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Abstract 

Background:  Elymus breviaristatus and Elymus sinosubmuticus are perennial herbs, not only morphologically simi‑
lar but also sympatric distribution. The genome composition of E. sinosubmuticus has not been reported, and the 
relationship between E. sinosubmuticus and E. breviaristatus is still controversial. We performed artificial hybridization, 
genomic in situ hybridization, and phylogenetic analyses to clarify whether the two taxa were the same species.

Results:  The high frequency bivalent (with an average of 20.62 bivalents per cell) at metaphase I of pollen mother 
cells of the artificial hybrids of E. breviaristatus (StYH) × E. sinosubmuticus was observed. It illustrated that E. sinosub-
muticus was closely related to E. breviaristatus. Based on genomic in situ hybridization results, we confirmed that E. 
sinosubmuticus was an allohexaploid, and the genomic constitution was StYH. Phylogenetic analysis results also 
supported that this species contained St, Y, and H genomes. In their F1 hybrids, pollen activity was 53.90%, and the 
seed setting rate was 22.46%. Those indicated that the relationship between E. sinosubmuticus and E. breviaristatus 
is intersubspecific rather than interspecific, and it is reasonable to treated E. sinosubmuticus as the subspecies of E. 
breviaristatus.

Conclusions:  In all, the genomic constitutions of E. sinosubmuticus and E. breviaristatus were StYH, and they are spe‑
cies in the genus Campeiostachys. Because E. breviaristatus was treated as Campeistachys breviaristata, Elymus sinosub-
muticus should be renamed Campeiostachys breviaristata (Keng) Y. H. Zhou, H. Q. Zhang et C. R. Yang subsp. sinosub-
muticus (S. L. Chen) Y. H. Zhou, H. Q. Zhang et L. Tan.

Keywords:  Campeiostachys, Chromosome pairing, Genomic in situ hybridization, Reproduction isolation, 
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Background
The tribe Triticeae includes about 450 species, of which 
about 75% are polyploid [1, 2]. Since Löve [1] proposed 
that the species with the same genome or same genome 
combinations were classified into one genus, about 30 
genera were recognized by most of the grass scientists 
[3–9]. Elymus sensu lato (Elymus s.l.) is the largest 
genus of Triticeae, and it contains seven basic genomes: 
St, H, P, W, Ns, Y, and Xm [3, 8, 10–12]. St genome 
is from Pseudoroegneria (Nevski) Löve, H genome is 
from Hordeum L., P genome is from Agropyron Gartn., 
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W genome is from Australopyrum (Tzvelev) Löve, Ns 
genome is from Leymus Hochst. The origin of Y and Xm 
is still unknown [3, 7, 9, 13]. Based on the genome com-
binations, Elymus s.l. was further divided into ten gen-
era, including Elymus sensu stricto (Elymus s.s.) (StH), 
Roegneria C.Koch (StY), Hystrix Moench (StH/NsXm), 
Stenostachys Turcz. (HW), Douglasdeweya C.Yen, 
J.L.Yang et B.R.Baum (StP), Kengyilia C.Yen et J.L.Yang 
(StYP), Campeiostachys Drobov (StYH), Anthosachne 
Steudel (StYW), Pascopyrum Á. Löve (StHNsXm), and 
Connorochloa Barkworth, S.W.L.Jacobs et H.Q.Zhang 
(StYWH) [5–8, 13–16]. Of which, due to the dominant 
effect of the genes of the St and H genomes, it is chal-
lenging to distinguish Campeiostachys from Elymus s.s. 
based on single or combined morphological characters 
[6, 8, 17]. Moreover, the genome composition of many 
polyploid species in Elymus s.s. and Campeiostachys 
is still unknown, resulting in the classification of many 
species in these two genera remains controversial [6, 8]. 
Although the genome composition of some species is 
determined, their biosystematics remains controversial 
due to their similar morphological features.

