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Abstract 

Background:  The fiber yield and quality of cotton are greatly and periodically affected by water deficit. However, the 
molecular mechanism of the water deficit response in cotton fiber cells has not been fully elucidated.

Results:  In this study, water deficit caused a significant reduction in fiber length, strength, and elongation rate but 
a dramatic increase in micronaire value. To explore genome-wide transcriptional changes, fibers from cotton plants 
subjected to water deficit (WD) and normal irrigation (NI) during fiber development were analyzed by transcriptome 
sequencing. Analysis showed that 3427 mRNAs and 1021 long noncoding RNAs (lncRNAs) from fibers were differen-
tially expressed between WD and NI plants. The maximum number of differentially expressed genes (DEGs) and lncR-
NAs (DERs) was identified in fibers at the secondary cell wall biosynthesis stage, suggesting that this is a critical period 
in response to water deficit. Twelve genes in cotton fiber were differentially and persistently expressed at ≥ five time 
points, suggesting that these genes are involved in both fiber development and the water-deficit response and could 
potentially be used in breeding to improve cotton resistance to drought stress. A total of 540 DEGs were predicted to 
be potentially regulated by DERs by analysis of coexpression and genomic colocation, accounting for approximately 
15.76% of all DEGs. Four DERs, potentially acting as target mimics for microRNAs (miRNAs), indirectly regulated their 
corresponding DEGs in response to water deficit.

Conclusions:  This work provides a comprehensive transcriptome analysis of fiber cells and a set of protein-coding 
genes and lncRNAs implicated in the cotton response to water deficit, significantly affecting fiber quality during the 
fiber development stage.
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Background
Cotton is the major source of natural fibers and the 
most important raw material for the textile industry. 
Cotton fiber development is generally defined into 
four distinct but overlapping stages, including fiber 
initiation [FI, from 2 days before anthesis to 3 ~ 6 days 

post anthesis (DPA)], fiber elongation (FE, primary 
cell wall biosynthesis, 3 ~ 20 DPA), secondary cell 
wall biosynthesis (SCWB, 16 ~ 40 DPA), and matura-
tion (40 ~ 50 DPA) [1, 2]. FI, marking the start of fiber 
growth, is a key stage that determines cotton yield. 
Many genes regulating FI have been identified in cot-
ton, such as the MYB transcription factors GhMYB25 
[3] and GhMYB25-like [4], protodermal factor GbPDF1 
[5], jasmonate zim-domain protein GhJAZ2 [6], auxin 
efflux carrier GhPIN3a [7], MYB-MIXTA-like tran-
scription factors GhMML4 and GhMML3 [8]. FE has 
been suggested as a crucial stage for determining the 
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final fiber quality. Some genes have been character-
ized to play roles in this stage. For example, six Gh14-
3-3 genes are predominantly expressed at the FE stage, 
and overexpression of these genes promotes the lon-
gitudinal growth of fission yeast, indicating that they 
might participate in the regulation of fiber elonga-
tion [9]. Two transcription factors (TFs), GhHOX3 
(homoeodomain-leucine zipper TF) and GhDEL65 
(basic helix-loop-helix TF), positively regulate cot-
ton fiber elongation [10, 11]. GhLTPG1 (glycosylphos-
phatidylinositol anchored lipid transport protein) is 
abundantly expressed in elongating cotton fibers, and 
knockdown of GhLTPG1 results in shorter fibers with 
the repression of FE-related gene expression [12]. Cot-
ton fiber quality traits, including strength, micronaire, 
and maturity, are mostly determined at the stages of 
SCWB and maturation. The biology and genes involved 
in these two stages are much less understood and stud-
ied [13], with only MYB transcription factors reported 
[14, 15].

High-throughput RNA-seq technology has been used 
to understand complex responses and for the functional 
exploration of protein-coding genes. Nevertheless, it 
was reported that a large portion of RNAs in eukaryotes, 
such as humans and Arabidopsis, do not encode proteins 
and are known as noncoding RNAs (ncRNAs) [16, 17]. 
ncRNAs over 200 nucleotides in length are named long 
ncRNAs (lncRNAs), which are further classified as long 
intergenic ncRNAs (lincRNAs), natural antisense tran-
scripts (lncNATs), long intronic ncRNAs, and lncRNAs 
partially overlapping with protein-coding genes [18]. 
Thousands of lncRNAs have been identified in several 
plants, expanding our understanding of the plant tran-
scriptome. In Arabidopsis, 6510 lncRNAs were identi-
fied, among which approximately five hundred showed 
inducible expression patterns upon exposure to abscisic 
acid (ABA) and drought [19]. In Ricinus communis, 5356 
lncRNAs were cataloged and potentially involved in reg-
ulating the development of endosperm and embryos in 
castor bean seeds [20]. A total of 23,651 novel lncRNAs 
were identified in Tibetan wild barley, of which 535 lncR-
NAs were differentially expressed in response to drought 
stress [21]. In addition, as many as 59,110, 57,944 and 
40,858 actively-expressed putative lncRNAs were iden-
tified from three wheat varieties, including Kiziltan, 
TR39477 and TTD-22 varieties, respectively [22]. With 
rapid advances in whole genome sequencing analyses of 
cotton, including Gossypium raimondii, G. arboreum, G. 
hirsutum and G. barbadense, thousands of lncRNAs have 
been identified and shown to have potential functions in 
cotton growth [23, 24], fiber development (initiation and 
elongation) [25, 26], and various stress responses, includ-
ing drought [27], salt [28], phytopathogen Verticillium 

dahliae infection [29, 30] and piercing-sucking pest 
Aphis gossypii attack [31].

