-
ical traits, such as awn and spike structure [6]. Of these 
factors, grain color is genetically related to PHS toler-
ance, the red-grained genotypes are more tolerant to 
PHS than white ones [7]. Genes coding MYB transcrip-
tional factors responsible for the flavonoid biosynthesis, 
i.e., Tamyb10-1, have been reported as candidates that 
determine grain color [8]. Myb10 confers PHS resist-
ance in wheat, which activates 9-cis-epoxycarotenoid 
dioxygenase (NCED) by biding the secondary wall MYB-
responsive element (SMRE) to promote ABA biosyn-
thesis in early wheat seed development stages [9–11]. 
Moreover, experimental evidence highlight seed dor-
mancy is a key genetic component that determines PHS 
tolerance in wheat genotypes [2].

To date, numerous quantitative trait loci (QTLs) asso-
ciated with PHS tolerance in wheat have been recognized 
in previous studies [12]. These works have either assayed 
PHS tolerance indirectly by germination testing of har-
vest-ripe grains in a controlled environment [13–15] and/
or directly by evaluating spikes in the field or in misting 
chambers [15, 16]. Most identified genomic segments are 
mapped on chromosome 4A [17–19], followed by 3A, 
3B, and 3D [20]. The PHS tolerance genes located on the 
chromosomes 3D, 3B, and 3A are known to be pleiotropic 
or closely linked with red coat controlled by allele R [20]. 
Several resistant genes such as MKK3 [21], Vp1[22, 23], 
PM19 [24, 25], MFT [26], PHS1 [27], PHS-3D [9], ABI5 
[28], FUS3 [29] and DOG1 [30], were characterized from 
wheat for grain dormancy. Recently, Torada et  al. [21] 
cloned MKK3 as the causal gene for grain dormancy. Fur-
ther development of functional markers related to PHS 
tolerance is critical in wheat.

Genome-wide association study (GWAS) is an alterna-
tive tool to determine QTLs in natural populations [15]. 
The establishment of genotyping technologies, from SSRs 
to SNPs, could facilitate association studies for accu-
rate and efficient exploring of potential loci involved in 
complex traits, including PHS resistance in wheat [7, 
13, 31] and grain-associated traits [32, 33]. However, the 
molecular mechanisms of PHS resistance remain unclear. 
Genomic selection (GS) along with GWAS can dramati-
cally accelerate genetic gain in breeding [34, 35]. Several 

methods, including SNP-BLUP, have been suggested for 
genomic prediction [36].

In this study, a total of 298 Iranian wheat genotypes 
were evaluated for genotyping-by-sequencing (GBS)-
based GWAS to achieve two objectives: i) uncovering 
genetic loci associated with PHS resistance; (2) identify-
ing the best model for estimating prediction accuracies in 
genomic selection.

Results
Phenotypic data summary
The results of descriptive statistics of traits related to 
pre‑harvest sprouting are shown in Table  1. Germina-
tion percentage occurred among Iranian wheat cultivars 
and landraces were ranged from zero to %100. The aver-
ages of germination percentage in landraces and cultivars 
were 71.31% and are 79.67%, respectively, which shows 
that native populations harbor more value of this trait. 
Sprouting index, sprouting score, and sprouting spike 
also confirm the lower pre‑harvest sprouting rate of 
native populations than cultivated varieties. The α-Amy 
enzyme activities in native populations and cultivars 
were 9.38 and 10.76, respectively, which indicates less 
activity of the enzyme in landraces than that of varieties. 
Color indices including L, a, and b do not differ signifi-
cantly between cultivars and landraces.

From Fig.  1, wheat germination percentage (GP) 
indicated significant, negative correlations with most 
seed traits with coefficients ranging from 0.99 to 0.31 
(P < 0.01). GP had the highest correlation with sprout-
ing score (SS) (r = 0.99), followed by sprouting index 
(SI) (r = 0.98), α-Amy (A.amy) (r = 0.89), percentage of 
sprouted spike (SSp) (r = 0.68), color index L (r = 0.38), 
brightness index (WI) (r = 0.38), color index b, and 
Chroma (r = 0.25 and 0.24).

Assessment of SNPs
After eight Ion Proton runs, a total of 566,439,207 reads 
were identified with 458,363,607 (about 81%) high-
quality barcoded reads. A total of 133,039 unique SNPs 
were called after filtering out duplicated reads. After 
imputation and discarding the SNPs with > 20% missing 
values, > 10% heterozygosity, and < 5% miner allele fre-
quency, 43,525 SNPs were identified across all 21 wheat 
chromosomes. Out of them, 15,951, 21,864, and 5,710 
SNPs were mapped to A, B, and D genomes, respec-
tively, which included 36.7%, 50.2%, and 13.1% of total 
SNPs (Fig.  2). The highest and lowest numbers of SNPs 
were located on 3A (4034 SNPs) and 4D (270 SNPs), 
respectively.
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Population structure and kinship matrix
In order to determine the appropriate number of sub-
populations, the number of clusters was plotted (K) 
against ΔK. The largest ΔK value was observed at 
K = 3 suggesting the presence of three subpopulations 
(Fig.  3a). Using the structure software, the population 
of 298 accessions was structured into three subpopula-
tions, Sub1, Sub2, and Sub_3 (Fig.  2). Sub_1 contains 
113 accessions with 107 landraces and 6 varieties, 
Sub_2 contains 111 accessions with 97 landraces and 
14 varieties; Sub_3 contains 74 studies with 70 varie-
ties and 4 landraces (Fig. 3b). Molecular markers-based 

PCA showed that the first and second components 
justified 16.9% and 6.3% of total genetic variance 
occurred between wheat accessions. Thus, our study 
can distinguish favorably cultivars and native popula-
tions (Fig. 4). As expected, a population structure was 
identified in the Iranian wheat landraces, with the first 
five eigenvalues accounting for 30.5% of genetic diver-
sity. From the clustering results, the native populations 
were divided into two subgroups. Clustering based on 
the nearest neighbor also indicated that cultivars and 
landraces were appropriately separated by using the 
imputed markers (Fig. 5).

