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Spatiotemporal auxin distribution 
in Arabidopsis tissues is regulated by anabolic 
and catabolic reactions under long-term 
ammonium stress
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Abstract 

Background:  The plant hormone auxin is a major coordinator of plant growth and development in response to 
diverse environmental signals, including nutritional conditions. Sole ammonium (NH4

+) nutrition is one of the unique 
growth-suppressing conditions for plants. Therefore, the quest to understand NH4

+-mediated developmental defects 
led us to analyze auxin metabolism.

Results:  Indole-3-acetic acid (IAA), the most predominant natural auxin, accumulates in the leaves and roots of 
mature Arabidopsis thaliana plants grown on NH4

+, but not in the root tips. We found changes at the expressional 
level in reactions leading to IAA biosynthesis and deactivation in different tissues. Finally, NH4

+ nutrition would facili-
tate the formation of inactive oxidized IAA as the final product.

Conclusions:  NH4
+-mediated accelerated auxin turnover rates implicate transient and local IAA peaks. A noticeable 

auxin pattern in tissues correlates with the developmental adaptations of the short and highly branched root system 
of NH4

+-grown plants. Therefore, the spatiotemporal distribution of auxin might be a root-shaping signal specific to 
adjust to NH4

+-stress conditions.
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Background
Nitrogen acquisition significantly affects plant growth 
[1], yet it is not always the quantity of nitrogen that 
matters, but rather the form of nitrogen that is acquired 
by plants. Inorganic nitrogen resources commonly 
available for plants include nitrate (NO3

−) or ammo-
nium (NH4

+) ions. However, when NH4
+ is the sole 

source of nitrogen for plants, serious toxicity symp-
toms develop, leading to a condition known as the 

ammonium syndrome [2, 3]. At the plant level, this 
syndrome is mainly characterized by significant retar-
dation in development, lower biomass, less seed estab-
lishment, and shorter primary roots, all adding up 
to lower plant yield, which is very unfavorable in the 
context of crop cultivation. Therefore, it is desirable 
to overcome this adverse status to achieve better plant 
production from higher NH4

+ fertilization rates. Many 
hypotheses have been proposed to explain why NH4

+ 
might have a cumulative toxic effect on plants, causing 
energy deficiency, limited cell wall expansion, carbohy-
drate shortage, pH disturbances, ion imbalances, oxida-
tive stress, and other symptoms [4–7]. Despite years of 
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research dedicated to understanding why growth arrest 
might be expected under NH4

+ nutrition, the cause 
remains unclear.

The plant hormone auxin is one of the fundamental 
regulators of plant growth and development. It plays a 
key role in maintaining apical dominance and control-
ling plant tropism as well as in the development of leaves, 
roots, and floral organs [8–10]. Mostly auxin is known for 
its impact on root morphology because of its role in ini-
tiating lateral root development and apical root cell dif-
ferentiation [11–13]. In contrast, the main sites of auxin 
synthesis occur in aboveground plant parts, such as 
stem apexes and developing leaf primordia [14]. Indole-
3-acetic acid (IAA) is the major natural form of auxin 
in plant tissues, and it’s content is regulated by various 
developmental and environmental cues. The main path-
way of de novo IAA synthesis is the tryptophan (Trp) 
pathway [15]. In its major route Trp is converted into 
indole-3-pyruvate (IPyA) by the Trp aminotransferase 
of Arabidopsis (TAA1) and Trp aminotransferase related 
(TAR1-2). Subsequently, IPyA is transformed into IAA 
by the YUCCA family of flavin monooxygenases (YUC1-
11). Additionally IAA can be synthetized in an IPyA 
independent pathways containing for instance the inter-
mediates indole-3-acetamide (IAM) and indole-3-ace-
tonitrile (IAN) or tryptamine (TAM). Also, an entire Trp 
independent pathway is possible, branching of its precur-
sor anthranilate (ANT) [16].