Although lncRNAs have been identified in large num-
bers of plants and are believed to have crucial roles in 
development and stress responses, the functional roles 
and the mechanism underlying the lncRNAs is insuf-
ficient [32]. Novel functional networks will likely be 
defined by predicting and characterizing the interaction 
between lncRNAs and potential targets [33]. Emerg-
ing evidence suggests that plant lncRNAs have various 
mechanisms of action, mainly studied in Arabidopsis at 
present. LncRNA (ASCO-lncRNA) functions in Arabi-
dopsis lateral root (LR) meristems by interacting with 
nuclear speckle RNA-binding protein (NSR), which is an 
alternative splicing regulator [34]. In other words, lncR-
NAs can hijack NSRs to affect their binding to mRNA 
targets. LncRNAs can bind with miRNAs by complemen-
tary sequences; thus, alterations in lncRNA abundance 
can modulate the action of miRNAs on downstream 
protein-coding genes. This mechanism of inhibition of 
miRNA activity was defined as target mimicry [35]. For 
example, lncRNA IPS1 (induced by phosphate starva-
tion 1) functions in regulating the phosphate starvation 
response in Arabidopsis by imperfect interaction with 
miRNA miR-399, which can guide the cleavage of PHO2 
[35, 36]. LncRNA FRILAIR (fruit ripening-related long 
intergenic RNA), a target mimic of miR397, can modu-
late the expression of LAC11a involved in strawberry 
fruit ripening [37]. In addition, the alteration of lncRNA 
expression can affect the dynamic chromatin topology, 
which determines the expression of neighboring genes. 
For instance, lincRNA APOLO transcription regulates 
the formation of a chromatin loop encompassing the 
promoter of its neighboring gene PID, a key regulator of 
polar auxin transport [38].

Cotton is mostly grown commercially in semiarid and 
arid environments. Fiber yield and quality are greatly and 
periodically affected by drought stress, and the sever-
ity of the problem may increase due to global climate 
change [39, 40]. Therefore, breeding cotton cultivars 
with higher yield and better fiber quality under drought 
conditions is becoming more urgent [41]. Some infor-
mation has been available about cotton fiber develop-
ment and drought resistance by the characterization of 
some important genes and analysis of transcriptome 
profiling, but the regulatory mechanism has not been 
absolutely elucidated to date [13, 41]. The Yellow River 
Basin (YRB) is one of the three major cotton production 
regions in China. In most years, rainfall was significantly 
reduced during the cotton flowering period in the YRB, 
which seriously affected the growth and development of 
cotton. To guarantee and increase cotton yield, supple-
mentary irrigation just before flowering (SIF) is a widely 
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used farm operation to compensate for the lack of rain-
fall in the YRB. However, the effect of SIFs on cotton fiber 
development has not been investigated in detail thus far, 
especially on fiber quality, and the underlying mechanism 
for cotton fiber cells responding to non-SIFs (water defi-
cit). The present study presents the first research on the 
effects of water deficit on cotton fiber development by 
genome-wide analysis of mRNAs and lncRNAs in fiber 
cells. In particular, some bifunctional lncRNAs preferen-
tially expressed during fiber development and involved in 
the water-deficit response were identified. These results 
will deepen our understanding of the molecular mecha-
nism underlying fiber development under drought stress, 
and provide clues to accelerate the development of novel 
cotton cultivars with improved yield potential, fiber qual-
ity, and adaptability to drought conditions.

Methods
Plant material and irrigation treatments
G. hirsutum cv. Nongdamian 13 (ND13) was planted in 
a rainout shelter at the Teaching Experimental Station of 
Hebei Agricultural University (38°49′N, 115°26′E), Baod-
ing, China. The rows of plants were spaced 100 cm apart 
and 30 cm between plants within a row. When the first 
white bloom was observed, the normal irrigation cotton 
field (NI) received irrigation with 675 m3/ha of water, but 
the water deficit field (WD) did not. All other agronomic 
management practices were kept normal and uniform 
for NI and WD. The soil drought level was determined 
with the soil relative water content (SRWC) as previously 
described [42]. The cultivar ND13 was collected from 
Hebei Province in China by Hebei Agricultural Univer-
sity and approved by Hebei Provincial Crop Variety Cer-
tification Committee with an accession number G10072. 
All necessary permissions for planting and investigat-
ing this cultivar were obtained from Hebei Agricultural 
University and the National Medium-term Gene Bank of 
Cotton in China, and the collection and research of this 
cultivar have complied with the Convention on the Trade 
in Endangered Species of Wild Fauna and Flora.