Table 1  Descriptive findings on the studied traits for Iranian landraces and cultivars

GP Germination Percentage, SS Sprouting Score, SI Sprouting Index, SSp Sprouting Spike, A.amy Alpha amylase, WI Whiteness Index

Abb Group Mean Minimum Maximum Coeff of Variation Std Error Std Dev Skewness Kurtosis

GP Landrace 71.31 0.00 100.00 99.45 1.98 28.53 1.24 0.39

Cultivar 79.67 0.00 100.00 115.74 2.48 23.54 1.84 3.02

Total 73.84 0.00 100.00 104.53 1.58 27.35 1.39 0.91

SI Landrace 77.04 0.00 100.00 36.20 1.93 27.88 -1.38 0.84

Cultivar 83.51 0.00 100.00 26.61 2.34 22.22 -1.95 3.38

Total 78.99 0.00 100.00 33.46 1.53 26.43 -1.53 1.38

SS Landrace 6.85 1.00 8.90 29.47 0.14 2.02 -1.49 1.49

Cultivar 7.45 1.00 9.00 22.21 0.17 1.66 -2.06 4.53

Total 7.03 1.00 9.00 27.49 0.11 1.93 -1.63 2.09

SSp Landrace 92.98 0.00 100.00 23.48 1.51 21.83 -3.49 11.24

Cultivar 96.61 0.00 100.00 15.47 1.58 14.95 -5.54 31.90

Total 94.08 0.00 100.00 21.31 1.16 20.05 -3.88 14.31

A.amy Landrace 9.38 0.11 16.09 45.69 0.30 4.29 -0.65 -0.49

Cultivar 10.76 0.12 16.59 35.10 0.40 3.78 -0.99 0.75

Total 9.80 0.11 16.59 42.67 0.24 4.18 -0.75 -0.23

L Landrace 59.90 45.07 72.24 10.44 0.43 6.25 -0.18 -0.83

Cultivar 60.68 45.01 72.17 9.96 0.64 6.04 -0.11 -0.79

Total 60.13 45.01 72.24 10.29 0.36 6.19 -0.17 -0.81

a Landrace 3.40 1.09 6.90 33.95 0.08 1.15 0.22 -0.39

Cultivar 3.29 1.17 5.48 32.03 0.11 1.05 -0.13 -0.92

Total 3.36 1.09 6.90 33.39 0.07 1.12 0.15 -0.47

b Landrace 21.16 15.50 26.76 11.48 0.17 2.43 -0.36 -0.67

Cultivar 21.73 16.55 25.62 9.29 0.21 2.02 -0.58 -0.06

Total 21.33 15.50 26.76 10.90 0.13 2.32 -0.45 -0.51

Chroma Landrace 21.46 15.55 26.96 11.48 0.17 2.46 -0.39 -0.62

Cultivar 22.00 16.62 25.72 9.05 0.21 1.99 -0.63 0.06

Total 21.62 15.55 26.96 10.83 0.14 2.34 -0.48 -0.43

Hue Landrace 1.41 1.28 1.57 3.66 0.00 0.05 -0.06 -0.41

Cultivar 1.42 1.31 1.52 3.53 0.01 0.05 0.08 -0.84

Total 1.41 1.28 1.57 3.62 0.00 0.05 -0.03 -0.52

WI Landrace 54.28 41.87 65.04 8.81 0.33 4.78 -0.19 -0.66

Cultivar 54.74 42.19 64.03 8.57 0.49 4.69 -0.09 -0.73

Total 54.42 41.87 65.04 8.73 0.28 4.75 -0.17 -0.68
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Linkage disequilibrium (LD)
The levels of LD in genomes A, B, and D were 2279, 1707, 
and 5135, respectively. This reflects that genomes D, A, 
and B have the highest LD, respectively (Fig. 6). An analy-
sis on landraces identified a total of 1,867,575 marker 
pairs with r2 = 0.182, of which 847,725 (45.39%) harbored 
significant linkages at P < 0.001.

Similar to cultivars, marker pairs on chromosome 
4A showed the strongest LD (r2 = 0.369). Moreover, 

most of the significant marker pairs were found at 
distance of < 10  cM. Genomes D and B possessed the 
lowest and highest number of marker pairs (92,702 
and 427,017), respectively. A total of 1,858,425 marker 
pairs with r2 = 0.211 were identified in cultivars, of 
which 700,991 (37.72%) harbored significant link-
ages at P < 0.001. Based on the observations, most of 
the significant marker pairs were found at distance 
of < 10 cM. Genomes D and B possessed the lowest and 

Fig. 1  Correlation coefficients between the studied traits for Iranian wheat landraces and cultivars. Abbreviations: GP, Germination Percentage; SS, 
Sprouting Score; SI, Sprouting Index; SSp, Sprouting spike; A.amy, Alpha amylase; WI, Whiteness Index
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highest number of significant marker pairs (63,924 and 
370,359), respectively (Table 2; Fig. 6).

MTAs for morphometric seed traits
In total, 566 and 598 significant marker pairs (MTAs) 
were identified by using GLM and MLM approaches, 
respectively, for PHS-related traits (–log10 P > 3). Of 
the total number of MTAs in the GLM method, 204, 

271, and 97 MTAs were assigned to genomes A, B, and 
D, respectively. Of 598 MTAs in the MLM method, 220, 
273, and 105 MTAs belonged to genomes A, B, and D, 
respectively. Genome B with 47.9% (GLM) and 45.7% 
(MLM) harbored the highest significant marker pairs 
and genome D with 16.1% (GLM) and 17.6% (MLM) pos-
sessed the lowest marker pairs, respectively. The number 
of significant markers for GP, SS, SI, SSp, A.amy, L, a, 

Fig. 2  Number of imputed SNPs used in different chromosomes of the wheat genomes (a), number of imputed SNPs used in wheat genomes (b)

Fig. 3  Determination of subpopulations number in wheat genotypes based on ΔK values (a), A structure plot of the 298 wheat genotypes and 
landraces determined by K = 3 (b)
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b, Hue, Chroma, and WI traits using the GLM method 
were 60, 65, 72, 120, 40, 30, 50, 35, 39, 35, and 20, as well 
as using the MLM method were 65, 66, 64, 170, 34, 30, 
41, 35, 36, 37, and 20, respectively. The highest and low-
est numbers of significant marker pairs using GLM and 
MLM methods were related to SSp (120 and 170 marker 
pairs) and WI (20 and 20 marker pairs), respectively. The 
most significant markers for PHS were on genome B, 
which has a greater effect on seed dormancy when com-
pared to other genomes. However, the seed brightness (L 
and WI)-associated markers were located on genome A 
(Fig.  7). Manhattan diagrams for common areas associ-
ated with each seed trait are shown in Fig. 8.

