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Abstract 

Background:  Genomic selection is a powerful tool in plant breeding. By building a prediction model using a training 
set with markers and phenotypes, genomic estimated breeding values (GEBVs) can be used as predictions of breed-
ing values in a target set with only genotype data. There is, however, limited information on how prediction accuracy 
of genomic prediction can be optimized. The objective of this study was to evaluate the performance of 11 genomic 
prediction models across species in terms of prediction accuracy for two traits with different heritabilities using 
several subsets of markers and training population proportions. Species studied were maize (Zea mays, L.), soybean 
(Glycine max, L.), and rice (Oryza sativa, L.), which vary in linkage disequilibrium (LD) decay rates and have contrasting 
genetic architectures.

Results:  Correlations between observed and predicted GEBVs were determined via cross validation for three 
training-to-testing proportions (90:10, 70:30, and 50:50). Maize, which has the shortest extent of LD, showed the high-
est prediction accuracy. Amongst all the models tested, Bayes B performed better than or equal to all other models 
for each trait in all the three crops. Traits with higher broad-sense and narrow-sense heritabilities were associated 
with higher prediction accuracy. When subsets of markers were selected based on LD, the accuracy was similar to 
that observed from the complete set of markers. However, prediction accuracies were significantly improved when 
using a subset of total markers that were significant at P ≤ 0.05 or P ≤ 0.10. As expected, exclusion of QTL-associated 
markers in the model reduced prediction accuracy. Prediction accuracy varied among different training population 
proportions.

Conclusions:  We conclude that prediction accuracy for genomic selection can be improved by using the Bayes 
B model with a subset of significant markers and by selecting the training population based on narrow sense 
heritability.

Keywords:  Maize (Zea mays L.), Soybean (Glycine max L.), Rice (Oryza sativa L.), Genomic selection/prediction, Bayes B, 
Genomic estimated breeding values
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Background
Plant breeders observe the phenotypes of crops to choose 
desirable offspring in an aim to genetically improve tar-
get traits. Selection during the breeding process is a cru-
cial step in crop breeding, with historical and current 
conventional plant breeding depending on phenotypic 
selection. The Selection-index (SI) method [1] selects 
multiple traits simultaneously based on a total score, is 
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more efficient than selection for one trait at a time, and 
can improve aggregate genetic gain over time [2]. With 
advancements in computation, Henderson [3] proposed 
the best linear unbiased prediction (BLUP), which has 
become the most widely used method for genetic evalua-
tion. High throughput genotyping methods have resulted 
in a large number of molecular markers that are avail-
able to assist in crop breeding. Although marker-assisted 
selection (MAS) is a popular method in molecular crop 
breeding [4], utilization of MAS has been limited in 
breeding programs because many of the important agro-
nomic traits in crop breeding are complex and controlled 
by a large number of genes with small effects [5], making 
effective MAS difficult or impossible.

Genomic selection provides a potential advantage in 
crop breeding by accelerating the genetic improvement 
of crops per unit time through the reduction in cost per 
breeding cycle and shortening of the generation inter-
val [6]. Additionally, genomic prediction can save labor 
costs compared to conventional breeding [7]. Meuwis-
sen et al. [8] proposed a genomic selection method that 
uses genome-wide markers to estimate the effects of 
all loci and from which a genomic estimated breeding 
value (GEBV) can be computed to make the prediction 
for progeny of the target set with only genotypic data. A 
basic requirement for genomic prediction is that mark-
ers are distributed throughout the genome so that at least 
one marker is in linkage disequilibrium (LD) with each 
QTL [9]. All markers are used simultaneously to esti-
mate effects using a “training” population [10]. Based on 
the training population, genomic prediction can predict 
GEBVs of individuals for selection. The GEBV of each 
individual can be estimated using markers whose effects 
can be estimated using a linear mixed model of the form 
y = Xβ + Zα + e, where y is a vector of standardized phe-
notypes, β is a vector of fixed effects, α is a vector of ran-
dom effects for each marker, e is the random error, and 
X and Z are incidence matrices. When the number of 
predictors (markers) is much higher than the number of 
genotypes, fixed regression methods using ordinary least 
squares cannot be used for developing prediction models 
because of overfitting among predictors [11].