Fiber analysis
Seven replicates were taken for each treatment (NI and 
WD). For each replication, mature seed fibers were ran-
domly sampled from 20 naturally-open bolls on the mid-
dle section of cotton plants. After drying, seed cotton was 
treated with a roller gin (MPSY-20, River Machinery Fac-
tory, Xinxiang, Henan, China) for separation of lint and 
seed, which were weighed to determine lint percentage 
(LP). Weight of 100 seeds was expressed as seed index 
(SI). The lint index (LI) was calculated by the formula: 
LI = (SI × LP)/(1-LP). The fiber qualities were determined 
with an HVI-MF 100 instrument (User Technologies, 

Inc., USTER, Switzerland) at the Supervision, Inspec-
tion and Testing Center of Cotton Quality, Ministry of 
Agriculture, Anyang, China. The data were analyzed 
(P-values < 0.05 was considered statistically significant) 
by unpaired t-test using GraphPad Prism 8.0.2 software 
(GraphPad Software, San Diego, USA).

Fiber sample collection, RNA isolation, library construction 
and sequencing
Flowers were tagged on the day of flowering as 0 DPA. 
Ovules (0 and 5 DPA) and fibers (10, 15, 20, 25, 30 and 
35 DPA) were collected, frozen immediately in liquid 
nitrogen and stored at − 80 °C. Samples (ovules and fib-
ers) from five independent plants within each treatment 
group served as one biological replication. Total RNA 
was isolated using the EASYspin Plant RNA Kit (Aid-
lab, Beijing, China). Libraries were constructed using the 
NEBNext® Ultra™ Directional RNA Library Prep Kit for 
Illumina® (NEB, USA) according to the manufacturer’s 
instructions. Strand-specific sequencing was performed 
on the Illumina HiSeq 4000 platform (paired-end 150-bp 
reads).

mRNA and lncRNA identification and differential 
expression analysis
All raw data were processed by removing reads con-
taining adapter or ploy-N and reads with low quality. 
The clean reads were aligned to the G. hirsutum TM-1 
genome (NAU-NBI v1.1) [43] using TopHat v2.0.9 [44]. 
The mapped reads for each sample were assembled by 
Cufflinks v2.1.1 in a reference-based approach to iden-
tify mRNA transcripts (fragments per kilobase per mil-
lion mapped reads, FPKM ≥1) [45]. Then, five steps 
were adopted to screen out lncRNAs from assembled 
transcripts: (1) transcripts with one exon, low expres-
sion, and low credibility were removed; (2) transcripts 
with length < 200 bp were eliminated; (3) transcripts that 
overlapped with annotated exons in the database were fil-
tered out; (4) transcripts with FPKM < 0.5 were removed 
(however for transcripts with single exon, the threshold 
value was 2); (5) finally, transcripts with protein coding 
potential by the Coding Potential Calculator with NCBI 
eukaryotic protein database (E-value <1e-10) and Pfam 
Scan (v1.3) (default parameters) were excluded [46, 47]. 
FPKMs of both mRNAs and lncRNAs in each sample 
were calculated using Cuffdiff (v2.1.1), which also pro-
vides statistical routines for determining differential 
expression using a model based on the negative binomial 
distribution [45]. Corrected P-value < 0.05 and the abso-
lute value of log2(FPKMWD/FPKMNI) < 1 were set as the 
threshold for significantly differential expression when 
processing the data with Cuffdiff.
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Real‑time quantitative PCR (qPCR) analysis
Total RNA was reverse transcribed into cDNA using 
TransScript® One-Step gDNA Remover and cDNA 
Synthesis SuperMix (TransGen Biotech, China), 
according to the manufacturer’s instructions. qPCR was 
conducted on a QuantStudio™ 1 Real-Time PCR system 
(Thermo Fisher Scientific, USA) with TransStart Top 
Green qPCR SuperMix (+Dye I/+Dye II) (TransGen 
Biotech, China). The expression levels of mRNAs and 
lncRNAs were normalized by GhUBQ7 (ubiquitin, 
Genbank accession No. DQ116441.1) using the 2-∆∆CT 
method [48]. The primers used in the study are listed in 
Table S1.

Functional analysis of differentially expressed genes 
(DEGs) and lncRNAs (DERs)
The functions of lncRNAs were predicted according 
to the functional annotations of their potential target 
genes, which may be regulated by lncRNAs using two 
patterns: cis-acting (genomic colocation) and trans-
acting (coexpression). The coding genes in the 100 kb 
up- or down-stream of lncRNAs were identified as 
colocalized genes. Coexpressed genes were predicted 
by the correlation in the expression between lncR-
NAs and coding genes (Pearson’s correlation coeffi-
cient ≥ 0.95 or ≤ − 0.95). KOBAS 3.0 was used to test 
the statistical enrichment of genes in GO and KEGG 

pathways. A corrected P-value ≤0.05 was considered 
significantly enriched.