Gene ontology
The markers with the highest significance (P < 0.0001) and 
pleiotropy were studied in more detail. A total of 41 mark-
ers with high significance and pleitropic were identified, 
most of which were on 1A, 1B, 2A, 3B, 6D, and 7A. The 
marker pairs located on 1A were found to be able to control 
seed color, α-Amy activity, and germination percentage. 
Some of the significant MTAs were responsible for impor-
tant molecular and biological processes, including protein 
kinase, G protein-coupled receptor signaling, signal trans-
duction, intracellular transport, oxidoreductase activity, Fe 
ion binding, oxidation–reduction process, monooxygenase 
activity, protein binding, regulation of transcription, and 
double-stranded DNA binding (Table 3).

Based on the rice reference genome, the following 
pathways were discovered: hormone signal transduc-
tion (Fig. 9), metabolic pathways (Supplementary Fig. 1), 
MAPK signaling pathway (Supplementary Fig. 2), purine 
metabolism (Supplementary Fig.  3), spliceosome (Sup-
plementary Fig. 4), and glycolysis/gluconeogenesis (Sup-
plementary Fig.  5) ([37–39], www.​kegg.​jp/​kegg/​kegg1.​
html).

Genomic prediction
BRR, RR-BLUP, and GBLUP models using imputed SNPs 
exhibited the highest prediction accuracy for pheno-
types 6, 3, and 2. The highest prediction accuracy by the 
GBLUP was achieved for SSp, Hue, and WI; by the RR-
BLUP method for SS, SI, A.amy, a, L, and b; as well as 
by the BRR for GP and L traits (Fig. 10). BRR, RR-BLUP, 
and GBLUP models using significant SNPs indicated 
the highest prediction accuracy for phenotypes 2, 7, and 
2. The highest prediction accuracy by the GBLUP was 
achieved for L and WI; by the RR-BLUP method for GP, 
SS, SI, SSp, Hue, a, and b; as well as by the BRR for A.amy 
trait. Overall, the RR-BLUP showed higher prediction 
accuracy and the BRR had a slight difference in accuracy 
with the RR-BLUP.

Discussion
PHS tolerance in wheat is a complicated quantitative 
trait influenced by genetic background and environ-
ment [4]. Thus, reliable phenotyping and genotyping for 

Fig. 4  Principle component analysis (PCA) for 298 Iran bread wheat accessions using 43,525 markers

http://www.kegg.jp/kegg/kegg1.html
http://www.kegg.jp/kegg/kegg1.html
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monitoring PHS tolerance can enhance the accuracy of 
QTL mapping. In this study, a total of 298 Iranian wheat 
accessions including 208 landraces and 90 cultivars were 
assembled as a natural population for mapping QTLs 
related to α-Amy enzyme activity, seed color, PHS using 
GWAS.

A high level of variation was uncovered in the stud-
ied traits for Iranian wheat accessions, suggesting the 

potential of the GWAS technique for exploring QTLs, as 
reported by Rahimi et al. [40]. The α-Amy enzyme activ-
ity was lower in native populations than that of cultivars. 
Moreover, the seeds of landraces were exposed to longer 
dormancy when compared to cultivars. From correla-
tion analysis, the below facts were concluded based on 
the associations among α-Amy activity, grain color, and 
pr-harvest sprouting, i) the lower the α-Amy activity, 

Fig. 5  The dendrogram of Neighbor-Joining clustering constructed using 43,525 SNPs and 298 Iranian wheat accessions
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the higher the resistance of accessions to PHS; ii) the 
darker the seed, the more dormant it is; and iii) the more 
dormant the seed, the more PHS resistant it is. Similar 
results were reported by Zhou et al. [3], Zhou et al. [4], 
and Albrecht et al. [16].

The possibility for false associations can be raised in 
mapping studies if population structure is not suitably 
accounted for [41]. Two kinds of kinships lead to a high 
rate of false positives in GWAS: cryptic relatedness and 
ancestry difference. Cryptic relatedness appears when 
some plant accessions are closely related; however, 
these shared ancestries are undisclosed to breeders [42]. 
Large populations inevitably consist of accessions hav-
ing common ancestry from various populations. Ances-
try difference also refers to various ancestries among 
accessions in research [33]. To evaluate the population 
structure in Iranian wheat accessions, PCA analysis 
and clustering were performed. Of results, the panel of 

accessions was stratified into three groups. The selec-
tion effects in breeding programs are considered as the 
reasons for such a genetic separation [43]. Rahimi et al. 
[40] observed the same grouping on these Iranian wheat 
accessions. Cultivars made up one group, while lan-
draces made up the other two groups, regardless of their 
geographic origins. This mixture can be originated from 
grain exchanges between farmers in different local mar-
kets throughout the country [44].

Of the results, the detected SNPs could cover the wheat 
genome well. The SNPs were higher in genome B and 
lower in genome D. Therefore, it seems there is a direct 
correlation between chromosome size and SNP den-
sity [45], because of the smaller size of chromosomes 
B compared to A ones. The higher frequency of SNPs 
in genome B resulted from the evolutionary processes. 
This inference was also stated by Alipour et al. [46] and 
Mourad et al. [47].

Fig. 6  Overview of the linkage disequilibrium (LD) within the whole association panel per genome using imputed SNPs
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Genomes D, A, and B have the highest LD, respectively. 
The strongest LD was recorded between marker pairs on 
chromosome 4A. The fact that cultivars exhibited higher 
LD in contrast to landraces, particularly in genome D, is 
presumably a consequence of selection throughout the 
time of breeding efforts for PHS-related traits [16]. The 
differences in LD occurred between genomes and acces-
sions, in addition to the evolutionary processes, indicate 
the impact of breeding schedules. Similarly, Liu et al. [48] 
observed that the distance of LD decay in the native pop-
ulations is less than cultivated varieties in wheat Paki-
stan/China collections.

