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Abstract 

Background:  Creeping bentgrass (Agrostis soionifera) is a perennial grass of Gramineae, belonging to cold season 
turfgrass, but has poor disease resistance. Up to now, little is known about the induced systemic resistance (ISR) 
mechanism, especially the relevant functional proteins, which is important to disease resistance of turfgrass. Achiev‑
ing more information of proteins of infected creeping bentgrass is helpful to understand the ISR mechanism.

Results:  With BDO treatment, creeping bentgrass seedlings were grown, and the ISR response was induced by 
infecting Rhizoctonia solani. High-quality protein sequences of creeping bentgrass seedlings were obtained. Some 
of protein sequences were functionally annotated according to the database alignment while a large part of the 
obtained protein sequences was left non-annotated. To treat the non-annotated sequences, a prediction model 
based on convolutional neural network was established with the dataset from Uniport database in three domains 
to acquire good performance, especially the higher false positive control rate. With established model, the non-
annotated protein sequences of creeping bentgrass were analyzed to annotate proteins relevant to disease-resistance 
response and signal transduction.

Conclusions:  The prediction model based on convolutional neural network was successfully applied to select good 
candidates of the proteins with functions relevant to the ISR mechanism from the protein sequences which cannot 
be annotated by database alignment. The waste of sequence data can be avoided, and research time and labor will 
be saved in further research of protein of creeping bentgrass by molecular biology technology. It also provides refer‑
ence for other sequence analysis of turfgrass disease-resistance research.
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network
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Introduction
Creeping bentgrass (Agrostis soionifera) is a perennial 
grass of Gramineae, belonging to cold season turfgrass. 
Due to its excellent characteristics, such as, strong adapt-
ability, good ornamental, it is a preferred grass species in 
golf course, lawn tennis court, courtyard, park and other 

green areas. However, creeping bentgrass with shallow 
adventitious roots has poor disease-resistance. For exam-
ple, it is susceptible to coin spot and brown spot. The 
innate immunity can be induced in plant, which relies on 
a surprisingly complex response mechanism to recognize 
and counteract different invaders. The induced physical 
and chemical barriers are activated to effectively com-
bat invasion by microbial pathogens, as well as inducible 
defensive mechanisms upon attack [1, 2]. Among them, 
the induced systemic resistance (ISR) is often activated 
by plant growth promoting bacteria in soil rhizosphere, 
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and has broad-spectrum resistance to bacteria, fungi and 
pathogens [3, 4].

Since without disease resistance-inducing factor the 
resistance of plants may not be induced [5], Butanediol 
(BDO) is often adopted as a new type of disease resist-
ance-inducing factor, which provides durable disease 
resistance. ISR produced by BDO effectively inhibits 
grass leaf diseases [6, 7]. Studies have shown that many 
resistance proteins enter the nucleus to activate the 
immune response and triggers the signal transduction 
pathway, including resistance signal activation, tran-
scription factor regulation and hormone signal pathway 
activation [8]. For instance, a number of preliminary 
proteome analyses in rice successfully identified some 
known pathogenesis-related proteins that accumulate 
abundantly after Jasmonic acid treatment or inoculation 
by the pathogenic fungus M. grisea [9, 10]. Oh et al. [11] 
analyzed the secreted protein encoding the lipase with 
antimicrobial activity in Arabidopsis. However, except 
for these few preliminary studies, the study about the 
proteins relevant to the ISR mechanism is still scarce, 
especially for the turfgrass. One major reason is that 
many proteins identified and analyzed involving in sign-
aling processes are below the threshold of detection [12]. 
Hence, more efforts are worth and urgent to be put into 
the study of disease-resistance related proteins.

In our previous work [13], BDO was used to induce ISR 
resistance in creeping bentgrass infected with Rhizocto-
nia solani, and a genetic research of creeping bentgrass 
by the transcriptome analysis was performed to ana-
lyze ethylene-dependent signal transduction pathways 
involved in ISR mechanisms. In that work, only the 
sequences annotated by the database alignment were 
analyzed. However, there are a large number of protein 
sequences, which were not aligned in seven databases, 
or aligned but not annotated. Since these sequences 
were non-annotated, analysis cannot be performed, so 
not reported in previous work. Considering the impor-
tant role played by the protein in ISR mechanism, in this 
work, we will provide an explicit analysis about these 
protein sequences of creeping bentgrass. It is very helpful 
for fully understanding of the ISR mechanism and further 
study of the disease resistance of creeping bentgrass if we 
can annotate these protein sequences correctly even not 
exhaustively.