Elymus breviaristatus (Keng) Keng ex Keng f. and 
Elymus sinosubmuticus S. L. Chen is sympatric species 
mainly distributed on hillsides in Sichuan, Qinghai, and 
Ningxia, China [9, 18–21]. Morphologically, those two 
species are quite similar, and the only difference exists 
in their awn length. E. breviaristatus has short awn 
(2–5 mm), while E. sinosubmuticus possesses degener-
ated awn only 0-2  mm in length [9, 19, 22]. Overlap-
ping geographical distribution and similar morphology, 
whether or not they are the same species is under con-
troversy. Based on the morphological characteristics 
and the results of RPDA analysis, these two species 
were treated as independent biological species [8, 9, 19, 
21, 23]. Zhang et al. [24] suggested that E. breviarista-
tus and E. sinosubmuticus were the same species by 
comparing the leaf anatomical characteristics.

The chromosome pairing behavior of hybrid F1 at 
meiosis metaphase can be used to indicate chromo-
some homology and evolutionary relationship between 
genus or species in Triticeae [25, 26]. Genomic in  situ 
hybridization (GISH) can effectively examine the 
genome composition and chromosomal rearrange-
ment of polyploid species [27–32]. Cytologically, E. 
breviaristatus and E. sinosubmuticus are allohexaploid 
(2n = 6x = 42) perennial wheatgrass [1, 8, 21, 33], but 
Mason-Gamer et al. [34] reported that E. breviaristatus 
is tetraploid with StH genome. Based on the genome 
analysis and GISH, Yang et  al. [35] recognized that E. 
breviaristatus was a hexaploid with the StYH genome 
and treated it as Campeistachys breviaristata (Keng) 
Y.H.Zhou, H.Q.Zhang et C.R.Yang. However, the 

genome composition of E. sinosubmuticus has not been 
reported at present.

Cytological and phylogenetic analyses are practical 
tools to determine the genome composition and explore 
the interspecies and intergeneric relationships of the spe-
cies in Triticeae [36–39]. Molecular phylogeny analysis 
based on the single- or low-copy nuclear genes is less 
susceptible to concerted evolution and can be a handy 
marker for polyploid phylogeny [40–44]. Furthermore, 
Petersen et  al. [43] found a correspondence between 
DNA sequences of diploid donors and allopolyploids in 
Triticeae. Therefore, more and more single-copy nuclear 
genes have been used to determine the genome compo-
sition and phylogenetic relationship of Triticeae. Acc1 
and DMC1 sequences have higher evolutionary rates 
and have been widely applied in the phylogenetic study 
of the genera of Triticeae, such as Triticum, Kengyilia, 
Leymus, Roegneria, Hystrix, etc. [44–49]. In the present 
study, GISH, single-copy nuclear genes, and artificial 
hybridization were used to investigate the genome com-
position of E. sinosubmuticus and explore the biosys-
tematics relationships between E. breviaristatus and E. 
sinosubmuticus.

Results
Meiosis and fertility of parentals and F1 hybrids
Five hybrids were obtained from the combination of E. 
breviaristatus × E. sinosubmuticus. We observed the 
chromosome pairing of PMCs at metaphase I (MI) of 
parents and hybrids (Table 1). Meiosis of E. breviarista-
tus and E. sinosubmuticus forming mostly ring biva-
lents, with an average of 21.00 and 20.92 bivalents per 
cell, respectively (Table 1; Fig. S1, see Additional file 1). 
The F1 hybrids of E. breviaristatus × E. sinosubmuti-
cus was a hexaploid (2n = 42), showing an average of 
0.50 univalents, 20.62 bivalents, 0.06 trivalent, and 0.02 
quadrivalents (Table 1; Fig. S1, see Additional file 1). The 
chiasmata per cell were 37.70, with a c-value of 0.89, sug-
gesting that they were genetically affinity species and had 
similar StYH genome constitution.

Pollen grains of parents (E. breviaristatus and E. sino-
submuticus) showed a high level of stainability, was 
92.91% and 92.32%, respectively. The percentage of 
stained pollen grains of the hybrids was comparatively 
high at 53.90%. The seed setting rate of E. breviaristatus 
and E. sinosubmuticus were 89% and 87%, respectively. 
And the seed setting rate of their hybrids was 22.46%, 
indicating that the two species were highly affinities.