Only a short-lived fraction of the synthesized auxin 
pool remains in its free form in plants [17]. Auxins 
can be quickly incorporated into conjugates with vari-
ous compounds such as amino acids, sugars, and pep-
tides; depending on their partners, auxin conjugates 
are intended either for storage or degradation [18]. The 
formation of amide-linked IAA conjugates is catalyzed 
by Gretchen Hagen 3 (GH3) family proteins consisting 
of 19 enzymes in Arabidopsis thaliana. The combina-
tion of IAA with alanine (Ala) or leucine (Leu) is a stor-
age form, while its combination with asparagine (Asp) or 
glutamate (Glu) is a precursor for degradation [17]. Fur-
thermore, IAA and its oxidized form (oxIAA) can form 
conjugates with glucose (Glc) via a glycosylation reac-
tion catalyzed by heterogeneous UDP-glycosyltransferase 
(UGT) superfamily enzymes [19]. The resulting conju-
gate, IAA-Glc, can be stored in tissues, while its oxidized 
form oxIAA-Glc is intended for degradation. Auxin can 
also be directly oxidized by dioxygenase of auxin oxi-
dation (DAO1-2), and the resulting auxin catabolite is 
oxIAA [20]. Overall, IAA oxidation occurs very fast, so 
the remaining free IAA can be considered a signaling ele-
ment [21]. Therefore, changes in auxin homeostasis are 
thought to underlie environmental stress communication 
that regulates plant growth.

Previously, it was speculated that NH4
+-based devel-

opmental retardation of plants may be related to hormo-
nal imbalances [5, 6]. Since then, auxins have been in the 
spotlight to affect NH4

+-mediated growth phenotype. 
The research on auxins has focused primarily on root 
morphology because they have long been considered as 
the rooting hormone. A pronounced auxin response was 
found in roots of most plants subjected to NH4

+ nutri-
tion [22–26], but because these studies focused only 
on the primary root or young seedlings, the conclu-
sions can only be tentative. However, to date, the rea-
son for the observed changes in auxin pools in tissues of 
NH4

+-exposed plants has not been fully elucidated.
To address the above question, we analyzed the path-

ways of auxin synthesis, conjugation, and oxidation. 
These major mechanisms can shed light on events that 
regulate the steady state of auxin in tissues of plants 
grown with NH4

+ as the sole source of nitrogen. In this 
study, we examined auxin metabolism in the shoots and 
roots of mature Arabidopsis plants subjected to NH4

+ 
nutrition. Our results help understand how balancing 
auxin pools in planta can be the basis of the NH4

+ syn-
drome development.

Results
Ammonium cultivation caused reduced rosette 
development and a characteristic short and highly 
branched root phenotype
Arabidopsis plants fed with NH4

+ exhibited smaller 
rosettes and shorter roots, and also smaller rosette diam-
eter and primary root length values, compared to the 
plants fed with NO3

− (Fig. 1A, B). However, the roots of 
the plants grown with NH4

+ showed a highly branched 
architecture with many lateral roots (Fig.  1A; Supple-
mental Fig. 4). In addition, the leaves and roots of these 
plants showed more than twice lower dry weight in the 
presence of NH4

+ (Fig. 1C).

Staining of auxin reporters had a higher intensity in leaves 
and was heterogeneous in roots
To examine the accumulation of auxins within tissues, 
Arabidopsis lines expressing DR5::GUS or DR5::GFP 
reporter constructs were used [27]. The auxin-medi-
ated expression of the reporters was marginally higher 
in the leaves of NH4

+-grown plants than in the leaves 
of the control plants (Fig. 2; Supplemental Figs. 1A and 
2). The green fluorescence of GFP and the blue stain-
ing of GUS activity were mainly located in the leaf 
margins. In roots, a different reporter-specific activ-
ity dependent on the root section was observed. The 
root apex of the primary root showed a lower intensity 
of GUS and GFP color development under NH4

+ nutri-
tion (Fig.  2; Supplemental Figs.  1B and 3A). Maximum 
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auxin responsiveness was found in the quiescent center 
cells of the root tip. In a mature root system most of the 
root system represent by lateral roots, therefore higher-
order lateral roots were selected for the analysis of the 
differentiation zone. The induced expression of both 
auxin reporters was observed at the sites of lateral root 
formation, showing elevated staining levels in the root 
primordia of NH4

+  -grown plants. Furthermore, higher 
reporter expression extended into the inner (vascula-
ture and pericycle) tissues of the branching lateral roots 
in NH4

+-grown plants than in the control plants (Fig. 2, 
Supplemental Figs. 1C and 3B).