Numerous genomic prediction models have been 
developed for predicting phenotypes using large sets of 
genetic markers (relevant examples are listed in Addi-
tional  File  1, Table  S1). Variation resulting from hun-
dreds or thousands of markers can be controlled by 
various shrinkage and variable selection methods. Mod-
els differ in various assumptions including the distribu-
tion of marker effects and marker variances. Methods 
such as ridge regression assume that marker effects are 
homogeneously distributed across the genome [12], 
whereas Bayesian methods allow for heterogeneity 

among markers, with some markers having effects com-
ing from a different underlying distribution than others 
[13]. In methods such as BayesB, a prior probability dis-
tribution is used to select a proportion of markers with 
non-zero effects; in least absolute shrinkage and selection 
operator (LASSO) models, penalties are used to select 
markers with major effects [14]. BayesB and Bayesian 
LASSO methods can identify a subset of markers with 
large effects (variable selection) and use them for making 
predictions.

The utility of genomic prediction is expressed as the 
correlation between predicted and phenotypic values so 
that prediction of the individuals can be made accurately 
in earlier generations, with the aim to shorten selection 
cycles. Generally, it is assumed that the accuracy of pre-
diction can be increased as more individuals are included 
in the training population and more markers are used 
in the prediction model. However, in practice this is not 
true in every case; increased size of the training popula-
tion and increased number of markers in the prediction 
model may not lead to improved prediction accuracy 
(PA) [15] because of overfitting or due to the presence 
of non-informative individuals in a larger training popu-
lation. Therefore, the first step in genomic prediction 
is to determine the size of the training population and 
the number of markers used in the appropriate predic-
tion model to estimate the GEBVs with an aim to obtain 
high predictive ability. The second step is the validation 
and testing of the models to predict the phenotype of 
those lines that were not present in the training models 
[16]. The accuracy of a model for prediction is typically 
evaluated using cross-validation techniques under the 
assumption that random partitioning of the data results 
in independent training and testing sets [12, 17]. Both 
the manner in which training–testing partitions are con-
structed, as well as the level of relatedness among indi-
viduals, have effects on cross validation results [13].

Several factors affect the accuracy of genomic predic-
tion including the size and genetic diversity of the train-
ing population, trait heritability, marker density, gene 
or marker effects, and the extent and distribution of LD 
between markers and QTL. Therefore, there is an ongo-
ing need to understand how accuracy of different mod-
els reacts among crop species that vary in the LD decay 
as well as how prediction accuracy is affected by marker 
number, training population proportion, and trait herit-
ability. The main objective of this study was to compare 
the accuracy of numerous genomic prediction models 
for several traits that differ in heritability for three crop 
species with different LD decays rates and contrasting 
genetic architecture, as well as testing the effect of sev-
eral methods of sub-setting total marker number and the 
interaction with training population size.
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Results
Descriptive statistics of phenotypes
Broad sense heritability and descriptive statistics of all traits 
for soybean [18, 19] maize [20], and rice [21] are presented 
in Table 1. There was a wide range of phenotypic variation 
for each trait. In soybean, CW ranged by 38.1% and δ13C 
ranged by 1.46%. In maize, the DT ranged by 30.5 days and 
the EH ranged by 128 cm. In rice, the PPP ranged by 1.89 
panicles and the SPP ranged by 2.19 seeds (Table 1).

Markers distribution in subsets and narrow sense 
heritability
Tables S2, S3, and S4 (Additional File 1) show the distri-
bution of markers across all chromosomes in different 
subsets of markers for all traits for all three crops. The 
number of markers was highest in maize compared to soy-
bean and rice. To map a given trait with similar accuracy, 
maize requires a larger number of markers than soybean 
or rice because of faster LD decay. Both methods that 
were used to select subsets of markers reduced the marker 
number. Using subsets of markers based upon haplotype 
blocks decreased the number of markers by up to 58% 

(soybean), 26% (maize), and 37% (rice) (Table  2). Using 
subsets of markers based upon the probability (P = 0.05) 
of the association between a marker and given trait by 
FarmCPU [22] decreased the number of markers up to 
97% (soybean), 96% (maize), and 98% (rice) (Table 2).