Interaction prediction for lncRNA‑miRNA‑mRNA
The sequences of premiRNAs (precursor stem-loop 
molecules) and mature miRNAs in G. hirsutum were 
retrieved from the PNRD websites (http://​struc​tural​
biolo​gy.​cau.​edu.​cn/​PNRD/​index.​php) [49]. The tar-
gets (mRNAs and lncRNAs) of miRNAs were predicted 
using the psRNATarget online analysis tool (http://​plant​
grn.​noble.​org/​psRNA​Target/​analy​sis) [50]. The potential 
interaction for lncRNA-miRNA-mRNA was constructed 
by (i) analyzing the same target miRNA for both lncRNA 
and mRNA and by (ii) evaluating the correlation in the 
expression between lncRNA and mRNA (Pearson’s cor-
relation coefficient ≥ 0.95 or ≤ − 0.95).

Results
Water deficit reduces cotton fiber qualities
Two cotton fields received different treatments, NI and 
WD, at the beginning of the flowering stage. The SRWC 
in the NI-field (85.06%) was nearly twice as high as that 
in the WD-field (45.09%) at 0 DPA. During the following 
days, the SRWC in WD (37.47 ~ 45.17%) remained lower 
than that in NI (58.02 ~ 60.91%) (Fig. 1A) until cotton boll 
maturation began at 35 DPA. After another 30 days, fully 
mature cotton fibers were collected for weighing and qual-
ity determination. The seed cotton weight of the WD-
group was significantly lower than that of the NI-group 

Fig. 1  Water deficit caused a significant reduction in fiber quality. A SRWC in the NI-field and WD-field at 0, 15, 30 and 35 DPA. Seed cotton weight 
(B), seed index (C), lint weight (D), lint index (E), lint (F), length uniformity (G), fiber length (H), fiber strength (I), fiber elongation rate (J), and 
micronaire (K), for NI-treatments were compared with WD-treatments. Data represent the mean ± SE of seven biological replicates. Fibers for each 
replication were sampled from 20 naturally-open bolls on the middle section of cotton plants. Confidence levels were tested by unpaired t-test (*, 
P < 0.05; ns, not significant)

http://structuralbiology.cau.edu.cn/PNRD/index.php
http://structuralbiology.cau.edu.cn/PNRD/index.php
http://plantgrn.noble.org/psRNATarget/analysis
http://plantgrn.noble.org/psRNATarget/analysis
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(Fig.  1B). The SI of the WD-group was also significantly 
lower than that of the NI-group (Fig. 1C), but there was no 
significant difference in lint weight (Fig. 1D) or LI (Fig. 1E) 
between the two groups. These results indicated that water 
deficit affected cotton seed weight but did not significantly 
affect fiber weight. Thus, water deficit-induced seed weight 
reduction resulted in a significant increase in LP (Fig. 1F). 
The uniformity ratio of fiber was not significantly reduced 
in WD compared with NI (Fig. 1G). However, water defi-
cit caused a significant reduction in fiber length (Fig. 1H), 
strength (Fig.  1I) and elongation rate (Fig. 1J), and a dra-
matic increase in micronaire value (Fig. 1K). These results 
indicated that water deficit during cotton fiber develop-
ment could lead to lower fiber qualities.

Overview of fiber transcriptomes
To explore the transcriptional regulation of cotton fiber 
development under water deficit, the fiber transcriptomes of 
G. hirsutum from FI to SCWB were sequenced using RNA-
seq. cDNA libraries from eight time points were constructed, 
which included 0, 5, 10, 15, 20, 25, 30 and 35 DPA. The flow-
ering day was designed as 0 DPA, which represents FI. Both 
10 and 15 DPA represent FE. To evaluate the SCWB, three 
time points including 25, 30 and 35 DPA were chosen. In 
addition, 5 and 20 DPA represent fiber developmental tran-
sitions (FDT1 and FDT2), which are stages from FI to FE and 
from FE to SCWB, respectively (Fig.  2A). Approximately 
3.22 billion clean reads were screened out from 3.26 billion 
raw reads, varying from 83 to 116 million reads per library. 
The mapping rates of each library to the reference genome of 
G. hirsutum TM-1 ranged from 80.72% to 89.27% (Table S2). 
The correlation coefficients for two biological replicates at 
each time point were all above 0.85 (Table  S3), indicating 
that the RNA-seq data have high reproducibility.

In total, 47,095 mRNAs (putative protein-coding 
genes) were identified with FPKM ≥1 and anno-
tated according to the reference genome of G. hir-
sutum (Table  S4). After multistep filtering, 13,051 
high-confidence lncRNAs were identified, includ-
ing 11,683 lincRNAs (89.52%) and 1368 lncNATs 
(10.48%) (Fig.  2B, Table  S5). The transcript length of 
lncNATs (mean = 1883 nt) was significantly longer 
than that of lincRNAs (mean = 1327 nt) and mRNAs 
(mean = 1307 nt) (Fig.  2C). Most lincRNAs and lnc-
NATs contained fewer than 6 exons, while mRNAs con-
tained various numbers of exons (Fig. 2D). The overall 

expression levels of both lincRNAs and lncNATs were 
lower than those of mRNAs (Fig.  2E). To validate the 
reliability of the transcriptome, 10 mRNAs and 10 
lncRNAs were randomly selected for expression analy-
sis by qPCR. For most mRNAs and lncRNAs, the lin-
ear regression analysis revealed a positive correlation 
between the transcriptome data and the results from 
qPCR with r-values (Fig.  3), suggesting the high qual-
ity of transcriptomes. Only one lncRNA, LNC009310, 
showed a relatively low correlation between transcrip-
tome and qPCR analysis (r = 0.55), likely due to the low 
expression of lncRNAs [51].