GISH analysis
To confirm the genome constitution of E. sinosubmu-
ticus, root meristem cells that went through mitosis 
metaphase were collected for GISH. It showed that E. 
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sinosubmuticus is a hexaploid with 42 chromosomes. 
Of which, 28 chromosomes were hybridized with the 
StY probe (from Roegneria ciliaris (Trin.) Nevski) when 
blocked by the H genome (from Hordeum bogdanii 
Wilensky) (Fig. 1a). And 14 chromosomes were hybrid-
ized with the H probe when blocked by the StY genome 
(Fig. 1b). Double-color GISH showed that 28 chromo-
somes were stained by the StY probe (in red), and 14 
chromosomes were labeled by the H probe (in green) 
(Fig. 1c). In accordance, E. breviaristatus also contains 
42 chromosomes, and 28 chromosomes displayed StY 

signals on the entire arm, and 14 chromosomes showed 
H signals (Fig. 1d, e, f ).

Phylogenetic analyses
The Acetyl-CoA carboxylase (Acc1) sequences length of 
E. sinosubmuticus ranged from 1421 to 1443  bp, and E. 
breviaristatus went from 1428 to 1441  bp. The Acc1 data 
matrix of sequences was analyzed based on maximum 
likelihood (ML) using the model TIM1 + I + G (-Ln likeli-
hood = 8147.4309). The assumed nucleotide frequencies 
were A = 0.2555, C = 0.1794, G = 0.2116, T = 0.3535. The 

Table 1  Meiotic associations at metaphase I in pollen mother cells of parental species and their hybrids

Species or hybrids 2n No. of cells 
observed

Chromosome association Chiasmata/cell c-value

I II (Total) II (Ring) II (Rod) III IV

Elymus breviaristatus 42 50 - 21.00 20.74 0.26 - - 41.74 0.99

- (21) (19–21) (0–2) - -

Elymus sinosubmuticus 42 50 0.08 20.92 20.72 0.20 - - 41.64 0.99

(0–2) (20–21) (19–21) (0–2) - -

E. breviaristatus × E. sinosubmuticus 42 50 0.50 20.62 16.88 3.74 0.06 0.02 37.70 0.89

(0–2) (19–21) (13–19) (1–8) (0–1) (0–1)

Fig. 1  GISH on somatic metaphase cells from root tips of Elymus sinosubmuticus and Elymus breviaristatus. a-c, E. sinosubmuticus. a, 14 
chromosomes showed H genome single which from Hordeum bogdanii when blocked with StY genome which from Roegneria ciliaris. b, 28 
chromosomes showed StY singles when blocked with H genome. c, 14 chromosomes showed H genome singles and 28 chromosomes showed 
StY singles when StY genome and H genome as probes. d-f, E. breviaristatus. d, 14 chromosomes showed H genome singles when blocked with 
StY genome. e, 28 chromosomes showed StY singles when blocked with H genome. f, 14 chromosomes showed H genome singles and 28 
chromosomes showed StY singles when StY genome and H genome as probes. Scale bar equal 10 μm
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tree generated by Bayesian analysis was similar to ML analy-
sis. All the Acc1 sequences were grouped into six clades 
(Fig.  2). The sequence from E. breviaristatus and E. sino-
submuticus were divided into clade I, clade III, and clade 
IV, respectively. Clade I contained the Pseudoroegneria, 

Elymus, Roegneria, and Campeiostachys species (BS = 100%, 
PP = 76%,). Clade III included in the Dasypyrum, Roegneria, 
and Campeiostachys species (BS = 100%, PP = 80%,). Clade 
IV grouped with the Hordeum, Elymus, and Campeio-
stachys species (BS = 100%, PP = 100%).