Marker based narrow sense heritability was estimated 
using marker information for all traits in the three crops 
for all different sets of markers and training population 
proportions. There was variation in h2 for all traits when 
using different subsets of markers for different training 
population proportions (Table  3). In general, for soy-
bean and rice, h2 tended to increase as the subsets of 
markers based on P-values decreased from P = 0.50 to 
0.05 (Table 3). This response was less evident in maize 
as h2 was largely unaffected by P-value, trait, or training 
population proportion. There was no discernable impact 
on h2 of limiting the subset of markers based on LD for 
any crop at any training population proportion.

Genomic prediction accuracy in soybean, rice, and maize
Prediction accuracy of different genomic prediction 
models was compared for several traits differing in 

Table 1  Descriptive statistics and broad sense heritability of canopy wilting (CW) and carbon isotope ratio (δ 13C) in soybean, panicles 
per plant (PPP) and seeds per plant (SPP) in rice, and days to tasseling (DT) and ear height (EH) in maize

a CW data from Kaler et al. [18], and δ 13C from Kaler et al. [19]
b Data from Zhao et al. [21]
c Data from Wallace et al. [20]

Soybeana Riceb Maizec

CW (%) δ13C (‰) PPP SPP DT (days) EH (cm)

Mean 16.99 −29.06 3.24 4.86 67.58 61.38

Standard Deviation 6.46 0.27 0.41 0.34 5.75 20.27

Minimum 7.5 −29.81 2.23 3.44 54.5 8

Maximum 45.63 −28.37 4.12 5.63 85 136

Range 38.13 1.46 1.89 2.19 30.5 128

Count 346 346 352 352 279 279

Heritability (%) 80 60 80 55 85 65

Table 2  Marker distribution in the different subsets of markers were selected based on the two methods: (1) when linkage 
disequilibrium between markers was correlated at r ≥ 0.90 (LD_90), r = 0.80 (LD_80), r = 0.70 (LD_70), r = 0.60 (LD_50) and (2) when 
SNP markers were significant with the respective traits at P-values of 50% (SNP_5), 10% (SNP_1), 5% (SNP_05), or non-significant (SNP_
NS). The traits evaluated included canopy wilting (CW) and carbon isotope ratio (δ 13C) for soybean, panicles per plant (PPP) and seeds 
per plant (SPP) for rice, and days to tasseling ((DT) and ear height (EH) for maize

Crop Trait Complete LD_90 LD_80 LD_70 LD_60 LD_50 SNP_5 SNP_1 SNP_05 SNP_NS

Soybean CW 31,260 18,971 17,650 15,944 14,458 13,045 16,819 4106 2111 29,138

δ13C 31,260 18,971 17,650 15,944 14,458 13,045 14,238 2174 919 30,332

Rice PPP 34,848 28,390 26,808 25,437 23,910 22,107 15,983 2337 1043 33,804

SPP 34,848 28,390 26,808 25,437 23,910 22,107 13,530 1554 674 34,169

Maize DT 48,833 42,605 40,951 39,421 37,824 36,050 23,836 4277 2070 46,763

EH 48,833 42,605 40,951 39,421 37,824 36,050 23,813 4257 2121 46,707



Page 4 of 11Kaler et al. BMC Plant Biology           (2022) 22:87 

heritability in soybean, rice, and maize varying in LD 
decays rates using all markers, as well as several sub-
sets of markers delimited by LD (five threshold subsets) 
or by marker significance (four threshold subsets) and 
training-to-testing population proportions. We found a 
difference in prediction accuracy for all traits in soybean, 
rice, and maize using different subsets of markers at three 
training-to-testing proportions (Fig.  1). Comparing dif-
ferent sets of markers, the subset SNP_05 yielded higher 
accuracy than the complete marker set, subsets selected 
based on the LD, and non-significant subset for all traits 
in soybean, rice, and maize.