Identification of differentially expressed genes (DEGs) 
in cotton fibers between NI and WD
A total of 3427 DEGs with at least a twofold expression 
change (FPKMWD/FPKMNI, corrected P-value<0.05) 
were identified (Fig.  4, Table  S6). During the stages of 
FI, SCWB, and FDTs, most DEGs were downregulated, 
whereas approximately 87% of DEGs were upregulated at 
the FE stage. At the two FDT stages, fewer DEGs were 
identified compared with the other three stages of fiber 
development. The maximum number of DEGs was iden-
tified at the SCWB stage with 2265, among which the 
greatest number of genes were differentially expressed at 
30 DPA. Furthermore, the expression specificity of these 
DEGs at different stages of cotton fiber development was 
observed. Many genes were only differentially expressed 
at one time point, suggesting that they have time-spe-
cific expression in fibers under the stress of water deficit. 
For example, 821 DEGs were shown to be differentially 
expressed only at 30 DPA. No DEGs appeared at all 8 
time points, but 12 genes were differentially expressed at 
≥5 time points, including ADH (alcohol dehydrogenase), 
MIOX (myo-inositol oxygenase), TK (thymidine kinase), 
PS (phosphate starvation-induced gene), PIP (plasma-
membrane intrinsic protein), PAP (purple acid phos-
phatase), SPX (SYG1-Pho81-XPR1 domain-containing 
protein), NAM (no apical meristem), NCED (9-cis-epox-
ycarotenoid dioxygenase), UMAMIT (usually multiple 
acids move in and out transporter) and PEPC (phosphoe-
thanolamine/phosphocholine phosphatase), indicating 
that they maintain an intense response to the stress of 
water deficit.

Fig. 2  Identification and characterization of mRNAs and lncRNAs in G. hirsutum fibers. A Representative images of individual seeds with attached 
fibers from 0 DPA to 35 DPA. Cotton fibers undergo three major sequential and overlapping developmental stages before maturity, including 
initiation, elongation and secondary cell wall biosynthesis. Transition-1 and -2 are two fiber developmental transition stages, which are from 
initiation to elongation and from elongation to secondary cell wall biosynthesis, respectively. The scale bars in all panels are 0.5 cm. B The pipeline 
of mRNAs and lncRNAs identification. C Length density distributions of lincRNAs, lncNATs and mRNAs. D Exon number per transcript of lincRNAs, 
lncNATs and mRNAs. E FPKM distributions of lincRNAs, lncNATs and mRNAs

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Functional classification of DEGs
To further characterize the functional consequences 
of gene expression changes in cotton fiber cells associ-
ated with water deficit, pathway enrichment analyses for 
DEGs were performed using the KEGG database (Fig. 5). 
At the FI stage, DEGs were significantly enriched in 5 
pathways, especially “plant hormone signal transduction” 
and “photosynthesis-antenna proteins”. At the FE stage, 
DEGs were significantly enriched in 11 pathways, mainly 
“plant hormone signal transduction” and “phenylpropa-
noid biosynthesis”. At the SCWB stage, “plant hormone 
signal transduction” was no longer enriched, and 17 
pathways related to metabolism and 1 pathway related to 
ABC transporters were significantly enriched. The path-
ways of “lipid metabolism”, “energy metabolism”, “amino 
acid metabolism” and “phenylpropanoid biosynthesis” 
are possibly involved in the further development of fiber 
and the cell wall. Only three pathways related to genetic 
information processing were enriched at FDT1, and no 
pathway was enriched at FDT2. In addition, almost all 
DEGs involved in enriched pathways for FI, FDT1 and 
SCWB were significantly downregulated, suggesting that 
these biological processes were suppressed under the 
stress of water deficit. Instead, almost all DEGs involved 
in pathways at the FE stage were significantly upregu-
lated, suggesting that these biological processes were 
activated.

Different expression profiles of lncRNAs in cotton fibers 
under water deficit
Under water deficit stress, a total of 1021 lncRNAs were 
differentially expressed (DERs) (Table  S7), of which the 
majority were significantly downregulated (Fig.  6). In 
addition, the majority of DERs were only expressed at a 
specific time point (Fig.  6), showing similar expression 
characteristics to DEGs. Up to 700 DERs were identified 
at the SCWB stage, and many lncRNAs were specifically 
and differentially expressed at 25 DPA, as many as 315 
in total, suggesting that lncRNAs mainly play a role in 
SCWB for fibers in response to water deficit.