Of the results, 1A, 2A, 4A, 1B, 2B, 6B, 4B, 3B, 5B, 7B, 
6D, 5D, 4D, and 2D harbor genomic regions controlling 

PHS-related traits. Genome B possessed the high-
est number of MTAs, suggesting the potential of this 
genome in wheat adaptability to PHS. The most signifi-
cant markers for PHS were on genome B, which has a 
greater effect on seed dormancy when compared to other 
genomes. However, the seed brightness-associated mark-
ers were located on genome A. These observations are in 
agreement with previous studies. For instance, Zhu et al. 
[3] mapped three key loci for PHS tolerance on chro-
mosomes 6BL, 3BS, and 1AL, as well as validated one 
dCAPS and two CAPS markers for implementation in 
wheat genomics-based selection.

Genomic regions controlling PHS were detected in 
most wheat chromosomes in this study. To date, seven 

Fig. 7  GWAS results for pre‑harvest sprouting traits in Iranian landraces and cultivars. A = GLM, B = MLM

(See figure on next page.)
Fig. 8  Manhattan and QQ-plots of highly associated haplotypes for GLM (a) and MLM (b) in Iranian wheat landraces and cultivars. X axis represents 
chromosomes: 1) 1A, 2) 1B, 3) 1D, 4) 2A, 5) 2B, 6) 2D, 7) 3A, 8) 3B, 9) 3D, 10) 4A, 11) 4B, 12) 4D, 13) 5A, 14) 5B, 15) 5D, 16) 6A, 17) 6B, 18) 6D, 19) 7A, 
20) 7B, 21)7D. Abbreviations: GP, Germination Percentage; SS, Sprouting Score; SI, Sprouting Index; SSp, Sprouting spike; A.amy, Alpha amylase; WI, 
Whiteness Index
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Fig. 8  (See legend on previous page.)
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Table 3  Description of expected MTAs using imputed SNPs for seed traits of Iranian wheat accessions in well-watered environment

No SNP Sequence Trait- Index Chromosome Position (bp) Cellular 
component

Molecular process Biological process

1 rs10741 TGC​AGC​AAA​AGT​
CTG​AGT​TCC​TCC​TCT​
CTG​AGG​TGG​GGC​
TGG​AAC​CAG​CAT​
ACG​TTG​CTC​ATCG​

GP, SS, SI, SSp and 
A.amy

6B 5683 - double-stranded 
DNA binding

regulation of 
transcription, DNA-
templated

2 rs12754 TGC​AGC​AAG​TGG​
CGT​ATA​GGG​TTG​GGT​
TTA​CCT​GGT​CAG​AGT​
GAA​GGT​CTG​ACC​
GAA​ACT​TTTT​

GP, SS, SI and SSp 6B 58,062 - - -

3 rs13478 TGC​AGC​ACA​CAC​
CGT​CGG​CAT​GCT​
ACA​CGT​GTC​TTC​
AAG​ATG​AGG​ATA​
ACC​CCG​ATC​ACA​
TTCT​

b and Chroma 3B 76,224 - - -

4 rs15410 TGC​AGC​ACT​ACC​
CCC​ACA​CCC​AAA​
GCA​ACT​CCG​TAC​
TAG​CGA​TGT​TGC​TTC​
CCT​TTC​TCA​CTAA​

GP, SS, SI and A.amy 1A 66,115 - - -

5 rs19991 TGC​AGC​ATG​GTG​
ACC​GCC​GAG​ACC​
AGC​ATG​GAT​TTC​
AGC​CAG​GAG​CTG​
TTG​TCC​CTC​TTC​
TTCG​

GP, SS, SI and A.amy 1B 47,847 - - -

6 rs19993 TGC​AGC​ATG​GTG​
ACC​GCC​GAG​ACC​
AGC​ATG​GAT​TTC​
AGC​CAG​GAG​CTG​
TTG​TCC​CTC​TTC​
TTCG​

GP, SS, SI and A.amy 1B 47,847 - - -

7 rs22935 TGC​AGC​CCA​CCA​
GGG​AAC​CGT​CAT​
CGT​CGC​CCC​GAT​
CGC​CAC​CGT​CGC​
CCC​CGA​GCT​CCA​
CCGA​

GP, SS, SI and A.amy 1B 47,847 - - -

8 rs23642 TGC​AGC​CCC​GCA​
GAG​GGC​ACG​GAA​
CGC​GCG​AGC​GCG​
CGC​GCA​CTT​CAG​
CGC​AGG​CAA​ACA​
TGGT​

SSp, L and WI 1A 44,512 - - -

9 rs27586 TGC​AGC​CTT​CCT​
ACA​AGG​CAT​CCA​
CGT​ACC​GTC​GGC​
TGT​GTC​TTC​AAC​CTG​
ACG​ATT​AAT​GAGA​

b, L and Chroma 2D 58,883 - - -

10 rs27947 TGC​AGC​GAA​GCA​
TCA​CAA​CAC​TGC​AAT​
GGA​GCG​TCG​CCG​

GP, SS, SI and A.amy 6D 119,937 - - -

11 rs27948 TGC​AGC​GAA​GCA​
TCA​CAA​CAC​TGC​AAT​
GGA​GCG​TCG​CCG​

GP, SS, SI and A.amy 6D 119,937 - - -

12 rs27950 TGC​AGC​GAA​GCA​
TCA​CGA​CAC​TGC​
AAT​GGA​GCG​TCG​
CCCG​

GP, SS, SI and A.amy 6D 119,937 - - -
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Table 3  (continued)