Because the highest prediction accuracy was when 
using the SNP_05 subset, this subset was used to com-
pare the different genomic prediction models (Fig.  2). 
For soybean, BayesB had the highest prediction accu-
racy for CW and δ 13C at all cross-validation levels. For 
SPP in rice, BayesB yielded the highest accuracy for all 
cross-validation levels. For PPP in rice, the accuracies 
of all models were similar for all of proportions between 
training and testing. For DT in maize, the highest predic-
tion accuracy models were BayesB and RKHS at the 90:10 

proportion. At the 70:30 and 50:50 proportions, the accu-
racies of all these models were mostly similar. For EH in 
maize, BayesB had the highest prediction accuracy at all 
training-to-testing proportions.

Effect of the different training population proportions
Because a subset of significant markers selected at the 
significance level of P < 0.05 increased prediction accu-
racy in all selected traits of all crops, this subset was used 
to report the effect of the different training-to-testing 
population proportions (Fig.  2). Individuals were ran-
domly assigned to training or testing sets, and this pro-
cess was repeated 10 times. The effect of different testing 
population proportions on the prediction accuracy varied 
for different traits of these crops. For example, prediction 
accuracy of δ 13C and PPP was highest when the testing 
population proportion was 10% followed by 50 and 30% 
of the population. For CW, prediction accuracy was high-
est when the testing population proportion was 30% fol-
lowed by 10 and 50% of the population. For SPP and EH, 
prediction accuracy was highest when the testing popula-
tion proportion was 10% of the population followed by 30 

Table 3  Marker based narrow sense heritability (h2) for canopy wilting (CW) and carbon isotope ratio (δ 13C) in soybean, and seeds 
per plant (SPP) and panicles per plant (PPP) in rice, and days to tasseling (DT) and ear height (EH) in maize using 10 sets of markers in 
different training-to-testing proportions (TPS)

† Subsets of markers included a complete set (Com), SNP markers significant at P-values of 0.50 (SNP_5), 0.10 (SNP_1), 0.05 (SNP_05) or based upon linkage 
disequilibrium when the correlation coefficient between markers in a LD block were ≥ 0.90 (LD_90), 0.80 (LD_80), 0.70 (LD_70), 0.60 (LD_60), or 0.50 (LD_50)

Traits TPS (%) Subsets of markers†

Com SNP_5 SNP_1 SNP_05 SNP_NS LD_90 LD_80 LD_70 LD_60 LD_50

Soybean

  CW 90 74 76 77 78 76 75 76 76 75 75

70 59 71 71 75 71 64 68 69 65 65

50 79 79 80 79 79 78 79 79 78 78

  δ13C 90 27 36 38 41 36 27 28 28 28 27

70 38 46 45 48 46 38 39 39 38 37

50 36 43 44 41 43 36 37 37 36 35

Rice

  SPP 90 36 49 51 52 27 34 34 34 33 34

70 25 33 38 38 21 24 24 25 24 24

50 28 42 38 43 23 28 27 27 26 26

  PPP 90 61 78 81 80 57 61 61 61 61 61

70 70 88 88 87 66 71 71 71 71 72

50 77 84 82 77 74 76 76 76 76 76

Maize

  DT 90 80 85 85 83 76 81 81 81 81 81

70 63 69 70 68 60 63 63 64 64 64

50 97 99 99 98 88 98 98 98 98 98

  EH 90 60 74 79 74 52 61 62 62 62 62

70 52 64 63 61 44 52 52 52 53 52

50 70 77 79 71 59 69 70 69 69 69
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and 50% of the population. For DT, prediction accuracy 
was highest when the testing population proportion was 
30% followed by 50 and 10% of the population). These 
trends were similar for all the different sets of marker 
subsets (based upon significance threshold levels or LD 
decay rate; Additional File 1, Tables S6, S7, S8).

Effect of marker density among species and traits 
on prediction accuracy
The effect of marker density is reported using BayesB 
model for each trait from each crop species includ-
ing wilting (CW) in soybean, seeds per plant (SPP) in 
rice, and ear height (EH) in maize at the 90:10 training-
to-testing proportion (Fig.  3). We used Bayes B model 
because it had a higher prediction accuracy than other 
models and had a lower computational requirement. 