DEGs expression were potentially regulated by DERs
By analysis of coexpression and genomic colocation 
a total of 540 DEGs were predicted to be potentially 

regulated by DERs (Table  S8), accounting for approxi-
mately 15.76% of all DEGs. As shown in Fig. 7, the larg-
est number of DEGs regulated by DERs (DEGs-R) was 
found at the SCWB stage (25, 30 and 35 DPA). However, 
according to the proportion calculation, the FI stage 
(0 DPA) had a larger proportion of DEGs-R (25.44%). 
DEGs-R were used for further GO enrichment analysis 
(Table  S9). GO terms “cell wall organization or biogen-
esis” and “cell wall macromolecule metabolic process” in 
the biological process category were enriched, suggesting 
that lncRNAs targeting mRNA mainly regulate cell wall 
development. GO terms of “DNA packaging complex”, 
“protein-DNA complex”, “nucleosome”, “chromatin” and 
“chromosomal part” in the cellular component category 
were enriched, indicating that lncRNAs play regulatory 
roles in the nucleus. Only one GO term in the molecu-
lar function category was enriched (“Hydrolase activity”), 
showing that lncRNAs mainly function by regulating 
hydrolases. In addition, four pairs of regulatory relation-
ships between DEGs and DERs mediated by miRNAs 
were predicted (Fig.  8), including LNC_006412::ghr-
miR482c::Gh_A10G1972, LNC_008673::ghr-
n68::Gh_D06G2174, LNC_010115::ghr-miR482h/
ghr-miR6118*::Gh_A07G2348/Gh_D07G0162, and 
LNC_004724::ghr-miR403::Gh_A07G2019. These DERs 
may potentially combine with miRNAs, which also possi-
bly interact with DEGs, using sequence complementation 
containing several mismatches.

Discussion
Water deficiency is one of the most impactful stresses 
worldwide and has long been prevalent in many coun-
tries, leading to reductions in cotton productivity and 
fiber quality. This negative effect varies depending on cot-
ton growth stages and the intensity of water deficit [52]. 
SIF is always applied as an effective measure for guar-
anteeing and increasing cotton yield in the YRB regions 
of China. Here, our results strongly support the impor-
tance of SIF in cotton fiber development. From 0 DPA 
(bloom) to 35 DPA (fiber maturity), the SRWC of cotton 
fields that received SIF was significantly higher than that 
of cotton fields without SIF (Fig. 1A). Therefore, the cot-
ton plants grown in the field without SIF were considered 
to be subjected to water deficit stress throughout cotton 

(See figure on next page.)
Fig. 3  Confirmation of the expression patterns of mRNAs (A) and lncRNAs (B) using qPCR. Ten mRNAs and ten lncRNAs were randomly selected 
for expression analysis during the fiber developmental stages of G. hirsutum ND13 treated with NI and WD. The correlation of relative expression 
for mRNAs and lncRNAs measured by RNA-seq and qPCR was estimated with r-values. UBQ7 was used as the reference gene. Gene (mRNA) IDs are 
shown in the genome of G. hirsutum TM-1 (NAU-NBI v1.1), including Gh_A05G0770 (17.3 kDa class I heat shock protein), Gh_A09G1977 (1-amino
cyclopropane-1-carboxylate oxidase homolog 1), Gh_A11G2903 (ABC transporter G family member 2), Gh_D01G0047 (Protein RADIALIS-like 6), 
Gh_D03G1452 (Tubulin beta-7 chain), Gh_D04G0942 (No annotation), Gh_D05G1621 (No annotation), Gh_D08G1970 (Probable aquaporin PIP1-2), 
Gh_D08G2730 (Bidirectional sugar transporter SWEET15), and Gh_Sca115726G01 (Aspartic proteinase nepenthesin 1)
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Fig. 3  (See legend on previous page.)
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fiber development. As expected, water deficit caused a 
significant reduction in seed cotton yield (Fig. 1B and C). 
However, lint yield did not significantly decrease because 
of the water deficit (Fig. 1D and E). As a result, there was 
a significant increase in the percentage of lint (Fig.  1F). 
Therefore, it can be concluded that the loss of seed cotton 
yield is mainly due to the reduction in seed weight, which 
is caused by non-SIF. Furthermore, the quality of fibers 
from WD was compared with that from NI. Water defi-
cit caused a significant reduction in fiber length (Fig. 1H), 
fiber strength (Fig. 1I), elongation rate (Fig. 1J) but a dra-
matic increase in micronaire (Fig.  1K), suggesting that 
fiber development is very sensitive to water deficit. In 
addition, micronaire is an indicator of air permeability 
and universally used for assessing fiber maturity (degree 
of secondary cell-wall development) and fineness [53]. 
Here, fully mature cotton fibers (65 DPA) were collected 
for weighing and quality determination. Thus, the micro-
naire value mainly represents the thickness of the fiber. 