The function of protein is usually analyzed and anno-
tated by biochemical experiments, which are time- and 
labor-consuming. At present, the number of protein 
sequences in UniPort database exceeds 100 million, 
and still increases rapidly [14]. The traditional methods 
are not enough to make up the increasing gap between 
the requirement and the speed of protein annotation by 
experimental means [15]. Therefore, the protein function 

prediction methods, such as machine learning, were pro-
posed and widely adopted in the research [16]. However, 
traditional computational methods have disadvantages 
such as high false positive control rate and low accuracy. 
In the recent year, the deep learning technology becomes 
an important method in the field of protein research 
[17, 18] while it is scarcely applied to the study of grass. 
In Ref. [19], an accurate and stable function predic-
tion model was built to extract protein features with the 
convolutional neural network (CNN). It may solve the 
shortcomings of other methods, especially false positive 
control rate.

In the current work, the protein sequences from the 
creeping bentgrass seedlings with BDO treatment will 
be reported. To provide more helpful information about 
the protein sequences obtained, with the deep learning 
algorithm, we performed following analysis about non-
annotate protein sequences of creeping bentgrass, (1) 
Based on CNN and protein binary encoding representa-
tion strategy, a functional prediction model was estab-
lished following Ref. [19] with some modifications and 
adjusted to achieve high false positive control rate with 
annotated protein sequences from some Gene Ontology 
(GO) terms, which were collected from the Uniport data-
base; (2) The established model was applied to non-anno-
tated protein sequences of creeping brntgrass to predict 
functional classification; (3) The prediction model was 
further applied to select the proteins relevant to disease-
resistance and signal transduction from non-annotated 
protein sequences of creeping bentgrass. Such treatment 
avoids waste of data, and supplements the analysis of 
proteins of creeping bentgrass. The research lays founda-
tion for further mining ISR response proteins of creeping 
bentgrass and exploring the disease-resistance mecha-
nism of turfgrass.

Materials and methods
Plant growth conditions and production of sequencing 
libraries
Seeds from creeping bentgrass ‘PennA-4’ (Chinese Acad-
emy of Agricultural Sciences) were grown by modified 
method of Kroes et al. [13, 20]. The surface of seeds was 
disinfected with 70% ethanol for 1 min, disinfected with 
15% sodium hypochlorite for 5  min, cleaned with ster-
ile water for 10  min, and finally dried with filter paper. 
Seeds were sown in 50-mL culture flask with 10  mL of 
MS medium containing 100  μmol L−1 of BDO. About 
20 seedlings per flask were cultured in a growth cham-
ber at 22 ℃ under 100 μEm−2  s−1 light. The experimen-
tal materials were seedlings cultured for twelve-day-old 
under the above conditions. Rhizoctonia solani (#3.2888 
from China General Microbiological Culture Collec-
tion Center) in PDO liquid medium (potato 200  g·L−1, 
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glucose 20  g·L−1) was shaking culture for 2–3  day with 
120 r·min−1 at 25℃. Concentration of the bacterial sam-
ple was a final OD340 of 0.8. Roots of seedlings were 
directly sprayed with 2  mL of the bacterial fluid. The 
brown blotch symptoms of creeping bentgrass seedlings 
were observed, and the mycelium began to grow after 
3–5-day post-inoculation. After 24, 48 and 72  h post-
inoculation, the seedlings with different treatment were 
removed, and the leaves were cut. The treated materi-
als were tested and analyzed, and all the samples were 
mixed and spliced (Eukaryotic Non-reference Transcrip-
tome). The transcriptome analysis was performed by Illu-
mina Sequencing. Sequencing libraries were produced 
by NEBNext UltraTM RNA Library Prep Kit (NEB, San 
Diego, CA, USA), and each sample attributes sequences 
for index codes.

Establishing of protein function prediction model
Constructing the data sets of training and testing
At first, we should construct database for establishing the 
prediction model under CNN frame. Some of obtained 
protein sequences of creeping bentgrass can be aligned 
and classified into the GO terms. Excluding some GO 
terms with too few protein sequences, we chose 7 terms 
in cellular component (CC) domain, 10 terms in molecu-
lar function (MF) domain, and 12 terms in biological pro-
cess (BP) domain. The annotated protein sequences with 

these GO terms were collected from the UniPort data-
base (see Fig. 1).