There was no increase in accuracy among the non-sig-
nificant subset of markers and marker subsets delim-
ited by LD (five threshold subsets) among crop species 
compared with the full set of markers. When subsets 
of markers were selected based on significance, predic-
tion accuracy was increased for all traits among species. 
Significant markers selected at the significance level of 
P < 0.1 and P < 0.05 had the highest prediction accuracy 
for all selected traits for all crops. Significant markers at 
P < 0.05 had the highest prediction accuracy for all traits 
except for DT at 50:50 proportion, where significant 
markers at P < 0.1 had the highest prediction accuracy.

Effect of narrow sense heritability on prediction accuracy
We estimated h2 for all traits using all the different com-
binations of markers sets and three training-to-testing 

Fig. 1  Prediction accuracies of 11 genomic prediction models in panicles per plant (PPP) and seeds per plant (SPP) in rice, days to tasseling (DT) 
and ear height (EH) in maize and canopy wilting (CW) and carbon isotope ratio (δ 13C) in soybean, using different subsets of markers, which were 
selected based on the two methods, linkage disequilibrium between markers and significant markers at different P-values using cross validation for 
three training-to-testing proportions (90:10%, 70:30%, and 50:50%)
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proportions (90:10, 70:30, and 50:50). (Table  3). We 
observed strong to moderate positive correlations 
between h2 and prediction accuracy of models under dif-
ferent sets of markers for all traits for all training popula-
tion proportions (Additional File 1, Table S5). The effect 
of subsets of markers on h2 followed the same trend as 
the effect on the prediction accuracies.

Discussion
This study evaluated the prediction accuracy of different 
genomic prediction models for crop species differing in 
LD and marker density, for traits differing in heritabil-
ity, differences in marker density, and how proportions 
in the training-to-testing population affected prediction 
accuracy. To build a genomic prediction model, there is 
a need for a wide phenotypic variation [10], which was 
observed in this study. A basic assumption in genomic 
selection is that markers are distributed throughout the 
genome to provide sufficient coverage such that at least 
one marker is in LD with QTL that control the pheno-
typic variation. Genomic prediction models use all those 
effects to estimate GEBVs for progeny of the same or 
future generations [23].

We found that maize and rice had higher prediction 
accuracies than soybean. These crop species had dif-
ferent levels of LD/LD decay, which plays an important 

role in identifying marker-QTL associations [24]. Maize 
has a faster LD decay over physical distance compared 
to rice and soybean [18, 19, 25, 26]. Both maize and 
rice had more markers scattered over the genome than 
soybean, which increases the probability of having at 
least one marker in LD with a QTL [27]. The smaller 
number of markers with large effects in soybean may 
not explain all the genetic variance or may fail to cap-
ture small effect QTLs [28, 29]. Thavamanikumar et al. 
[30] reported similar results of difference in prediction 
accuracy among wheat populations varying in LD decay, 
which indicated that a high LD decay rate increases pre-
diction accuracy.

In comparing the subsets of markers selected based 
on different LD levels and significance levels, we found 
there was a similar prediction accuracy for a complete 
set and subsets of markers selected based on LD. Thus, 
a haplotype block performed similar to a single marker. 
Adding more random markers in these conditions did 
not improve accuracy but may have increased error or 
noise. Poland et al. [31] and Spindel et al. [32] evaluated 
random subsets of markers and observed no change in 
accuracy. Prediction accuracies were increased when 
markers were selected that had some association with 
the phenotype instead of using all markers that may 
have created noise or error. In addition to subsets of 