Additionally, water deficit usually induces the thickening 
of cell walls, which is an important adaptation to increase 
plant tolerance to water loss [54]. Therefore, it can be 
inferred that water deficit makes cotton fibers thicker. 
Fibers with micronaire values that are too high or too low 
are undesirable from the point of view of spinning and 
yarn evenness. Micronaires have been shown to increase 
or decrease with irrigation changes [55, 56]. Here, water 
deficit significantly increased the micronaire value of 
ND13. Therefore, the expected micronaires might be 
obtained by properly controlling SIF in the future to meet 
the demand of the cotton industry.

To further our knowledge of the molecular mecha-
nisms underlying fiber cells response to water deficit, 
a genome-wide identification and characterization of 
water deficiency-responsive genes and lncRNAs was car-
ried out in this study. At the FI and FE stages, the path-
way “plant hormone signal transduction” was enriched 
(Fig.  5), suggesting that water deficit affected the 

Fig. 4  Identification and characterization of DEGs between NI-treated and WD-treated cotton fibers. Twelve genes were differentially expressed at 
≥5 time points, including ADH (alcohol dehydrogenase), MIOX (myo-inositol oxygenase), TK (thymidine kinase), PS (phosphate starvation-induced 
gene), PIP (plasmamembrane intrinsic protein), PAP (purple acid phosphatase), SPX (SYG1-Pho81-XPR1 domain-containing protein), NAM 
(no apical meristem), NCED (9-cis-epoxycarotenoid dioxygenase), UMAMIT (usually multiple acids move in and out transporter) and PEPC 
(phosphoethanolamine/phosphocholine phosphatase)
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regulatory networks controlled by various hormones that 
are necessary for fiber initiation and elongation. Accord-
ing to the number of DEGs, auxin, ethylene and ABA are 
the most important signal regulatory molecules for cot-
ton fibers in response to water deficit. This is consistent 
with previous reports that these hormones are involved 
not only in fiber development but also in plant drought 

resistance [57–59]. At the FE stage, up to 32 DEGs were 
involved in “phenylpropanoid biosynthesis”, which partic-
ipates in the biosynthesis of many plant cell wall phenolic 
products, such as lignins, flavonoids, suberins, and cutins 
[60, 61]. The significantly upregulated expression of these 
DEGs may affect fiber cell expansion and prematurely 
end cell elongation, ultimately leading to a significant 

Fig. 5  The significantly enriched KEGG pathways of DEGs between NI-treated and WD-treated cotton fibers. The overall trends of upregulation and 
downregulation for DEGs are indicated by red and green arrows, respectively



Page 11 of 16Wu et al. BMC Plant Biology            (2022) 22:6 	

Fig. 6  Identification and characterization of DERs between NI-treated and WD-treated cotton fibers. Green bars for downregulated DERs. Purple 
bars for upregulated DERs. Red bars and dots for DERs that were only shown at one time point

Fig. 7  DEGs-R predicted by gene coexpression and genomic colocation analysis for DEGs and DERs. Blue bars for DEGs. Orange bars for DEGs-R. 
Green dots for the percentages of DEGs-R/DEGs
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reduction in fiber length. However, at the SCWB stage, 
DEGs involved in “phenylpropanoid biosynthesis” were 
changed to be significantly downregulated, which may 

reduce cell wall thickening and lignin deposition [62]. 
Although the content of lignin and lignin-like phenolics 
is minor in cotton fibers, recent data suggest that these 

Fig. 8  Prediction of the interactions between lncRNAs, miRNAs and mRNAs by forming RNA-RNA duplexes. miRNA-directed target mRNA 
degradation was potentially regulated by forming a lncRNA-miRNA duplex. Gene (mRNA) IDs are shown in the genome of G. hirsutum TM-1 
(NAU-NBI v1.1), including Gh_A10G1972 (DEAD-box ATP-dependent RNA helicase 42), Gh_D06G2174 (protein of unknown function), Gh_A07G2348 
and Gh_D07G0162 (LRR receptor-like serine/threonine-protein kinase), and Gh_A07G2019 (UDP-glycosyltransferase 88F3). The expression of 
lncRNAs and mRNAs is shown with log2FoldChange (WD/NI)
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ingredients are strongly associated with fiber strength 
and elongation [62–64].

In addition, the expression of most DEGs showed 
temporal specificity; that is, they were expressed only at 
one point in time. However, 12 genes were differentially 
expressed at more than 5 time points (Fig. 4), suggesting 
that they can intensely and persistently respond to water 
deficit. MIOX is known to balance the concentrations 
of myo-inositol and UDP-GlcA (UDP-glucuronic acid). 
Myo-inositol plays an important role in drought toler-
ance by scavenging reactive oxygen species, decreasing 
the loss of chlorophyll for photosynthesis, and improv-
ing antioxidant enzyme activity [65, 66]. UDP-GlcA is 
the precursor for UDP-xylose, which is a critical com-
ponent of cell wall polysaccharides, such as pectin and 
hemicellulose [67]. PIPs are major facilitators that con-
duct water and/or other molecules across cell mem-
branes. Thus, PIPs are usually responsive to drought 
stress and play pivotal roles in plant drought resist-
ance by regulating the transcellular transport of water 
[68]. Meanwhile, PIPs can selectively form primary 
aquaporin isoforms to meet the requirements for rapid 
elongation of fibers [69]. Thus, MIOX and PIP in cot-
ton fibers were differentially and persistently expressed, 
suggesting that they are difunctional genes involved in 
both fiber development and drought resistance, and can 
be potentially used in breeding to improve cotton resist-
ance to water deficit.