No SNP Sequence Trait- Index Chromosome Position (bp) Cellular 
component

Molecular process Biological process

13 rs27951 TGC​AGC​GAA​GCA​
TCA​CGA​CAC​TGC​
AAT​GGA​GCG​TCG​
CCCG​

GP, SS, SI and A.amy 6D 119,937 - protein binding -

14 rs3368 TGC​AGA​CAC​TAT​GTT​
TGA​TTC​GCC​AGT​GGA​
TGC​ACA​ACG​GAC​
AGG​CAC​CGA​GAT​
CGG​AAG​AGCG​

b and Chroma 3B 77,361 - - -

15 rs34002 TGC​AGC​GTG​TGG​
AGA​TCA​AGC​GAG​
AAG​CAC​ACC​ATA​TAC​
GGC​CTG​GAC​ACA​
GTG​TAC​GAA​TCCC​

GP, SS, SI and A.amy 7B 72,800 - - -

16 rs35658 TGC​AGC​TCA​ACC​
AAA​CAC​AGC​CTA​
AAG​CTC​ATT​CTC​
GCC​TAA​CTA​CGA​
GGA​CAA​AAT​GTT​
GGCA​

L and WI 5B 45,594 - - -

17 rs36765 TGC​AGC​TCC​GCT​
TCG​CTC​CAC​CAG​
GTA​CGC​CTC​CCA​
CCT​CCA​CCA​CCC​TCT​
GGT​CGG​GAA​GTGG​

GP, SS, SI and A.amy 7B 72,800 - - -

18 rs40099 TGC​AGC​TGG​TTC​
ACT​GTA​GAC​CTG​
CGA​CTC​ACG​GCA​
GGA​GAG​GCG​AAT​
CCG​AGA​TCG​GAA​
GAGC​

L and WI 7B 12,528 - - -

19 rs42907 TGC​AGG​AAT​CCC​
GCT​TAC​TCC​ATG​GAT​
CTC​TAT​TGA​TGG​TGA​
TCA​ACG​GTT​TGC​
TTG​GCT​GATG​

b, L, WI and Chroma 2A 11,390 - - -

20 rs43563 TGC​AGG​ACG​AGA​
TAA​ATC​GAG​TCA​CCG​
AAG​GCA​AAC​CGA​
CCA​TCG​AGG​AAG​
ACG​ACC​TCA​GCAG​

a and Hue 5B 51,278 - monooxygenase 
activity; iron ion 
binding; oxidore-
ductase activity

oxidation–reduction 
process

21 rs44886 TGC​AGG​AGG​TGT​
GCG​ACA​GCA​TAA​
CAC​CGA​TGC​CTA​
AAG​GAA​GGT​TAA​
GGA​CGA​CCA​CAA​
CCAC​

GP, SS, SI and SSp 5D 7959 - - -

22 rs45340 TGC​AGG​ATC​TGT​ACA​
AGT​GGG​CTA​CTC​
GAT​GTA​ATT​TTA​GCC​
GAG​ATC​GGA​AGA​
GCG​GGA​TCAC​

GP, SS, SI and SSp 3B 113,948 - - -

23 rs51766 TGC​AGG​GTG​AAA​
TTA​AAG​CAC​TGC​
TAG​CTG​CTA​GTA​CGA​
AAC​AAG​ATG​CAT​GTT​
CAG​CGT​TAGT​

GP, SS, SI, SSp and 
A.amy

4B 61,749 - - -
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Table 3  (continued)