With the protein sequences collected, we constructed 
positive and negative data for establishing prediction 
model by adopting binary classification, which would be 
also used to treat protein sequences of creeping bent-
grass. For a GO term studied, we considered the pro-
teins in this GO term as positive data. The negative data 
were selected from the left GO terms after removing the 
repeated sequences. To avoid overemphasizing one of all 
left GO terms, for a GO term studied with N  sequences, 
we selected the sequences from the left GO terms in 
order until 3 N sequences were selected. A data set with 
4N  sequences was obtained. After shuffling, 60% of 4N  
proteins were used as training set, 20% as testing set, and 
20% as valuation set. Here, imbalance binary classifica-
tion was adopted to emphasize the negative data. Such 
treatment can improve the false positive control rate that 
we focused on in the current work, but lower sensitivity, 
which is less important in the present work.

Prediction model based on CNN
In the current work, we adopted a deep learning algo-
rithm, CNN, to analyze the protein sequences. The pro-
tein is expressed as a one-dimensional sequence of amino 
acids, which is quite analogous to the sentence classifi-
cation. We chose an explicit CNN frame, textCNN [21], 
which has been successfully applied to analyze the text, 

Fig. 1  The number of protein sequences in every GO term used in training
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and to study the proteins [19], which we followed in the 
current work. The model was implemented with the Ten-
sorflow3 library and the python programming language 
with some modifications to get best performance for 
the data sets considered in the current work. The binary 
cross-entropy loss function was adopted in all mod-
els training, and the Adam [22] optimizer with default 
parameters was used for the optimization during back-
propagation. The weight parameters were initialized with 
the He initialization method [23], and biases were initial-
ized to zero.

For a protein sequence, we need first encode the amino 
acids into binary vectors. Because only about twenty amino 
acids were discovered, we encoded an amino acid to a 5-bit 
binary vector as shown in Fig. 2. For example, the alanine 
was encoded as [0,0,0,0,1]. In the current work we did 
not distinguish the rare and undetermined amino acids, 
and encoded them all as [0,0,0,0,0]. The lengths of protein 
sequences are different while the CNN requires a fixed 
length. We considered the proteins of sequence length less 
than L = 800 amino acids, which constitute the majority 

(> 95%) of the protein sequences in the studied GO terms 
(and almost 100% of non-annotated sequences of creeping 
bentgrass). For the protein sequences less than 800 amino 
acids, the left positions were complemented by binary vec-
tor [0,0,0,0,0]. With such encoding, a protein sequence was 
converted into an L× 5 matrix.

After encoding, the convolution layer with He normali-
zation as kernel initializer was adopted to extract the infor-
mation from the digitized protein sequences as shown in 
Fig.  2. To obtain the information on different length lev-
els, convolution kernels with different sizes were adopted 
with layers.Conv2D function in Tensorflow3. In the cur-
rent work, we chose n = 120 convolution kernels with size 
as 2k × 5 with k = 0, 1, 2, . . . , 8 . After convolution, nine 
(

L− 2k + 1
)

× n arrays were obtained as

where j is for the number of kernels with size as 
2k × 5 . To accelerate the learning speed, the batch 

akij =
∑2k

m=1

∑5

l=1

(

X(m+i−1)l ∗W
j
ml

)

+ b
j
i,

Fig. 2  The workflow of CNN adopted in the current work
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normalization was applied with parameters momen-
tum and epsilon being 0.99 and 0.001, respectively, 
which was followed by the ReLu activation. The max 
pooling was adopted by selecting the maximum in 
(

L− 2k + 1
)

 elements of akij for certain k and j . Then, 
the k vectors with the same size n were concatenated 
to a vector with size kn = 1080 . Additional fully con-
nected layer was not applied here because it was found 
not helpful to improve the results and made the model 
hard to converge. Instead, modified from Ref. [19], 
after batch normalization, we adopted the layers.dense 
function to provide the classification probability. It 
includes a layer with 1080 input neurons and 2 output 
neurons. The softmax activation was then adopted to 
transfer the values of the two output neurons a1,2 to 
y1,2 with differentiable softmax function.