Previously, thousands of lncRNAs have been identified 
and proposed to have functions in fiber development 
[23, 25], resistance to V. dahliae [29, 30], response to 
drought [27] and salt [28]. Here, our study provides the 
first comprehensive identification of lncRNAs in fiber 
cells of G. hirsutum under water deficit conditions. Up 
to 700 DERs (approximately 68.56% of the total DERs) 
were identified at the SCWB stage (Fig. 6), which is key 
for determining fiber length and strength. In addition, 
more than 300 DERs were specifically expressed at 25 
DPA. These results suggest that the expression of lncR-
NAs in fibers changes in response to water deficit and 
differs significantly depending on fiber development. 
Understanding on the mechanisms of lncRNA action 
in plants remains limited and a major challenge [32]. 
LncRNAs have no discernable protein coding potential, 
or can encode only small peptides, but often result in 
functional RNAs involved in a wide range of molecular 
processes including but not limited to all steps of gene 
expression involving nucleic acids from chromatin mod-
ifications to translation [70]. Cotton lincRNA DAN1, a 
well-known example for transcriptional regulation, can 
bind DNA sequences containing AAAG motifs hence 
silencing of DAN1 increased cotton drought tolerance 
by regulating auxin responsive genes with AAAG motifs 

[71]. Target mimicry is a generally accepted and predic-
tion available post-transcriptional regulating mechanism 
by which lncRNA affect mRNA expression by regulat-
ing miRNA activity [35]. LncRNAs are called miRNA 
“sponges” that sequester miRNAs with imperfect 
base complementarity. In cotton, lncRNA354 is nega-
tively related to salt tolerance by regulating ARF genes 
through miR160b [72]. Here, with WD, 540 DEGs were 
predicted to be potentially regulated by DERs by analy-
sis of coexpression and genomic colocalization with 
mRNA. Furthermore, four pairs of regulatory relation-
ships between DEGs and DERs mediated by miRNAs 
were predicted (Fig. 8). These four lncRNAs potentially 
interact with a miRNA by forming an lncRNA-miRNA 
duplex, which functions as RNA interference (RNAi), 
and as a result, miRNA-targeted mRNA is normally 
translated into a functional protein [32]. MiR403 has 
been reported to be involved in plant drought [73–75], 
heat, salt and cadmium stress response in a tissue associ-
ated manner [73]. Additionally, miR403 has an antiviral 
role by controlling the expression of AGO2 (Argonaute 
2) [76]. In our study, the putative target gene of ghr-
miR403, UGT88F3 (UDP-glycosyltransferase 88F3, Gh_
A07G2019) is likely involved in fiber development and 
osmotic stress [77]. MiR482 is an ancient microRNA 
family present in all land plants. In tomato, overexpres-
sion of miR482c induced enhanced susceptibility to late 
blight while knock out miR482c and miR482b simulta-
neously enhanced resistance to late blight and the effect 
was stronger than silencing miR482b alone, possibly by 
regulating expression levels of genes encoding for pro-
teins with nucleotide binding sites and leucine-rich 
repeat (NBS-LRR) domains and ROS levels [78, 79]. 
As in tomato, cotton plants are able to induce expres-
sion of NBS-LRR defence genes by suppressing the 
miR482-mediated gene silencing pathway upon fungal 
pathogen attack [80]. Particularly, miR482c might par-
ticipate in cotton growth and abiotic stresses including 
drought stress response as a potential regulator [81]. As 
sequence variation induced target and mechanism vari-
ation, the function of members in miR482 family differ 
possibly from each other [78, 82]. RH42 (DEAD-box 
ATP-dependent RNA helicase 42, Gh_A10G1972) plays 
an essential role in DNA and RNA metabolism such 
as transcription, replication and repair [83]; ERECTA​ 
(LRR receptor-like serine/threonine-protein kinase, Gh_
A07G2348 and Gh_D07G0162) has been shown to regu-
late plant flowering and transpiration efficiency in part 
via effects on epidermal cell expansion, cell-cell commu-
nication, and stomatal density [84, 85]. Gh_D06G2174 
with a DUF616 domain (protein of unknown function) 
has not been described and annotated in the genomic 
database of G. hirsutum. Although DEGs potentially 
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regulated by lncRNAs and miRNAs have been success-
fully found here, more experiments are needed to fur-
ther confirm the interactions between them.

Conclusions
Water deficit during cotton fiber development caused a 
significant reduction in cotton seed yield and fiber qual-
ity. Through the identification and functional classifica-
tion of DEGs and DERs in cotton fibers between NI and 
WD, a valuable platform for revealing the molecular 
mechanism of cotton against water deficit was provided. 
In addition, potential functions for some lncRNAs regu-
lating mRNA transcription were predicted, which pro-
vides valuable information to further characterize their 
functions.
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