No SNP Sequence Trait- Index Chromosome Position (bp) Cellular 
component

Molecular process Biological process

24 rs53795 TGC​AGG​TGA​TCG​
TGG​AGG​AGA​GCA​
ACA​CCA​ACT​GCG​
CCT​ACT​AAC​CCA​
CCG​ACG​AAC​CAT​
TAGC​

b, L and WI 3B 121,341 - - -

25 rs54459 TGC​AGG​TGG​TCG​
AAG​CAG​CAG​AAG​
CAG​TAG​GCG​TCG​
TCG​GTG​GGG​GCA​
GCA​ACA​GCA​GTA​
GGCG​

GP, SS, SI, SSp, 
A.amy, L and WI

1A 44,512 - - -

26 rs54460 TGC​AGG​TGG​TCG​
AAG​CAG​CAG​AAG​
CAG​TAG​GCG​TCG​
TCG​GTG​GGG​GCA​
GCA​ACA​GCA​GTA​
GGCG​

GP, SS, SI, SSp, 
A.amy, L and WI

1A 44,512 - - -

27 rs54593 TGC​AGG​TGT​CGG​
CGC​CCG​ATG​TCA​TAC​
CGA​GGG​TTC​CTC​
AAC​CCT​CGC​CTG​CTA​
TGG​AAC​ATCA​

GP, SS, SI and SSp 3B 113,379 - - -

28 rs6018 TGC​AGA​GCC​GAT​
CCT​GCA​AAA​CAA​
ACC​CAG​CTC​TAA​
CAC​CCT​GTG​ATT​TCC​
CGA​GAT​CGG​AAGA​

GP, SS, SI and SSp 3B 113,379 - - -

29 rs62109 TGC​AGT​GTC​TCC​
ACG​CGA​CCC​ACC​
CCG​ATG​CAG​GCC​
GCG​TGA​AGG​CCG​
CCG​TAC​TGG​GAC​
GCCA​

GP, SS, SI, SSp, 
A.amy, L and WI

7B 63,702 - Intracellular trans-
port

30 rs63948 TGC​AGT​TGA​TGA​TAG​
CTA​AAC​CCA​CGG​
AAC​CCT​ACG​TGG​ATA​
ACC​AGC​GGC​CGC​
GCT​GTA​CCTT​

L, WI, Hue and 
Chroma

6D 119,937 - - -

31 rs8926 TGC​AGA​TGA​AAC​
GCC​TGC​ACA​TGT​
AAC​AAA​TAA​ACA​
GAC​TAT​TAC​ATG​CTC​
TAT​CTC​TAT​ACGC​

GP, SS, SI, SSp, 
A.amy, L and WI

4A 44,512 - - -

32 rs20094 TGC​AGC​ATG​TGC​
CCC​GCG​GCA​CGA​
ACA​ACG​AAG​CCG​
ACG​ATA​TCG​CCA​
AGA​GGG​TGT​CCA​
GGCG​

L and WI 4D 54,756 - - -

33 rs21099 TGC​AGC​CAC​ATC​
TGC​CAT​TCA​TTC​CGT​
TCT​TGG​TGC​TGC​TTG​
GGC​CAT​ACC​TGT​TAC​
TCC​TTTC​

GP, SS, SI and SSp 7A 59,400 Integral 
component 
of mem-
brane

- -

34 rs33980 TGC​AGC​GTG​TCG​
CAT​TGT​GGA​CAC​TAC​
CAG​GGA​ATT​TTT​CTT​
ATA​CAC​ATT​TTC​GGG​
TGT​TACA​

GP, SS, SI and SSp 2D 12,505 - - -
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PHS QTLs were detected, including Qphs.ahau-7A.2, 
Qphs.ahau- 6A, Qphs.ahau-5D, Qphs.ahau-5B.4, Qphs.
ahau-3B, Qphs. ahau-2B.3 and Qphs.ahau-2A.1 [3]. Our 
observations showed that the darker the seed, the more 
dormant it will be and thus the more resistant it will be 
to PHS. Of justifying the cause, some associations were 
observed between grain color and PHS tolerance. Zhu 
et al. [3], for instance, discovered the positive correlations 
between PHS tolerance and seed color and suggested that 
this association occurs because the red-colored popula-
tions harbor more tolerant Qphs.ahau-1A and Qphs.
ahau-3B alleles. Therefore, the authors stated that wheat 
seed color may be modulated collectively via Tamyb10-
1 and other QTLs. In this work, MTAs related to grain 
color were found on 7B, 2A, etc. In this regard, the Psy1 
gene coding phytoene synthase 1, responsible for yellow 
pigment, is co-segregated with seed brightness on 7B 

[49]. A major QTL controlling both a* (redness) and L* 
(brightness) was also reported on 2A [44]. Therefore, it 
seems that QTLs located on 7B and 2A are involved in 
wheat seed brightness, and thereby PHS tolerance. In 
this work, MTAs related to seed dormancy were found 
in some chromosomes, such as 4A. Similarly, Torada 
et al. [21] mapped TaMKK3-A as a candidate gene for the 
wheat seed dormancy, namely Phs1, on chromosomes 
4A. They suggested that a single amino acid substitu-
tion in the kinase domain of this protein is related to the 
length of seed dormancy. From our findings, α-Amy-
related genomic regions were found on 6B, 6D, 7B, etc. 
This is in line with previous studies. Lazarus et  al. [50] 
demonstrated that α-Amy-related genomic regions are 
multigene families located on the chromosomes 7A, 7B, 
7D (α-Amy2) and 6A, 6B, 6D (α-Amy1).

Table 3  (continued)

No SNP Sequence Trait- Index Chromosome Position (bp) Cellular 
component

Molecular process Biological process

35 rs41352 TGC​AGC​TTG​CCG​
CAC​GAA​GAG​ACC​
ATT​GGA​GCA​CCG​
CAG​AGC​GAG​AGG​
CGC​GGC​GCG​ACG​
CACA​

GP, SS, SI and A.amy 1A 44,512 - - -

36 rs45884 TGC​AGG​CAA​GGG​
ATC​CCC​TCG​CAA​GAT​
TCA​AGA​AGC​TAG​
GTG​GGC​GGC​GGC​
GGA​TCT​TTA​CCTG​

L and WI 2A 92,517 - Integral component 
of membrane

Signal transduc-
tion; protein kinase 
C-activating G 
protein-coupled 
receptor signaling 
pathway

37 rs52807 TGC​AGG​TCA​GCA​
AAT​GCA​CGA​TGG​
CCG​CCG​CCA​CCT​
GGA​GTG​CTC​TTC​TTC​
AGA​GCT​TCT​CCTC​

GP, SS and SI 2B 33,023 - - -

38 rs53611 TGC​AGG​TCT​TCG​
CCC​TCG​GCC​TGA​
ACA​AGC​GGC​TCG​
CGG​ACG​ACG​CCG​
AGA​TCG​GAA​GAG​
CGGG​

b and Chroma 2B 15,931 - - -

39 rs55558 TGC​AGG​TTT​TGC​CTA​
AGA​AAA​ACT​CAG​
AAT​TCA​CTG​GAA​
AAA​AAT​CAG​ATT​GCT​
GTA​AAC​TGCA​

GP, SS and SI 4B 61,749 - - -

40 rs57478 TGC​AGT​ATG​GCC​ACA​
TTT​GGC​AAT​AGA​TTT​
GTT​ATA​AAC​TTG​ACA​
ATG​GCT​AAG​AAG​
CCT​CCGT​

GP, SS, SI and SSp 2A 59,228 - - -

41 rs63525 TGC​AGT​TCG​TAA​
GCA​GAG​CGG​CAA​
TAT​ACG​ATA​TAC​CAC​
TAG​TAT​ACT​GTG​TCA​
CCA​CTG​GGGT​

GP, SS, SI and A.amy 7B 72,800 - - -
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The flanking sequences of imputed SNPs were searched 
and aligned versus the RefSeq v1.0 ([51], https://​urgi.​
versa​illes.​inra.​fr/​blast_​iwgsc/). Interestingly, output indi-
cated that most marker pairs are in the protein-coding 
regions, which control the transcription process. DNA-
binding, transcription factor activity, and transmembrane 
transport are other examples that are likely responsible 
for PHS tolerance. These findings are similar to the earlier 
researches [31]. Based on the rice reference genome, the 
following pathways were discovered: metabolic pathways, 
hormone signal transduction, MAPK signaling pathway, 
purine metabolism, spliceosome, and glycolysis/gluco-
neogenesis. Liu et al. [52] observed that the slowed gly-
colysis leads to down-regulate glycerate-3-phosphate and 
inhibits seed germination (i.e., PHS). Torada et  al. [21] 
uncovered a MKK3 by a map-based approach as a can-
didate gene for the locus Phs1 on 4A in wheat. Liu et al. 
[53] revealed that water status changes transcript levels 
of key genes involved in auxin, JA, and ethylene biosyn-
thesis and their metabolic pathways, suggesting roles in 
regulating seed dormancy and germination. Nonogaki 
et al. [54] showed that seed germination and dormancy, 

the two main factors around PHS, are controled by 
endogenous hormone balance, especially between GA 
and ABA, reflecting their vital roles in PHS. Wang et al. 
[38] indicated that MAPK signaling and hormone signal 
transduction are associated with PHS. Zhang et  al. [55] 
also highlighted that transcripts of spliceosome-related 
genes are abundant in the early stage of seed germina-
tion, suggesting the role of spliceosome in PHS process.