Auxin biosynthesis rates were decreased in leaves 
and upregulated in roots in the presence of ammonium
We determined the levels of Trp-intermediates and free 
IAA in tissues of Arabidopsis plants grown with NH4

+. 
The precursor for Trp, which is predominantly anthra-
nilate (ANT), showed an unchanged content in leaves 
but was elevated in the roots of NH4

+-grown plants com-
pared to the control plants (Fig.  3A). The Trp content 
was almost 6-fold higher in leaves and 2-fold higher in 
roots under NH4

+ nutrition (Fig. 3B). Further, an induced 
content of the derivatives indole-3-pyruvic acid (IPyA), 
indole-3-acetamide (IAM), and indole-3-acetonitrile 
(IAN) was recorded in the leaves (Fig. 3C, D, E). However, 

the root content of IPyA and IAM was higher, but that 
of IAN was lower in NH4

+-grown plants than in control 
plants (Fig.  3C, D, E). Finally, the IAA pool was almost 
two times larger in the leaves and roots of NH4

+-grown 
plants (Fig. 3F).

Subsequently, the corresponding enzymes responsi-
ble for IAA synthesis were analyzed in plant tissues. The 
transcript level of TAA1 was lower in the leaves but was 
higher in the roots of NH4

+-grown plants compared to 
the control plants (Fig. 4A). The level of TAR2 transcript 
was lower in leaves and roots as compared to controls 
respectively (Fig.  4B). A similar pattern of gene expres-
sion was identified under NH4

+ nutrition for almost all 
YUCCA genes except YUC9 in roots. The expression of 
all YUCCA genes was mostly downregulated in leaves, 
but was higher in roots in response to NH4

+ conditions 
(Fig. 4D and E). The same trend was observed at the pro-
tein level of a major YUC isoform, and the protein abun-
dance of YUC1 was lower in the leaves but was higher in 
the roots of NH4

+-grown plants (Fig. 4C).

Ammonium induced auxin oxidation and conjugation 
pathways
To assess the extent to which NH4

+ nutrition leads to 
auxin deactivation, IAA derivatives were determined 
in plant tissues. The oxidized pool of auxin, comprised 

Fig. 1  Phenotype of Arabidopsis thaliana (Col-0) after 8 weeks of hydroponic culture in a solution containing 5 mM NO3
− (control) or 5 mM NH4

+ as 
the sole nitrogen source. A Visual comparison of plants and magnifications of roots under binocular (insert; scale bars = 1 mm). B Rosette diameter 
and primary root length. C Dry weight of leaves and roots. Means are given with their SD (n = 10). Asterisks represent statistically significant 
differences between NO3

− versus NH4
+-derived tissues (P < 0.05)
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of oxIAA, was approximately three times higher in the 
leaves and roots of NH4

+-grown plants than in the con-
trol plants (Fig.  5A). In addition, the level of IAA-Glc 

was induced under NH4
+ nutrition, showing a 5-fold 

higher content in leaves and a 2-fold higher level in roots 
(Fig.  5B). To a similar extent, the content of oxIAA-Glc 

Fig. 2  Tracing auxin-responsive reporters in tissues of transgenic Arabidopsis thaliana lines grown on NO3
− (control) or NH4

+ as the only nitrogen 
source. A Confocal images of DR5::GFP expression. Overlay of transmission light and green fluorescence and detached green channel on the right 
respectively. Scale bars for leaves represent 100 μm and for roots 50 μm. B Photographs of DR5::GUS staining in tissues. For whole-leaf pictures scale 
bars represent 1 mm and for higher magnification 100 μm. Photos for root tips and lateral roots (from the differentiation zone) with developing 
higher-order lateral root primordia were selected. In roots scale bars for lower magnification represent 100 μm, for higher magnification 10 μm. 
Images shown are representative of at least five independent replicates shown in the Supplement (Supplemental Figs. 1, 2 and 3)
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was almost 7-fold higher in leaves and more than 
2-fold higher in roots under NH4

+ nutrition (Fig.  5C). 
Among all IAA metabolites, oxIAA-Glc and IAA-Glc 
showed major peaks in leaves. The content values of the 

conjugates IAA-Glu and IAA-Asp in roots were higher 
and unchanged, respectively (Fig.  5D). However, the 
foliar amounts of IAA-Glu and IAA-Asp were below the 
detection range.