One can find that y1,2 is value between 0 and 1 and 
y1 + y2 = 1 , which is just the classification probability. 
If the possibility y1 > 0.5 , the sequence will be classi-
fied into the GO term. Here the L2 regularization was 
also adopted to avoid overfitting.

y1,2 =
ea1,2

ea1 + ea2

Results and discussions
Model’s performance with the protein sequences 
from the Uniport database
When establishing the prediction model above, we 
trained the model by the protein sequences collected 
from the Uniport database in 29 GO terms, which num-
bers were shown in Fig.  1. The model and parameters 
were adjusted to obtain the best performance of false 
positive control rate because in the current work we 
want to establish a prediction model to select proteins 
with certain function correctly but not exhaustively. To 
evaluate the performance of the model, we introduce five 
widely-used measurements, sensitivity (SE), specificity 
(SP), precision (PR), accuracy (AC) and Matthews cor-
relation coefficient (MCC), which explicit definitions are 
given in Additional file  1. Amongst five measurements, 
the specificity (SP) is the most important factor because 
it reflects the false positive. In Fig.  3, we presented the 
violin plots to show the overall picture of the results for 
three domains.

Generally speaking, the model works well for the GO 
terms in three domains, especially for the GO terms in 
MF domain, which is comparable to the model in Ref. 
[19] where the studied GO terms are also in MF domain. 
Amongst five measurements, SP values are quite well for 
three domains (Fig. 3b), which satisfies our requirement 

Fig. 3  Violin plots for the performance of prediction model in three domains
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to ensure the correctness of functional annotation of pro-
tein. Besides, smaller MCC values for BP domain than 
other two domains suggests that the functions of proteins 
in BP domain are more complex and harder to be learned 
by the prediction model.

Screening of non‑annotated sequences
To annotate the protein sequences of the transcripts 
obtained in Sect. 2.1, based on four databases, NR, KOG, 
SwissProt, and KEGG, the BLASTALL package (release 
2.2.28) [24] from the NCBI was adopted with a signifi-
cant threshold of E-value 10−5. The KOBAS software 
in the KEGG pathways was used to check the statisti-
cal enrichment of differential expression genes (DEGs) 
[25]. The Blast2go v2.5 software (Biobam, Spain) was 
used to functionally categorize the sequences based on 
Gene Ontology (GO) with an E-value filter 1× 10−6 . The 
total number of annotated protein sequences is 208,672. 
GO classification associations, combined with statisti-
cally transcripts were uploaded on the National Center 
for Biotechnology Information (NCBI) Sequence Read 
Archive (SRA) under accession number SRR5658390. 
The annotated protein sequences can be found in these 
data. In the followings, we will focus on the protein 
sequences which is not annotated.

The non-annotated sequences used in our study 
referred to the sequences that were not aligned with 
databases, or the sequences that were aligned but no 
predicted results. According to the database alignment, 
118,856 amino acid sequences were not annotated. All 
non-annotated amino acid sequences are provided in the 
Additional file 2. The exploration of this part of protein 
functions has great significance for further understanding 

the ISR mechanism of creeping bentgrass. The annota-
tion results of these non-annotated protein sequences 
with established model are given in the followings.

Functional annotation of non‑annotated sequences 
of creeping bentgrass by GO terms in three domains
In the above, we established the prediction model with 
good performance, especially for the false positive con-
trol rate, by training the GO terms in three domains. 
With the trained model, we can analyze non-annotated 
protein sequences of creeping bentgrass and classify 
them into the GO terms considered above. The protein 
sequences with the function of certain GO term selected 
by prediction model are provided in the Additional file 3. 
In Table 1, the number of the proteins belonging to a GO 
term and the ratio of the number to the total number of 
the protein sequences are listed.