The highest prediction accuracy by GBLUP was 
achieved for SSp, Hue, and WI; by RR-BLUP method 
for SS, SI, A.amy, a, L, and b; as well as by BRR for GP 
and L traits. Shabannejad et  al. [56] revealed BRR and 
RR-BLUP are superior to other GP models, which are 
utilized in well-irrigated and rain-fed environments, 
respectively. Overall, obtaining the highest GP accu-
racy is depend on the genomic selection method, level 
of LD, genetic architecture, and genetic variation [57]. 
In this study, RRBLUP model indicated genetic effects 
better than GBLUP and BRR, offering a favorable tool 
for wheat genomic selection. It was reported that high 
genetic variation would be achieved by the GBLUP if 
markers were closely associated with the trait of interest 

Table 4  Climatic data in the studied environments

Year Month Max 
Temperature 
°C

Min 
Temperature 
°C

Average 
Temperature 
°C

Total 
rainfall, 
mm

Average 
relative humidity

Sunny hours Evaporation, mm

2017–2018 November 13.519 4.967 8.929 29.22 64.018 4.810 2.069

December 9.172 -0.047 4.315 27.59 62.066 6.520 0.270

January 9.255 -0.416 4.374 4.06 55.780 5.625 0.000

February 10.356 -0.482 4.721 15.34 55.074 5.874 0.000

March 15.623 3.985 9.844 38.66 50.191 7.228 0.000

April 22.903 9.511 16.419 40.11 39.557 9.343 5.892

May 29.258 14.192 21.833 11.94 35.941 9.233 9.207

June 34.974 18.595 26.991 0.12 28.390 10.898 12.698

2018–2019 November 14.561 4.104 10.900 0.93 45.810 6.893 3.068

December 9.242 -0.119 4.671 41.11 60.134 5.065 0.000

January 8.406 -0.613 3.668 15.04 57.750 6.652 0.000

February 7.871 -2.254 2.536 27.99 61.429 6.868 0.000

March 14.216 4.623 9.271 38.44 56.847 5.942 0.179

April 21.093 9.563 15.110 46.65 49.954 6.587 4.497

May 29.229 14.261 21.935 22.01 38.722 10.435 7.377

June 34.159 17.597 26.083 0.00 32.304 12.763 11.676

2019–2020 November 17.080 6.383 11.520 0.63 43.479 6.960 3.189

December 12.303 1.652 6.671 4.71 50.419 7.226 0.000

January 9.077 -0.055 4.052 19.84 54.476 6.526 0.000

February 10.739 2.039 6.464 31.73 64.755 5.829 0.000

March 20.558 8.377 14.652 14.11 38.952 7.303 0.000

April 19.983 7.793 13.633 45.81 51.413 7.563 6.714

May 25.513 12.061 18.432 57.07 54.907 8.287 6.161

June 33.807 17.347 25.583 7.23 37.492 11.100 11.143

https://urgi.versailles.inra.fr/blast_iwgsc/
https://urgi.versailles.inra.fr/blast_iwgsc/
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and/or plant populations were advanced. RR-BLUP can 
work well for genetic architecture consisting of numer-
ous loci with small impacts. BRR is similar to RR-BLUP 
however its shrinkage depends on the size of the studied 
population [58].

Conclusion
In the current study, GWAS for PHS in Iranian bread 
wheat accessions revealed the lowest LD decay dis-
tance and the highest number of marker pairs on 
genome B due to evolutionary events. The loci control-
ling the traits of interest were mapped on 1A, 2A, 4A, 
1B, 2B, 7B, 3B, 5B, 6B, 4B, 6D, 2D, 5D, and 4D. Gene 
ontology exhibited that the pleitropic MPs located on 
1A can control seed color, α-Amy activity, and PHS. 
The verified markers in the current work can provide 
an opportunity to clone the underlying QTLs/genes, 
fine mapping, and genome-assisted selection.

Material and methods
Plant material and field trial
To monitor PHS resistance, 208 native landraces and 
90 cultivars were cultured in an alpha-lattice with two 
repeats in three crop seasons (2017–18, 2018–19, and 
2019–20) under well-irrigated conditions (Table  4). The 
sizes of plots were adjusted as 1 m2. After physiologi-
cal maturing, a total of 50 spikes were chosen from each 
plot and stored at -20 °C. After about a month, the spikes 
were taken out of the refrigerator and kept at 25  °C for 
48 h. From each repeat, 10 healthy spikes were selected 
and soaked in distilled water for 3  h. Spikes immersed 
under 100% humidity were placed inside the controlled 
chambers, in which the steam and mist systems are uti-
lized to spray and to maintain the moisture of the spikes, 
with a 16 h light/ 8 h dark photoperiod at 25 °C [3]. The 
authors declare that all study complies with relevant 
institutional, national, and international guidelines and 
legislation for plant ethics in the methods section. Sam-
ples are provided from the Gene Bank of Agronomy and 
Plant Breeding Group and these samples are available at 
USDA and CIMMYT with USDA PI number and CIM-
MYT number (Supplementary Table 1), respectively. The 

authors declare that all that permissions or licenses were 
obtained to collect the wheat plant.

Pre harvest sprouting and α‑Amy activity
After 7 days, PHS resistance was measured (Supplemen-
tary Table 2) based on the sprouting score as follows: the 
wheat spikes were given a score of one to nine, including 
one (germinated), two (less than 5%), three (5 to 15%), 
four (16 to 25%), five (26 to 45%), six (46 to 65%), seven 
(66 to 85%), eight (86 to 95%), and nine (more than 95%). 
The sprouting Index (SI, Eq. 1) was given a score of zero 
to five for each spike, in which zero was considered as 
the non-germinated spikes and five as 100% germinated 
spikes. The germination percentage (GP) and sprouted 
spikes (SS) were estimated from Eq.  (2) and (3), respec-
tively [59, 60].

Where n represents the number of clusters,

Where ni and N are the numbers of germinated and 
total seeds, respectively,

Where mi is the number of sprouted spikes and M is 
the total number of spikes.

To estimate α-Amy activity, the spikes of all acces-
sions were taken out of the refrigerator, threshing was 
conducted by hand to avoid damaging the seed coat 
or embryos. Therefore, seeds were imbibed in a petri 
dish for a duration of 24  h at 25  °C and then prepared 
for enzyme extraction [61]. 0.5  ml of the seed extract 
(60 mM phosphate buffer (pH 8.6) and 0.5 ml of starch 
solution were incubated at 37 °C for 30 min. The reaction 
was ceased by adding 1 ml of hydrochloric acid (0.1 N), 
and then 1  ml of the iodine reagent was added to the 
solution. The color absorption was recorded using a plate 
reader at 620 nm [16].