Fig. 2  Maximum likelihood tree derived from Acc1 sequences data. The bold indicated sequences from Elymus sinosubmuticus and Elymus 
breviaristatus. The capital letters in brackets after the species name indicate the genome composition of the species, and the “?” indicate the 
genome composition of the species is unknown. The numbers above and below the branches indicate bootstrap values > 50% and Bayesian 
posterior probability values > 90%, respectively
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A total of 71 disrupted meiotic cDNA (DMC1) 
sequences were used for ML analysis, Bromus sterilis as 
the outgroup. TPM2uf + G as the best-fit model, -Ln like-
lihood = 5355.5355. The assumed nucleotide frequencies 
were A = 0.2576, C = 0.2120, G = 0.2085, T = 0.3220. The 
tree generated by Bayesian analysis was similar to ML 
analysis. The DMC1 sequences from E. breviaristatus and 
E. sinosubmuticus were divided into three clades (Fig. 3). 
In clade I, grouped with the diploid species (Pseudor-
oegneria), and tetraploid species (Elymus and Roegne-
ria), and hexaploid species (Campeiostachys) (BS = 97%; 
PP = 74%). In clade II, their sequences grouped with 
the species of the genus Roegneria and Campeiostachys 
(BS = 99%, PP = 70%). In clade III, grouped with the dip-
loid species (Hordeum) and the species of the genus Ely-
mus and Campeiostachys (BS = 100%, PP = 59%). Clade 
IV and clade V grouped with the other diploid species in 
Triticeae (Fig. 3).

Discussion
Elymus sinosubmuticus contains StStYYHH genome
In this study, genome analysis, GISH, and phylogenetic 
analyses indicate that E. sinosubmuticus is an allohexa-
ploid with the StYH genome. Based on the genome com-
binations, the species with St, Y, H genomes should be 
classified into the genus of Campeiostachys [6]. Previ-
ously, E. sinosubmuticus was classified into the Elymus 
genus based on morphological traits and geographic 
distribution [8, 9, 21]. Phenotype is the co-consequence 
of genetics and environments. Some studies have shown 
that there are cryptic species (such as Roegneria panor-
mitana (Parl.) Nevski and R. heterophylla (Bornm. ex 
Melderis) C. Yen, J. L. Yang and B. R. Baum) and cryptic 
genera (such as Elymus and Campeiostachys) in Triticeae 
[6, 8, 50]. The former has complete reproductive isola-
tion, and the latter has different genome combinations. 
None of them can be distinguished morphologically. 
Therefore, for the Triticeae, especially for cryptic gen-
era, it is not accurate to classify the species based only on 
morphological traits. Our study is reasonable to classify 
E. sinosubmuticus into the genus Campeiostachys based 
on the genome analysis, GISH, and phylogenetic analyses 
results.

Biosystematics relationships of E. breviaristatus and E. 
sinosubmuticus
There is still debate whether or not E. breviaristatus 
and E. sinosubmuticus are the same species [8, 23]. Kar-
yotype analysis showed that those two hexaploid spe-
cies belonged to type 2A [20]. From the leaf anatomical 
structure, the comparison of the leaf anatomical char-
acteristics showed that the external morphology of E. 
breviaristatus and E. sinosubmuticus had little difference 

in leaf anatomy, and it was difficult to distinguish. There-
fore, E. breviaristatus and E. sinosubmuticus were the 
same species, and E. sinosubmuticus should be a syno-
nym for E. breviaristatus [24]. Conversely, Zhou et  al. 
[23] based on the results of RPDA analysis, despite the 
close relationship between them, there was a certain 
degree of nucleotide sequence difference, and they were 
independent biological species. The morphological char-
acteristics of E. breviaristatus and E. sinosubmuticus we 
observed were differing little. Both species are perennial 
tufted plants, culms erect. Leaf-sheaths glabrous, leaf-
blades flat, margins ciliate. Spikes nodding or curved, 
with sparse remote spikelets, two spikelets on each rachis 
node, green or purple-tinged. Lemma is lanceolate and 
with five nerves. Palea is equal to lemma. Anthers yellow. 
The most significant difference is the length of the lemma 
awn, E. sinosubmuticus is only 0-2  mm, and E. brevia-
ristatus is 2-6 mm. In addition, many types of interspe-
cific variations were found in our field studies.