Fig. 3  Levels of biosynthetic intermediates and free auxin in Arabidopsis thaliana plants cultivated on NO3
− (control) or NH4

+ as the only nitrogen 
source. Content of anthranilate (ANT; A), tryptophan (Trp; B), indole-3-acetamide (IAM; C), indole-3-acetonitrile (IAN; D), indole-3-pyruvic acid (IPyA; 
E), and indole-3-acetic acid (IAA; F) in leaves and roots. Means are given with their SD (n = 10). Asterisks represent significant differences between 
NO3

− versus NH4
+- derived tissues (P < 0.05)
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After defining the enrichment of auxin catabolites in 
response to NH4

+ nutrition, we analyzed the enzymes 
involved in IAA oxidative degradation and conjuga-
tion. The transcript level of DAO1 was downregulated 
in leaves but was induced in roots in response to NH4

+ 
nutrition, compared to the control plants (Fig.  6A). In 
contrast, DAO2 showed more than 5-fold higher expres-
sion in leaves and was lower in roots under NH4

+ condi-
tions (Fig.  6A). The transcript levels of most GH3 were 
up-regulated in leaves of NH4

+-grown plants (Fig.  6B). 
In roots GH3.2 and GH3.3 were strongly elevated while 
the expression of GH3.1, 4, 6, 17 was slightly lower 
and GH3.5 showed no significant differences (Fig.  6C). 

The transcript levels of UGT84B1 were lower in leaves 
but higher in roots in response to NH4

+ nutrition 
(Fig.  6D). However, the transcript levels of UGT74B1 
and UGT84D1 were decreased in both leaves and roots 
(Fig. 6D).

Discussion
Foliar auxin pool is dedicated for oxidation, storage, 
or root support under ammonium nutrition
IAA is a major growth regulator of plant development; 
therefore, it is not surprising that IAA metabolism may 
affect plant anatomy in response to different stress con-
ditions [28, 29]. The decrease in the total biomass and 

Fig. 4  Expression of genes involved in auxin biosynthesis in the tissues of Arabidopsis thaliana plants grown on NO3
− (control) or NH4

+ as the 
only nitrogen source. Transcript levels of tryptophan aminotransferase of Arabidopsis (TAA1; A) and TAA-related 2 (TAR2; B). C Protein level of YUC1 
(46 kDa) in leaves and roots. The western blot shown is representative of three independent replicates. Transcript levels of YUCCA family of flavin 
monooxygenases (YUC1-11; D, E) in leaves and roots. Transcript abundance values are normalized to the means of the reference gene PP2A. Relative 
expression was set to 1 in control plants for reference. Means are given with their SD (n = 6). Asterisks represent significant differences between 
NO3

− versus NH4
+-derived tissues (P < 0.05)
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rosette diameter of NH4
+-grown plants (Fig.  1), as well 

as the leaf area and cell size [30], indicated the negative 
effects of NH4

+ assimilation on plant development. It is 
known that auxins play an important role in inducing 
leaf outgrowth through the initiation of leaf primordia 
and may further regulate leaf shape, vein development, 
and other aspects of leaf expansion [31]. We observed 
that IAA accumulation in NH4

+-grown Arabidopsis was 
only slightly higher (Fig.  3F), while its deposition was 
observed mainly in the leaf margins, which is a typical 
IAA pattern in young and mature leaves [31]. Further 
research is needed to understand the effects of IAA on 
leaf anatomy under NH4

+ nutrition. The existing litera-
ture dealing with the NH4

+ toxicity syndrome does not 
provide much insight into the general auxin metabolism 
in shoots, especially in mature plants.

Local IAA biosynthesis may participate in the regu-
lation of plant organ development [32–34]. To under-
stand the pattern of auxin allocation in the tissues of 
NH4

+-grown plants, we first analyzed the events leading 
to IAA production. First, the higher ANT and Trp con-
tent (Fig. 3A, B) may not limit IAA biosynthesis in leaves. 
Overall, by investigating the expression levels of TAA-
YUCCA, a lower capacity for IAA biosynthesis might be 
expected during NH4

+ nutrition (Fig. 4). Nevertheless, all 
analyzed Trp-intermediates (IAN, IAM, IPyA; Fig. 3C, D, 
E) showed a higher content in the leaves of NH4

+-grown 
Arabidopsis. Also the content of the final product, IAA 
was elevated in leaves during NH4

+ nutrition (Fig.  3F). 
Similarly, slightly higher IAA content was found in the 
shoots of maize [35] and unchanged in young Arabidop-
sis seedlings [36]. All this indicates high synthetic rates 
despite lower expression of IAA synthesizing enzymes in 