(1)SI(%) = (0− 5)n ∗ 5 ∗ 100

(2)GP(%) = (
ni

N
) ∗ 100

(3)SSp(%) = (
mi

M
) ∗ 100

Fig. 9  The KEGG pathway of hormone signal transduction (The pathway map without coloring is the original version that is manually drawn by 
in-house software called KegSketch. The other pathway maps with coloring are all computationally generated as summarized below). • Reference 
pathway: this is the original version; white boxes are hyperlinked to KO, ENZYME, and REACTION entries in metabolic pathways; they are hyperlinked 
to KO entries in non-metabolic pathways. • Reference pathway (KO): blue boxes are hyperlinked to KO entries that are selected from the original 
version. • Reference pathway (EC): blue boxes are hyperlinked to ENZYME entries that are selected from the original version. • Reference pathway 
(Reaction): blue boxes are hyperlinked to REACTION entries that are selected from the original version. • Organism-specific pathway: green boxes 
are hyperlinked to GENES entries by converting K numbers (KO identifiers) to gene identifiers in the reference pathway, indicating the presence of 
genes in the genome and also the completeness of the pathway

(See figure on next page.)
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Fig. 9  (See legend on previous page.)
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Evaluation of seed color with digital images
The digital images of wheat grains in the current work 
were provided by a camera (Canon SX540 HS) equipped 
with 800 dpi resolution. The captured images were ana-
lyzed and processed via Python 3.7 [62]. For calibration, 
the regression between L, a, and b indices calculated 
with the Japanese CR_400 colorimeter and a photo box 
of 17 standard colors printed on 8 cm squares were used. 

Chroma saturation or index was calculated by Eq.  (4), 
Hue Angle by Eq. (5), and Whiteness Index by Eq. (6).

(4)Chroma =

√

a2 + b2

(5)Hue = arctan(
b

a
)

Fig. 10  The effect of genomic selection (GS) method on genomic prediction (GP) accuracy for 11 pre-harvest sprouting traits for Iranian landraces 
and cultivars in the well-watered environment. A-K) The prediction accuracy for RR-BLUP, GBLUP, and BRR-based genomic selection (GS) is 
demonstrated with blue, green and red colors, respectively. The boxplots show the first, second (median), and third quartile. The middle points 
indicate a mean of GP accuracies for the trait of interest. A = Germination Percentage, B = Sprouting Index, C = Sprouting Score, D = Sprouting 
Spike, E = Alpha amylase, F = L, G = a, H = b, I = Chroma, J = Hue, K = Whiteness Index



Page 20 of 23Rabieyan et al. BMC Plant Biology          (2022) 22:300 

Where, L, a, and b are color indices.

GBS and imputation
The GBS libraries were established and sequenced for 
the Iranian wheat genotypes following the procedure as 
explained by Alipour et  al. [46]. SNPs were discovered 
via internal alignments after trimming reads to 64  bp 
and categorizing them into tags. SNP calling was carried 
out using the UNEAK GBS pipeline, where SNPs with 
low allele frequency < 1% and reads with a low-quality 
score < 15 were removed to keep away from false-positive 
outputs. The imputation was accomplished according to 
available allele frequencies in BEAGLE version 3.3.2 [63]. 
The distance of LD decay was determined by the ggplot2 
package in RStudio [64]. The W7984 reference genome 
was used because it fulfills the highest accuracy of impu-
tation among various wheat reference genomes [65].

Population structure and kinship matrix
Population structure in the Iranian wheat accessions was 
assayed via STRU​CTU​RE version 2.3.4. An admixture 
model was exploited along with a simulation phase con-
sisting of 10,000 steps for K = 1–10. In this study, ΔK was 
exerted to estimate the most likely number of subpopula-
tions [66]. To measure LD among markers, the expected 
and observed allele frequencies were introduced into 
TASSEL. To determine the relationships among the 
Iranian wheat accessions, a neighbor-joining tree was 
constructed according to a pairwise distance matrix by 
TASSEL version 5 [67].

Genome‑wide association study
The general linear model (GLM) and mixed lin-
ear model (MLM) approaches were accomplished to 
obtain the marker effect estimations. The GLM was 
performed with population structure (Q matrix) inte-
grated as covariate to correct for the effects of popu-
lation substructure. The MLM was employed with 
accounting for both population structure and family 
structure matrix (Kinship) to control both Type I and 
Type II errors. The association mapping was carried 
out using GLM and MLM functions of TASSEL5 [65, 
68]. To correct for multiple testing, a false discovery 
rate (FDR) method described was used to declare sig-
nificant marker-trait associations with relevant grain 
phenotype descriptor. A Manhattan plot was obtained 
using the CMplot package to explore associations 
between genotypes and phenotypes.

(6)WI = 100−

√

(100− L)2 + a2 + b2
Annotation of genes
Sequences harboring associated SNP markers were 
exploited for the gene annotation by aligning to the 
IWGSC-RefSeq V1.0 (IWGSC) using Gramene (http://​
www.​grame​ne.​org/), an integrated database for compara-
tive genomics in plant species. The overlapping genes 
with the highest blast score were picked out for further 
analysis. The ensemble-gramene database was utilized to 
extract the molecular functions and biological processes 
of genes in the gene ontology. Moreover, the significant 
SNPs were utilized in the enrichment analysis of gene 
ontology via KOBAS version 2.0 for testing in the KEGG 
(https://​www.​genome.​jp/​kegg/).

Genomic prediction strategies
GP was calculated by various approaches, including BRR 
[69], GBLUP [70], and RR-BLUP [71] based on whole 43,525 
marker set and GWAS on the training set. All of the analy-
ses were performed by iPat Tool [72]. The GP accuracy was 
determined as Pearson’s correlations (r) between GEBVs 
and BLUPs over the validation and training sets [73].

Statistical analysis
The descriptive statistics and correlation analysis was 
conducted by R 4.1 using the ggplot2, dplyr, ggpubr and 
psych packages to reveal the distribution of wheat traits. 
To classify wheat genotypes, heatmap analysis was car-
ried out in RStudio.
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