In the CC domain, the number of selected protein 
sequences for GO: 0,005,576 (‘extracellular region’) is 
the largest, accounting for 36.72%, while the number for 
GO:0,055,044 (‘symplast’) is the smallest, only 0.99%. In 
the MF domain, the number of proteins belonging to 
GO:0,016,247 with function ‘channel regulator activity’ is 
the largest in non-annotated protein sequences, account-
ing for 20.79%. The number for GO: 0,005,085 (‘guanyl-
nucleotide exchange factor activity’) is smallest, only 
0.86%. From Ancestor Chart, the function ‘antioxidant 
activity’ (DO: 0,016,209) is a part of ‘cellular response to 
stimulus’ (GO: 0,051,716), which is closely related to the 
disease-resistance of creeping bentgrass. Its predicted 
number accounts for 9.50%. In the BP domain, GO: 
0,001,906 (‘Cell killing’) has the largest number, account-
ing for 26.58%, followed by DO:0,048,519 (‘negative 

Table 1  The number and ratio of the proteins belonging to a GO term predicted from non-annotated protein sequences of creeping 
bentgrass

CC MF BP

GO ID Num % GO ID Num % GO ID Num %

GO:0,045,202 10,095 8.49 GO:0,005,085 1026 0.86 GO:0,007,610 1410 1.19

GO:0,055,044 1177 0.99 GO:0,016,247 24,716 20.79 GO:0,032,502 4265 3.59

GO:0,009,295 5087 4.28 GO:0,005,198 9151 7.70 GO:0,022,610 1386 1.17

GO:0,031,012 1555 1.31 GO:0,005,215 2036 1.71 GO:0,032,501 8520 7.17

GO:0,005,576 43,640 36.72 GO:0,016,530 6280 5.28 GO:0,048,518 2405 2.02

GO:0,030,054 7902 6.65 GO:0,030,545 10,910 9.18 GO:0,040,011 4423 3.72

GO:0,031,974 25,094 21.11 GO:0,003,700 4277 3.60 GO:0,001,906 31,596 26.58

GO:0,060,089 1628 1.37 GO:0,048,519 29,664 24.96

GO:0,016,209 11,287 9.50 GO:0,051,704 10,222 8.60

GO:0,030,234 14,411 12.12 GO:0,022,414 2495 2.10

GO:0,040,007 2309 1.94

GO:0,002,376 4514 3.80
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regulation of biological process’), accounting for 24.96%. 
3.8% of non-annotated protein sequences belongs to 
GO:0,002,376 (‘immune system process’).

Functional annotation of non‑annotated sequences 
of creeping bentgrass by GO terms relevant 
to the disease‑resistance response and signal transduction
In the above, the established prediction model was 
applied to select the protein sequences from non-anno-
tated sequences of creeping bentgrass belonging to the 
GO terms chosen to establish the model. In this subsec-
tion, we focused on 13 GO terms with functions relevant 
to stimulus response and signal transduction related pro-
teins (which was not used when establishing the predic-
tion model). The model was trained by protein sequences 
of these GO terms, which were also collected from the 
UniPort database. The performance of the model is pre-
sented in Table 2. It is well known that the disease-resist-
ance response and signal transduction process belong to 
BP domain. One can expect that the results are analogous 
to the results in the BP domain in Fig. 3b. The SP values 
are considerable large, and spans from 96% up to 100%, 
which satisfies high false positive control rate required in 
the current work.

With the model trained by the data from UniPort, the 
protein sequences annotated from the non-annotated 
sequences of the creeping bentgrass are provided in the 
Additional file 4. In Table 2, we list the number of protein 
sequences with certain function. The number of protein 
sequences with function of ‘negative regulation of molec-
ular function’ (GO:0,044,092) is the largest, accounting 
for 47,437. In Ancestor Chart, ‘negative regulation of 

molecular function’ is the biological regulation process. 
There are 24,287 annotated proteins with function of 
‘response to biological stimulus’ (GO:0,009,607), 11,555 
annotated proteins with function of ‘negative regulation 
of response to external stimulus’ (GO:0,032,102), and 
3022 annotated proteins with function of ‘regulation of 
cellular response to stress’ (GO:0,080,135). These pro-
tein functions are closely related to the disease-resist-
ance response of creeping bentgrass, and also reflect 
the positive response of creeping bentgrass to external 
stimulation after being infected by Rhizoctonia solani 
by inducing a large number of disease-resistance related 
proteins. Besides, there are 1260 annotation proteins 
with function of ‘immune response regulating signaling 
pathway’ (GO:0,002,764) and 148 annotation proteins 
with function of ‘negative regulation of signal transduc-
tion proteins’ (GO:0,009,968), both of which are closely 
related to signal transduction process. The annotation of 
the above protein functions is of the great significance for 
further explore the disease-resistance and signal trans-
duction of creeping bentgrass.