Fig. 5  Profile of auxin metabolites in Arabidopsis thaliana plants grown on NO3
− (control) or NH4

+ as a sole source of nitrogen. Content of oxidized 
indole acetic acid (oxIAA; A), IAA conjugate with glucose (IAA-Glc; B), oxidized and saccharified IAA (oxIAA-Glc; C), IAA conjugate with amino acids 
(D) - glutamic acid (IAA-Glu) or aspartic acid (IAA-Asp) in leaves and roots. Means are given with their SD (n = 10). Asterisks represent significant 
differences between NO3

− versus NH4
+-derived tissues (P < 0.05)
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Fig. 6  Transcriptional responses involved in auxin oxidation and conjugation in tissues of Arabidopsis thaliana plants grown on NO3
− (control) 

or NH4
+ as the only nitrogen source. Relative transcript levels of dioxygenase of auxin oxidation (DAO1-2; A); Gretchen Hagen 3 (GH3.1-6, 17) in 

leaves (B) and roots (C); UDP-glucose transferases (UTG74B1, UGT84B1, and UGT74D1; D). Transcript abundance values are normalized to the means 
of reference gene PP2A. Relative expression was set to 1 in control plants for reference. Means are given with their SD (n = 6). Asterisks represent 
significant differences between NO3

− versus NH4
+-derived tissues (P < 0.05)
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leaves (Fig. 4). It has been shown that the expression of 
TAA-YUCCA is controlled through a negative feedback 
mechanism when IAA levels are elevated in Arabidop-
sis seedlings [37], which could also lower their transcript 
levels under NH4

+ nutrition. It is important to empha-
size that additional routes of the biosynthesis of IAA and 
other endogenous auxins may function under these spe-
cific conditions [16].

Obviously, not only the biosynthesis, but the balance 
between the production and degradation of auxins is 
responsible for regulating the endogenous IAA levels 
in plant tissues [16]. An interesting trend was observed 
for all major IAA catabolizing enzymes being down-
regulated in response to NH4

+ nutrition (Fig.  6). The 
possibly lower activity of these enzymes in the leaves 
of NH4

+-grown plants may allow IAA to accumulate, 
despite its lower synthesis rates. In genetic manipulation 
studies, these genes could severely affect the IAA accu-
mulation in tissues [38, 39]. However, despite the low 
expression of DAO1, UGT84B1, UGT74D1 (Fig. 6A, D) 
its IAA conjugates with Glc and oxIAA-Glc and oxIAA 
still showed a higher pool in the leaves of NH4

+-grown 
plants (Fig. 5A, B, C). Normally conjugated forms have 
a low content in tissues, but IAA increase may provoke 
conjugation [40]. It is not possible to measure actual 
IAA turnover rates, but the metabolic outcome in any 
case is the accumulation of a certain IAA form, which 
may be an indication in this study. To serve as active 
developmental signals, the concentration of auxins has 
to be tightly regulated [41].

Another way to regulate the shoot IAA content is 
through its export to other tissues. On the basis of lower 
TAA-YUCCA expression and active IAA catabolism we 
rather think that IAA accumulation in leaves under NH4

+ 
nutrition may be related to changes in its transport. Usu-
ally, the size of the shoot auxin pool does not increase in 
the long run, but excess IAA is transported to the roots. 
A mechanism for IAA export to roots was recently pro-
posed by Meier et  al. [23], but the long-distance trans-
portation role of IAA under these conditions requires 
further research.

Root‑derived auxin biosynthesis is directed toward its 
oxidation under ammonium nutrition
Events of IAA synthesis and transport occur synergisti-
cally, but under specific stress conditions, local IAA syn-
thesis is essential for root morphology regulation [31]. 
Roots, similar as in leaves, provide unlimited precur-
sor availability for IAA synthesis (Fig. 3). However, here 
the general pattern of the major TAA1-YUCCA genes 
was significantly induced (Fig. 4C, E). Similar results for 
TAA1, TAR2 and YUCCA enzymes were found in roots 
of young Arabidopsis seedlings treated with NH4

+ [22]. 