Fig. 2  Prediction accuracies of 11 genomic prediction models in canopy wilting (CW) and carbon isotope ratio (δ 13C) in soybean, and panicles per 
plant (PPP) and seeds per plant (SPP) in rice, and days to tasseling (DT) and ear height (EH) in maize using a subset of significant markers at P < 0.05, 
using cross validation for three training-to-testing proportions (90:10%, 70:30%, and 50:50%)
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markers evaluated at P-values of 0.05, 0.10, and 0.50, 
we also compared the effect of marker density of sub-
sets of markers selected at 13 different levels of signifi-
cance on prediction accuracy (Additional  File  2, Fig. 
S1). Prediction accuracy increased as the significance 
level of markers decreased until P < 0.05, but there was 
no further increase in accuracy at lower P values. We 
conclude that significant markers should be selected 
up to a probability/significance level where they still 
have adequate genomic coverage. These results are con-
sistent with previous research [30] in which there was 
greater accuracy when using QTL-linked markers than 
when using a random set of markers. The importance of 
including markers identified from QTL and association 
studies in prediction models was demonstrated when 
the QTL-linked markers were excluded from the mod-
els and there was a lower accuracy compared to other 
sets of markers [30].

As expected, higher prediction accuracies were 
observed for high heritability traits compared to low 
heritability traits. Similar results were observed in other 
studies where there was a strong relationship between 

prediction accuracy and trait heritability [27, 33–35]. 
Similar to broad-sense heritability, marker based nar-
row sense heritability varied among the traits in this 
study. There were strong positive correlations between 
marker based narrow sense heritability and predic-
tion accuracy for all traits for all training-to-testing 
population proportions, indicating that marker based 
narrow sense heritability might be associated with pre-
diction accuracy. Similar to accuracy, subsets of mark-
ers selected based on the different significance levels 
increased marker based narrow sense heritability, but 
LD based subsets of markers did not. Extra markers 
might be associated with an increase in error or noise 
from LD based subsets. We conclude that selecting 
training population proportions based on marker based 
narrow sense heritability may generally improve predic-
tion accuracy.

Among all models, BayesB performed better than or 
equal to all other models, for all traits in all three crop 
species. The BayesB model performs both shrinkage and 
variable selection on markers included in the model [36]. 
In the BayesB model, the prior probability of a marker 

Fig. 3  Effect of marker density of different subsets of markers, which were selected based on the two methods, linkage disequilibrium between 
markers and significant markers at different P-values, on the prediction accuracy of BayesB model for three traits including canopy wilting (CW) in 
soybean, seeds per plant (SPP) in rice, and ear height (EH) in maize using cross validation with a training-to-testing proportion of 90:10%
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having a non-null effect (π) was set at 0.05, which might 
be associated with higher predictive ability values com-
pared to higher prior setting. Results from this study 
agree with other studies, indicating that selecting a 
model that performs specific shrinkage and variable 
selection would improve prediction accuracy. For exam-
ple, Bayesian Lasso and BayesB share some character-
istics, and these models performed better than GBLUP, 
which assumes equal variance for each marker [23, 27]. 
The better performance of BayesB over other mod-
els was highly dependent on the presence of large QTL 
effects, which was demonstrated by Daetwyler et al. [14] 
through simulations. Several studies reported the bet-
ter performance of BayesB over all models in genomic 
prediction of traits that are controlled by a few loci 
with large effects [14, 37, 38]. Habier et al. [24] provided 
another comparison between BayesB and rrBLUP mod-
els, indicating that BayesB uses LD between markers 
and QTL in making predictions, where RR-BLUP mainly 
captures the genetic relationships. Accuracies of the 
models using LD between markers and QTL persist for 
several generations, whereas accuracies of the models 
using genetic relationships decay over generations [24]. 
In this study, prediction accuracy was affected more by 
LD between the markers and QTLs than the genetic 
relationships.

The effect of different training population proportions 
on prediction accuracy was compared in this study for 
all traits in three crops by randomly repeating the simu-
lations 10 times. We observed a difference in prediction 
accuracy among training population proportions that 
might be due to the random selection of the training 
population. A random population could have a different 
genetic diversity or population structure, which could 
have different marker-QTLs associations or marker 
effect sizes. Similar results of varied prediction accura-
cies due to different training populations were observed 
in other studies [39]. Charmet et  al. [40] observed that 
predicted accuracy was not improved with an increase 
of the training population proportion. However, de 
Azevedo Peixoto et al. [41] observed an increase in pre-
diction accuracy when the training population propor-
tion increased.