Conclusions
To understand the ISR mechanism of turfgrass, the 
high-quality protein sequences were obtained from the 
creeping bentgrass seedlings infected by Rhizoctonia 
solani with BDO treatment to induce the ISR response. 
Amongst protein sequences obtained, some were func-
tionally annotated according to the database align-
ment while the rest of the protein sequences were left 
non-annotated. A functional prediction model was 
established based on CNN with emphasizing high false 

Table 2  The performance of prediction model and the number of the proteins for disease-resistance and signal transduction related 
GO terms. The GO ID, term, and number NGO of protein sequences in a GO term collected from the UniPort database are listed in 
the first to third columns, respectively. The measurements are listed in the fourth to eighth columns. The number of the proteins 
belonging to a GO term predicted from non-annotated protein sequences of creeping bentgrass is listed in last column

DO ID Function NGO SE% SP% PR% AC% MCC Num

GO:0,009,968 negative regulation of signal transduction 1730 42.3 97.3 84.4 83.0 0.52 148

GO:0,032,102 negative regulation of response to external stimulus 542 32.7 99.4 94.9 82.0 0.49 11,555

GO:0,044,092 negative regulation of molecular function 1944 38.4 97.6 83.3 83.7 0.49 47,437

GO:0,032,101 regulation of response to external stimulus 1486 41.9 98.6 90.3 84.8 0.55 792

GO:0,002,682 regulation of immune system process 2368 44.0 96.3 79.8 83.1 0.51 756

GO:0,009,607 response to biotic stimulus 3184 35.2 98.1 86.6 81.8 0.48 24,287

GO:0,006,955 immune response 3214 34.7 97.7 83.1 82.4 0.46 1041

GO:0,009,719 response to endogenous stimulus 2334 44.8 96.8 81.4 84.6 0.53 1035

GO:0,048,585 negative regulation of response to stimulus 2341 35.9 97.4 83.7 80.9 0.46 402

GO:0,002,764 immune response-regulating signaling pathway 611 47.7 96.9 84.7 84.0 0.55 1260

GO:0,044,093 positive regulation of molecular function 2337 37.9 97.3 81.3 83.0 0.48 786

GO:0,051,606 detection of stimulus 913 75.7 99.6 98.5 94.1 0.83 12

GO:0,080,135 regulation of cellular response to stress 3819 68.4 96.4 85.7 89.8 0.70 3022
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positive control rate following Ref. [19], and applied to 
treat these left non-annotated proteins sequences to find 
the sequences relevant to the disease-resistance response 
and signal transduction which play important roles in 
ISR mechanism.

To establish the model, the data sets were collected 
from UniPort database in 29 GO terms in three domains. 
The sequences were encoded into a matrix, and convo-
lution kernels were adopted to extract the information 
of sequences in different length levels. With the clas-
sification probability obtained, the protein sequences 
can be annotated. Compared the annotations with cur-
rent model and these from UniPort database for the 
sequences in testing dataset, the prediction model was 
evaluated by five measurements, SE, SP, PR, AC, and 
MCC. A significant performance of the current model is 
the high SP values obtained for the data sets in 29 GO 
terms in three domains, which reflect the good false 
positive control rate. It guarantees the correctness of the 
annotation, though some sequences with certain function 
maybe omitted. With the established and trained model, 
the protein sequences belonging to 29 GO terms were 
selected from the non-annotated sequences of creeping 
bentgrass.

The established model was retrained by the data from 
UniPort in 13 GO terms relevant to the ISR mechanism. 
The non-annotated protein sequences of the creeping 
bentgrass were analyzed with retrained model. The pro-
tein sequences were annotated as different functions, 
which mainly involve ‘response to biological stimulus’, 
‘negative regulation of response to external stimulus’, 
‘negative regulation of molecular function’, ‘regulation 
of cellular response to stress’ and ‘immune response 
regulating signaling’. These protein molecules play dif-
ferent roles in the disease-resistance process of creeping 
bentgrass. The results provide good candidates of the 
proteins with certain functions from all obtained pro-
tein sequences, which can be studied by molecular biol-
ogy technology in further studies. With selected protein 
sequences, the waste of experimental data of protein 
sequence of creeping bentgrass can be avoided, and the 
experiment consumption of time and labor in further 
molecular biological studies can be saved. The current 
results are helpful to understand the ISR mechanism, and 
also provide reference for other sequence analysis of turf-
grass disease-resistance research.
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