As a result of biosynthetic reactions, the IAA content in 
the roots of NH4

+-grown plants was strongly elevated 
(Fig.  3F). In contrast, in two in  vitro studies the IAA 
contents was found to be lower in roots of NH4

+-grown 
plants [22, 42], these differences may be related to the 
growth conditions or the plant developmental stage. 
We would rather look at auxin pools as a transient IAA 
state, since IAA is quickly processed. The high IAA pool 
could be catabolized by induced expression of DAO1, 
UGT84B1, GH3.2 and GH3.3 in the roots of NH4

+-grown 
plants (Fig. 6A, C, D). An up-regulation of more GH3 and 
UGT isoforms was also detected in NH4

+-treated Arabi-
dopsis seedlings [22]. In a related paper it was shown that 
the transcription factor, WRKY46, is involved in NH4

+ 
stress tolerance via inhibiting IAA-conjugating genes 
[42]. Also in rice a higher GH3 and DAO expression 
was associated with worse tolerance for NH4

+ in sensi-
tive cultivars [43]. As a result of conjugating reactions, 
IAA-Glc and oxIAA-Glc, IAA-Glu showed a higher 
content (Fig.  5B, C, D). The strong overproduction and 
irreversible degradation of IAA during NH4

+ nutrition 
seems to be an energy-wasteful process; however, it may 
be thought of as a useful process if IAA is considered a 
signaling molecule that does not have a high shelf-life but 
actively regulates plant performance.

Additionally, the local IAA content in the root api-
cal meristem, which is the site of direct IAA synthesis 
or a transport sink, is critical for regulation of primary 
root elongation [44, 45]. Auxin-metabolizing enzymes 
are encoded by several gene copies and are finely regu-
lated in tissues; among the IAA-synthesizing enzymes, 
YUC9 is the most abundant enzyme in the root api-
cal zone [46]. The lower YUC9 expression in the roots 
of NH4

+-grown plants (Fig.  4E) may be indicative of 
decreased IAA biosynthesis in the root tip. Another 
indication may be expression of DAO2, which is 
expressed only in the root apical meristem [38, 47]. 
However, because of a slightly lower transcript abun-
dance of DAO2 during NH4

+ nutrition (Fig.  6A), the 
catabolism of auxin might not be directed toward per-
manent degradation. Auxin inactivation might also be 
expected through other IAA-metabolizing enzymes. In 
fact, lower IAA levels in the root tip under NH4

+ nutri-
tion can be visualized with the application of GUS or 
GFP sensor lines (Fig.  2). The root tips of pronounced 
secondary lateral roots showed a similar behavior as the 
primary root (results not shown). A similar pattern of 
lower IAA staining in the root tips has been frequently 
detected by GUS or GFP staining in young Arabidopsis 
seedlings [22–26].

On the other hand, in young lateral roots (high-order 
branches, results not shown) or root primordia the 
observed staining of sensor lines indicates higher IAA 
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levels (Fig. 2). On this basis it can be expected that IAA 
acts as a signal for lateral root outgrowth in mature 
plants (as seen in the root phenotype in Fig.  1; Supple-
mental Fig. 4) in a manner alike to what was reported in 
seedlings under NH4

+ nutrition [23]. Similar to our study, 
diverse agar-plate experiments have shown that NH4

+ 
triggers an increase in lateral root numbers and inhibits 
primary root elongation [25, 48]. This is of general inter-
est since higher-order lateral roots are mainly responsible 
for increasing root system abundance [45, 49, 50]. There-
fore, a higher root branching density may compensate 
for the short primary root length during NH4

+ nutrition 
and may be an adaptive response to increase root surface 
area. In adult Arabidopsis plants, lateral roots dominate, 
accounting for most of the water and nutrient uptake 
[51]. Therefore, plant developmental programs modu-
lated by IAA-induced root foraging in the upper soil layer 
where micronutrient content is higher may be desirable 
[52]. Possibly stressed plants may be greedy not only for 
NH4

+ but even more likely to take up NO3
−. Thus, it 

might be speculated that the highly branched and dwarf 
NH4

+-specific root design is optimal for efficient nitro-
gen acquisition [53, 54].