Conclusions
In this study, we compared the prediction accuracy of 
different genomic prediction models for several traits 
differing in heritability in three crops varying in LD 
decays rates with contrasting genetic architecture using 
several subsets of markers and training population pro-
portions. Among all models, Bayes B performed bet-
ter than or equally well as all other models for all traits 
in three crop species. Higher prediction accuracy was 

observed in maize with a faster LD decay compared to 
slower LD decay in soybean and rice. Traits with higher 
broad or narrow sense heritability had higher prediction 
accuracy. Instead of using a complete set of markers, 
selecting subsets of markers based on the significance 
level increased prediction accuracy. Prediction accuracy 
was greatest for all crops when using a subset of mark-
ers that were significant at P ≤ 0.05. In contrast, subsets 
of markers selected based on the LD level did not show 
any change in the accuracy. Different training population 
proportions varied prediction accuracy for all traits in 
three crops.

Materials and methods
Plant materials and phenotypic traits
Data sets for three plant species that vary in LD decay 
rates were selected for our experiments: soybean (Gly-
cine max L.), maize (Zea mays L.), and rice (Oryza 
sativa L.). For each crop, two traits were used that var-
ied in broad-sense heritability (H2). For soybean, these 
traits included canopy wilting (CW, H2 = 80%, [19]) and 
carbon isotope ratio (δ 13C, H2 = 60%, [18]). For maize, 
traits evaluated were days to tasseling (DT, H2 = 85%) 
and ear height (EH, H2 = 65%) [20]. Lastly for rice, we 
evaluated panicles per plant (PPP, H2 = 80%) and seeds 
per plant (SPP, H2 = 55%) [21].

Soybean data consisted of 346 accessions that were 
used for association mapping of CW [19] and δ 13C [18]. 
Rice data consisted of 352 accessions that were obtained 
from the rice diversity database [21]. Maize data con-
sisted of 279 accessions that were obtained from the 
Panzea database website [20]. Both maize (https://​www.​
panzea.​org/​data) and rice data (http://​riced​ivers​ity.​
org/​data/) were publicly available and soybean data are 
included herein (Additional file 3).

Genotypic data
For all three crops, genotypic data were comprised of 
single nucleotide polymorphisms (SNPs). In soybean, 
SNP data were obtained using the application of Illu-
mina Infinium SoySNP50K iSelect SNP BeadChip that 
provided 42,509 SNPs for all 346 accessions ([42, 43], 
and datasets supporting the conclusions of this article 
are included within the article (Additional Files 3 and 4).

Additional file 3). In maize, SNP data were obtained 
using the application of Illumina MaizeSNP50 Bead-
Chip that provided 50,896 SNPs for all 273 accessions 
[20]. In rice, SNP data of 44,100 markers were obtained 
from two projects: OryzaSNP project, an oligomer 
array-based re-sequencing effort using Perlegen Sci-
ences technology and BAC clone Sanger sequencing of 
wild species from OMAP project [21]. Quality control 
checks for the three species consisted of eliminating 

https://www.panzea.org/data
https://www.panzea.org/data
http://ricediversity.org/data/
http://ricediversity.org/data/
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monomorphic markers, markers with minor allele fre-
quency (MAF) ≤ 5%, and markers with a missing rate 
higher than 10%. Remaining marker datasets were 
imputed using an LD-kNNi method, which is based on 
a k-nearest-neighbor-genotype [44]. The final complete 
SNP marker datasets consisted of 31,260 SNPs for soy-
bean, 48,833 SNPs for maize, and 34,848 SNPs for rice. 
A pairwise SNP LD decay among the markers for these 
crops was estimated, which indicated that the decay of 
LD to r2 = 0.25 level was much faster in maize (1 kb) 
than soybean (150 kb in euchromatic and 5 kb in het-
erochromatic regions) or rice (123 kb).

Genomic prediction models
Eleven different statistical models were compared for 
genomic predictions. These models differ with respect 
to assumptions about the markers as described in Addi-
tional File 1, Table  S1. Prediction models were tested 
using different packages including sommer, rrBLUP, 
BGLR, plyr, MCMCglmm, EMMREML, and BLR in the 
R program.