A high chromosome pairing frequency of hybrid F1 
can indicate that the parents are closely related [51, 52]. 
A species represents an independent gene pool in the 
evolutionary system, and reproductive isolation is the 
only factor for forming such independent gene pools in 
organismal evolution [15]. Accordingly, reproductive iso-
lation is the only standard for species identification. In 
our study, the hybrid F1 of E. breviaristatus and E. sino-
submuticus has a high-frequency bivalent at MI (mean 
value of 20.62), suggesting that the three genomes of E. 
breviaristatus and E. sinosubmuticus has high homology, 
and they are closely related. But the percentage of stained 
pollen grains of hybrids was 53.90%, and the seed set-
ting rate was 22.46%. This suggests genetic differentiation 
between the two taxa, leading to a degree of reproduc-
tive isolation. Yang et al. [35] reported that E. breviarista-
tus was a hexaploid with the StYH genome and treated 
it as Campeiostachys breviaristata (Keng) Y. H. Zhou, H. 
Q. Zhang et C. R. Yang. Combined with morphological 
characteristics and the fertility of hybrids, E. sinosubmu-
ticus should be classified into the genus Campeiostachys 
as the subspecies of E. breviaristatus and renominated as 
Campeiostachys breviaristata (Keng) Y. H. Zhou, H. Q. 
Zhang et C. R. Yang subsp. sinosubmuticus (S. L. Chen) Y. 
H. Zhou, H. Q. Zhang et L. Tan.

Conclusions
Elymus sinosubmuticus is allohexaploid wheatgrass, 
and the genome composition is StYH. Its morphologi-
cal characteristics are very similar to E. breviaristatus. 
Simultaneously, E. sinosubmuticus and E. breviaristatus 
have a degree of reproductive isolation, and it is reason-
able to treat E. sinosubmuticus as the subspecies of E. 
breviaristatus. Because E. breviaristatus was treated as 
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Fig. 3  Maximum likelihood tree derived from DMC1 sequences data. The bold indicated sequences from Elymus sinosubmuticus and Elymus 
breviaristatus. The capital letters in brackets after the species name indicate the genome composition of the species, and the “?” indicate the 
genome composition of the species is unknown. The numbers above and below the branches indicate bootstrap values > 50% and Bayesian 
posterior probability values > 90%, respectively
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Campeiostachys breviaristata by Yang et  al. [35], there-
fore, E. sinosubmuticus should be renamed as Campeio-
stachys breviaristata (Keng) Y. H. Zhou, H. Q. Zhang et 
C. R. Yang subsp. sinosubmuticus (S. L. Chen) Y. H. Zhou, 
H. Q. Zhang et L. Tan.

Methods
Plant materials
In our study, Elymus breviaristatus and Elymus sinosub-
muticus were collected from the field in Sichuan Prov-
ince, China, and numbered ZY 17,004 and ZY 17,008 
respectively. No permissions were necessary to collect 
seed samples. Yonghong Zhou and Haiqin Zhang iden-
tified the two plant materials. They were used for artifi-
cial hybridization, and the materials and F1 hybrids were 
cultivated in the greenhouse at Hongyuan, Sichuan. The 
voucher specimens of E. breviaristatus and E. sinosub-
muticus were deposited in the Herbarium of Triticeae 
Research Institute of Sichuan Agricultural University, 
China (SAUTI). Apart from E. breviaristatus and E. sino-
submuticus, diploid species and relative polyploid species 
with different genome combinations (StY, StH, StYH) 
in Triticeae were also applied for phylogenetic analyses. 
The basic information about these sequences is listed in 
Additional file 2: Table S1.

Hybridization and meiotic analysis
The hybridization procedure is as follows: after 2–3 days 
of the emasculation of the female parent, repeat pollina-
tions with the corresponding mature pollens of the male 
parent were carried out. The female parents were used 
a plastic bag to isolate the pollen throughout the whole 
process. In crossing combination, E. breviaristatus was 
used as the male parent when crossed with E. sinosubmu-
ticus, and E. sinosubmuticus was used as the male when 
hybridized with E. breviaristatus. The chromosome pair-
ing of pollen grains of hybrids and parents was examined 
after fixing by Carnoy’s Fluid II for 24 h. The mean pair-
ing frequency of hybrids and parents at MI is described 
by Kimber and Alonso [53]. Mature pollen of hybrids and 
parents were detected activity after staining with I2-IK 
solution.