Conclusions
In this study, we provide evidence that IAA metabolism 
in the tissues of mature Arabidopsis plants is affected 
by long-term NH4

+ nutrition. The steady-state levels of 
free auxin in leaves and roots are controlled through a 
balance between anabolic and catabolic reactions. As 
a result, IAA overproduction simultaneously leads to 
the formation of IAA oxidation products, which have 
an even greater content. Nevertheless, transient auxin 
gradients including IAA maxima in root primordia and 
depletion in the root tip might be a signal for modulating 
plant anatomy in response to NH4

+ stress conditions. In 
particular, the promotion of IAA-induced development 
of short root systems with highly branched lateral roots 
under NH4

+ nutrition may be a stress-adaptive response 
to optimize root foraging for resources. Healthy and 
robust roots are key for nutrient uptake and control plant 
performance and growth.

Materials and methods
Plant material and growth conditions
Arabidopsis thaliana L. ecotype Col-0 (WT) plants 
were hydroponically cultured using an Araponics sys-
tem (Araponics, Liege, Belgium). Seeds were planted on 
half-strength Murashige and Skoog [55] basal medium 
(Sigma, Darmstadt, Germany) with 1% agar and allowed 
to germinate in distilled water for 1 week. Thereafter, 
the plants were cultivated for 8 weeks in liquid medium 
containing 1.5 mM KH2PO4, 2.5 mM KCl, 0.7 mM CaSO4 

· 2H2O, 0.8 mM MgSO4 · 7H2O, 0.06 mM NaFeEDTA, 
5 mM CaCO3, microelement mix, and 2.5 mM Ca(NO3)2 
· 4H2O or 2.5 mM (NH4)2SO4 as the nitrogen source. 
The growth medium was exchanged twice a week and 
the buffer was checked to be stable at 6.5-7 during that 
time. Only the application of selective media during a 
long-term growth regime reveals developmental dif-
ferences between plants. Growth conditions were as 
described in our previous study [56]: a light/dark pho-
toperiod of 8/16 h, day/night temperatures of 21/18 °C, 
humidity of approximately 70%, and a light intensity 
of 150 μmol m− 2 s− 1 photosynthetically active radia-
tion (PAR; daylight and warm white 1:1, LF-40 W, Piła, 
Poland).

Plant materials, including young and mature leaves and 
full root systems, were collected at 12:00 pm. Leaves were 
directly shock-frozen in liquid nitrogen and roots were 
washed with water before harvest. The collected tissues 
were ground to powder using a mortar and pestle and 
stored at − 80 °C. The control group consisted of plants 
cultivated on NO3

−, while the experimental group con-
sisted of NH4

+-grown plants (Fig. 1A).

Visualization of auxin reporters
The Arabidopsis lines expressing the auxin-responsive 
DR5::GUS and DR5::GFP reporter constructs were 
obtained by Ottenschläger et al. [27]. Plants were grown 
in hydroponic culture with 5 mM NO3

− or 5 mM NH4
+ 

as the sole nitrogen source, as described for WT plants. 
For staining, the leaves of the same age (same timing 
of appearance) and whole-root systems were used. The 
GUS staining procedure was performed as described 
by Barabasz et  al. [57]. Briefly, leaves and roots were 
immersed in cold 90% acetone at room temperature 
(RT; approx. 20 °C) for 20 min, after which the samples 
were rinsed with 50 mM phosphate buffer (pH 7.0) con-
taining 0.2% Triton X-100. Subsequently, tissues were 
infiltrated for 15 min with the GUS reaction buffer com-
prising 50 mM phosphate buffer (pH 7.0), 0.2% Triton 
X-100, and 2 mM 5-bromo-4-chloro-3-indolyl-beta-D-
glucuronic acid (X-Gluc; Thermo Fisher Scientific Inc., 
Waltham, MA, USA) and incubated for 2.5 h at 37 °C. 
Thereafter, the tissues were cleared with decreasing 
ethanol concentrations and observed under a binocular 
microscope (Stemi 508; Zeiss, Jena, Germany).