Testing subsets of markers in prediction models
Ten different marker subsets were compared to evalu-
ate the effects of marker distribution across the genome 
on the prediction accuracy. Subsetting markers was 
done based on two approaches: 1) linkage disequilib-
rium between markers and 2) markers that met a sig-
nificance threshold. Linkage disequilibrium between 
markers, which defines a haplotype block, was evalu-
ated using the correlation coefficient between alleles at 
a pair of genetic loci. Five LD based subsets of mark-
ers were selected from the haplotype block that was 
made using a correlation coefficient (r) of r ≥  0.90, 
0.80 ≤ r < 0.90, 0.70 ≤ r < 0.80, 0.60 ≤ r < 0.70, and 
0.50 ≤ r < 0.60 between alleles. For simplicity, these 
subsets are subsequently referred to as 0.90, 0.80, 0.70, 
0.60, and 0.50, respectively. For example, if a haplotype 
block consisted of five SNPs that were linked with each 
other at r ≥ 0.90, then only one SNP out of five was kept 
in the subset of markers.

In addition to selecting marker subsets based upon 
haplotype blocks, we also selected subsets of mark-
ers based on the P-value of the significant association 
of markers with a trait at probability levels of P < 0.5 
(SNP_5), P < 0.1 (SNP_1), and P < 0.05 (SNP_05). The 
significant association between markers and traits was 
conducted using the Fixed and random model Circu-
lating Probability Unification (FarmCPU) model [22]. 
One subset of markers consisted of non-significant 
SNP markers at P > 0.05 (SNP_NS). The F-test for 

two-samples of variance was conducted to compare 
the significant effect between the different sets of 
markers.

Testing the size of the training population and model 
validation
Three different sizes of training populations among 
these species were evaluated to determine the effect of 
the training population proportion on the genomic pre-
diction accuracy. These three training population pro-
portions consisted of 90 training to 10 testing set, 70 
training to 30 testing set, and 50 training to 50 testing 
set. Random assignments of individuals to training and 
testing sets were repeated 10 times and the average value 
of the prediction accuracy are reported in this work. 
The correlation coefficient (r) between the GEBVs and 
observed phenotypic values was used to determines pre-
dictive ability (r), which was used as the indicator of pre-
diction accuracy in this paper. This approach has been 
used previously by several groups [45, 46].

Estimation of narrow sense heritability
Marker-based narrow sense heritability (h2) was esti-
mated to understand the variation and trend of predic-
tive ability across traits [47] using the GAPIT R package. 
In the GAPIT package, the MLM model can be described 
as follows: Y = Xβ + Zu + e, where Y is the vector of 
observed phenotypes; β is an unknown vector containing 
fixed effects, including the genetic marker, population 
structure (Q), and the intercept; u is an unknown vector 
of random additive genetic effects from multiple back-
ground QTLs for individuals/lines; X and Z are the 
known design matrices; and e is the unobserved vector of 
residuals. The u and e vectors are assumed to be normally 
distributed with a null mean and a variance of: 

Var

(

u

e

)

=

(

G 0

0 R

)

 , where G = σ2
aK with σ2 a as the 

additive genetic variance and K as the kinship matrix. 
Homogeneous variance was assumed for the residual 
effect (i.e., R = σ2

eI, where σ2
e is the residual variance). 

The proportion of the total variance explained by the 
genetic variance is defined as marker-based narrow sense 
heritability, which was calculated for all traits using dif-
ferent subsets of markers and different training-to-test-
ing population proportions.
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Additional file 2: Fig. S1. Prediction accuracies for carbon isotope ratio 
(δ13) in soybean using BayesB model and a training-to-testing cross-
validation proportion of 90:10%. Thirteen sets of marker subsets were 
selected based on the different significant levels including P < 0.001, 
P < 0.0025, P < 0.005, P < 0.0075, P < 0.01, P < 0.025, P < 0.05, P < 0.075, P < 0.1, 
P < 0.25, P < 0.5, P < 0.75, and complete set.

Additional file 3. Zip file containing genotypic and phenotypic data files 
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