Chromosome preparation and GISH
The roots were collected from adult plants, treated with 
nitrous oxide for three hours, fixed with 90% glacial ace-
tic acid for 5 min, and kept with 70% alcohol. The chro-
mosome was prepared by drop methods [54]. Using the 
CTAB method [55] extracted the total genomic DNA 
from leaves. DNA was labeled using DIG-Nick Transla-
tion Kit (Roche, Indianapolis, IN, USA). The green probes 
were labeled with fluorescein-12-dUTP, and the red 
probes were labeled with Texas-red-5-dCTP using the 

nick translation method. Hybridization procedure, detec-
tion, and visualization are referred to Han et al. [56]. For 
monochromatic GISH, the concentration ratio of probe 
genomic DNA and non-labeled blocking genomic DNA 
was 1:120 (ng/uL). For double-color GISH, the concen-
tration ratio of probes was 1:1 (ng/uL). Images of GISH 
were captured by Olympus BX61 fluorescence micros-
copy (Japan). At least ten metaphase cells for each spe-
cies were observed. Adobe Photoshop CS6 was used to 
proceed with the images.

Sequence amplification and phylogenetic analyses
The Acc1 and DMC1 sequences were amplified with 
primers listed in Table 2. All polymerase chain reactions 
were amplified in a 50 uL reaction mixture, containing 25 
uL 1 × phanta mix buffer, 1  mM dNTP mix, 1 uL DNA 
polymerase (Vazyme, Nanjing, China), 10 uM of each 
primer, 200  ng of template DNA, and distilled deion-
ized water to the final volume. Polymerase chain reac-
tion (PCR) products were cloned into the 007VS vector 
(TSINGKE Biological Technology, Beijing, China). At 
least 15 random independent clones were selected for 
sequencing by Sangon Biological Engineering and Tech-
nology Service Ltd. (Shanghai, China). DNA sequences 
were confirmed through BLAST nucleotide alignment 
on NCBI database. The multiple sequences were aligned, 
and manual adjustments were made using the ClustalX 
[57]. jModelTest 3.0 [58] was used to determine appro-
priate DNA substitution models and gamma rate het-
erogeneity. Phylogenetic analyses were conducted using 
the maximum-likelihood method in PhyML 3.0 [59] and 
Bayesian inference (BI) in MrBayes version 3.1.2 [60]. 
Statistical support for nodes in ML analysis was esti-
mated by using 1000 fast bootstrap replicates. Bootstrap 
support (BS) value < 50% and posterior probabilities (PP) 
value < 90% was not included in figures.

Table 2  The primers used in this study

Gene Name of primer Sequence of primer (5’–3’) Profiles

Acc1 AccF1 CCC​AAT​ATT​TAT​CAT​GAG​ACT​
TGC​A

1 cycle: 5 min 
95℃;
35 cycles: 30 s 
95℃, 30 s 56℃, 
2min30s 68℃;
1 cycle: 10 min 
68℃

AccF2 CAA​CAT​TTG​AAT​GAAThCTC​
CAC​G

DMC1 TDMC1e10F TGC​CAA​TTG​CTG​AGA​GAT​
TTG​

1 cycle: 4 min 
95℃;
35 cycles: 
1 min 95℃, 
1 min 52℃, 
1 min 72℃;
1 cycle: 10 min 
72℃

TDMC1e15R AGC​CAC​CTG​TTG​TAA​TCT​GG
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Acc1: Acetyl-CoA carboxylase;; BS: Bootstrap support;; BI: Bayesian inference;; DMC1: 
Disrupted meiotic cDNA;; GISH: Genomic in situ hybridization;; MI: Metaphase I;; ML: 
Maximum likelihood;; PCR: Polymerase chain reaction;; PP: Posterior probability.
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