For visualization of the DR5::GFP construct, GFP was 
excited at 488 nm and detected at 500–530 nm with a 
NIKON A1R MP confocal laser scanning system (Nikon, 
Tokyo,  Japan). All adjustments of binocular- or fluores-
cence microscope-acquired images were performed 
using the software program Nis-Elements 3.22 imaging 
software (Nikon), with the same settings for each experi-
mental dataset.
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Gene expression profiling
Gene expressions were measured using the real-time 
quantitative PCR (RT-qPCR) method. Briefly, total RNA 
was extracted from 100 mg of leaf and root tissues using 
the Plant RNA Mini Kit (Syngen, Wrocław, Poland), and 
1 μg of each RNA was reverse transcribed with oligo(dT) 
primers using the Revert Aid H Minus First Strand 
cDNA Synthesis Kit (Thermo Fisher Scientific Inc.), and 
RNA digestion was performed using RNAse H (Sigma) as 
described by Escobar et al. [58] (2 U RNAse H per reac-
tion with incubation at 37 °C for 29 min). The RT-qPCR 
reactions were run in the iTaq Universal SYBR Green 
Supermix (Bio-Rad, Hercules, CA, USA) at an amplifica-
tion temperature of 60 °C. Expression levels (ΔΔCq) were 
analyzed using a CFX Connect Real-Time PCR System 
(Bio-Rad). The expression levels of the target genes were 
normalized with the reference gene, protein phosphatase 
2A (PP2A, AT1G13320; [59]). The transcript abundance 
of each gene was expressed in relation to its correspond-
ing abundance in the control plants (set as 1). New prim-
ers were designed for YUC1, YUC2, YUC3, YUC4, YUC5, 
YUC6, YUC7, YUC8, YUC9, YUC10, YUC11, TAA1, 
TAR2, GH3.1, GH3.2, GH3.3, GH3.4, GH3.5, GH3.6, 
GH3.17, DAO1, DAO2, UGT84B1, UGT74B1, and 
UGT74D1. Primer sequences and Arabidopsis accessions 
are listed in Supplementary Table S1.

Auxin metabolites determination
Quantification of auxin metabolites was performed 
according to the method described by Novák et  al. 
[60]. Approximately 10 mg of root or shoot tissue were 
homogenized and extracted with 1 mL of cold 50 mM 
sodium-phosphate buffer (pH 7.0) containing 0.1% 
sodium diethyldithiocarbamate and mixture of internal 
standards containing 5 pmol of [2H4]ANT, [2H5]IAM, 
[2H4]IPyA, [13C6]IAA, [13C6]oxIAA, [13C6]IAA-Asp, 
[13C6]IAA-Glu, [13C6]IAA-Glc, [13C6]oxIAA-Glc and 
25 pmol of [2H5]Trp and [2H4] IAN. After centrifugation 
at 36000 g for 10 min, one-half of each sample was acidi-
fied with 1 M HCl to pH 2.7 and purified by solid-phase 
extraction (SPE) using the Oasis™ HLB columns (30 mg, 
1 mL; Waters, Milford, MS, USA). For quantification of 
IPyA, the second half of the sample was derivatized with 
cysteamine (0.25 M, pH 8.0) for 1 h, acidified with 3 M 
HCl to pH 2.7, and purified by SPE. After evaporation 
under reduced pressure, the auxin content of the sam-
ples was analyzed using the 1260 Infinity II HPLC sys-
tem (Agilent Technologies, CA, USA) equipped with a 
Kinetex C18 (50 mm × 2.1 mm, 1.7 μm; Phenomenex). 
The LC system was linked to a 6495 Triple Quad Detec-
tor (Agilent Technologies, USA).

Determination of protein abundance
For western blot analysis, 200 mg of tissues were homoge-
nized in 400 μL of 0.1 M Tris-HCl, pH 6.8. Ten microliters 
of each derived extract was used for electrophoresis. Pro-
teins were separated by 10% SDS-PAGE and transferred 
to a polyvinylidene difluoride membrane. The membrane 
was blocked and probed with polyclonal rabbit antibod-
ies raised against YUC1 (PhytoAB Inc., San Francisco, 
CA, USA) at a dilution of 1:1000. Goat anti-rabbit poly 
horseradish peroxidase secondary antibody (Bio-Rad; 
diluted at 1:10000) was used for chemiluminescent detec-
tion with Clarity Western ECL Substrate (Bio-Rad). 
Protein bands of 46 kDa were selected after background 
correction for a densitometric analysis, using the Image-
Lab 5.2 software (Bio-Rad). The protein level of YUC1 
was expressed in relation to its abundance in the control 
plants (set as 1).

Statistical analysis
The significance of the differences between NO3

−- and 
NH4

+-grown plants was analyzed in both leaves and 
roots. The statistical analysis of data was performed using 
the Student’s t-test in MS Excel (Microsoft Corp., Red-
mond, WA, USA). The data are presented as the means 
and standard deviations (SD) from at least three biologi-
cal repeats (indicated in each figure).
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