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Genome-wide association analysis 
uncovers the genetic architecture of tradeoff 
between flowering date and yield components 
in sesame
Idan Sabag1,2, Gota Morota2* and Zvi Peleg1* 

Abstract 

Background:  Unrevealing the genetic makeup of crop morpho-agronomic traits is essential for improving yield 
quality and sustainability. Sesame (Sesamum indicum L.) is one of the oldest oil-crops in the world. Despite its eco-
nomic and agricultural importance, it is an ‘orphan crop-plant’ that has undergone limited modern selection, and, as a 
consequence preserved wide genetic diversity. Here we established a new sesame panel (SCHUJI) that contains 184 
genotypes representing wide phenotypic variation and is geographically distributed. We harnessed the natural varia-
tion of this panel to perform genome-wide association studies for morpho-agronomic traits under the Mediterranean 
climate conditions.

Results:  Field-based phenotyping of the SCHUJI panel across two seasons exposed wide phenotypic variation for all 
traits. Using 20,294 single-nucleotide polymorphism markers, we detected 50 genomic signals associated with these 
traits. Major genomic region on LG2 was associated with flowering date and yield-related traits, exemplified the key 
role of the flowering date on productivity.

Conclusions:  Our results shed light on the genetic architecture of flowering date and its interaction with yield com-
ponents in sesame and may serve as a basis for future sesame breeding programs in the Mediterranean basin.

Keywords:  Sesame, GWAS, Flowering date, Yield components

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Sesame (Sesamum indicum L.), one of the oldest oil-
crops in the world, was domesticated about 5,500 years 
ago from Sesamum indicum subsp. malabaricum [1] 
in the Indian sub-continent. Sesame is an annual dip-
loid (2n = 2x = 26) species, which belongs to the Sesa-
mum genus from the Pedaliaceae family. Its seeds are 

comprised of oil (45–60%), proteins (18-25%), carbo-
hydrates (3-25%), and are rich in essential vitamins and 
mineral-nutrients [2, 3]. The seeds are being used for an 
array of products in the food (e.g., high-quality oil, tahini 
paste, and cooking and backing) and pharmaceutical 
industries [4]. At present, sesame is cultivated mainly in 
developing countries, with annual seed production of 6.7 
million tons (http://​www.​fao.​org/​faost​at/​en/#​data/​QC). 
The global shift toward healthier and more nutritional 
plant-based food products leads to significantly increased 
demand for sesame seeds and derivative products. How-
ever, despite its economical and agricultural importance, 
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sesame is considered an ‘orphan crop-plant’ and has been 
subjected to limited agronomical and scientific research.

Sesame is a short-day erect plant with an indetermi-
nate florescence and simple or branching rigid stem. Its 
growth period ranges usually from 12 to 18 weeks, with 
flowering (i.e., the transition from vegetative to repro-
ductive phase) begins about 30-40 (early) to 70-80 (late) 
days after sowing [5]. This variation in flowering time 
could affect the crop adaption to specific agro-system 
conditions. As the blooming period continues until plant 
maturation, the flowering date plays a crucial role in 
both plant architecture and yield components. Sesame 
yield components include the number of plants per unit 
area, number of branches per plant, number of capsules 
per leaf axil, seeds per capsule, and seed weight [6]. 
Complex tradeoffs between yield component traits have 
been shown to significantly affect the final seed yield [7]. 
Branching habit and number of capsules per leaf axil 
were shown to support higher seed yield [8], whereas 
dwarf mutants (i.e., small plant height) positively affect 
seed weight [9].

The advent of next-generation sequencing and geno-
typing by sequencing (GBS) technologies has provided 
a means for examining genetic diversity and population 
structure of crop-plants, which can facilitate the genetic 
dissection of agronomic traits and integrate them in 
breeding programs. Genome-wide association studies 
(GWAS) are a promising approach that connects phe-
notypic variation and genomic data (i.e., genetic mark-
ers) to detect genomic regions underlying complex traits 
[10]. GWAS were applied successfully for various crop-
plants, such as bread wheat (Triticum aestivum L. [11]), 
maize (Zea mays L. [12]), rice (Oryza sativa L. [13]), and 
soybean (Glycine max L. [14]). In sesame, the GWAS 
approach was applied to the identification of genomic 
regions associated with response to biotic [15] and abi-
otic [16, 17] stresses, quality traits [18, 19], and yield-
related traits [20]. The relatively small genome size (~ 375 
Mbps), the recent development of genomic resources, 
and its rich genetic diversity make sesame an ideal model 
crop for genetic investigation [21].

Here we harness the natural variation among geo-
graphically distributed sesame germplasm to under-
pin the genetic architecture of morpho-agronomic and 
yield-related traits. Our working hypothesis was that as 
a consequence of minimal artificial selection processes 
(associated with modern breeding), sesame preserved 
rich genetic and phenotypic diversity that will enable 
detection of novel genomic regions conferring agro-
nomical important traits. The aims of the current study 
were to (i) characterize the genetic diversity in the newly 
established sesame collection, (ii) detect genomic regions 
contributing to the phenotypic performance, and (iii) 

infer the genetic associations between traits. Our find-
ings shed new light on the interaction between flowering 
date, morpho-physiological traits, and yield components 
in sesame.

Methods
Plant material and experimental design
A panel of 184 sesame genotypes (most of them are lan-
draces) was assembled from the wide Hebrew University 
of Jerusalem sesame collection (SCHUJI panel, hereaf-
ter), based on their geographical origin and phenotypic 
observations to capture most of the gene-pool genetic 
diversity (Supplemental Table S1). These genotypes were 
grown in a closed net-house over three generations to 
ensure homozygosity and uniformity. The SCHUJI panel 
was characterized over two growing seasons (2018 and 
2020) at the experimental farm of Hebrew University 
of Jerusalem in Rehovot, Israel (34°47′N, 31°54′E; 54 m 
above sea level). The soil at this location is brown-red 
degrading sandy loam (Rhodoxeralf ) composed of 76% 
sand, 8% silt, and 16% clay. In the 2018 growing season, 
a complete random factorial (genotypes) block design 
with seven replicates was employed. Each block con-
sisted of 184 plots sown as a single row, with six plants, 
15 cm apart (1-m-long plot). The two plants at the edges 
of each plot served as borders. The remaining four plants 
were used for phenotypic characterization and at the 
end of the experiment, they were harvested to estimate 
yield components. In the 2020 growing season, the same 
experimental design was employed with five replicates 
per genotype. The plot size was 2.6 m × 0.8 m (15 cm 
between plants) with three rows per plot. Five represent-
ing plants from the middle row were used for phenotypic 
evaluation at maturity and harvested to obtain yield com-
ponents. In both seasons, the field was treated with fun-
gicides and pesticides to avoid the development of fungal 
pathogens or insect pests and was weeded manually once 
a week.

Phenotypic measurements
Phenotypes were recorded during the whole sesame 
growing season for each plot. Flowering date (FD) was 
evaluated visually when 50% of the plants in each plot 
had at least one open flower. Height to the first capsule 
(HTFC) and plant height (PH) were measured at matu-
rity from the soil surface to the first capsule and the plant 
tip, respectively. The reproductive zone of the main stem 
(RZ) was calculated as the delta between PH and HTFC, 
and the reproductive index (RI) was calculated as the 
ratio between RZ and PH (RZ/PH). Before harvest, the 
number of branches per plant (NBPP) were counted as an 
average of all individual plants in a plot. At physiological 
maturity, three plants (2018) and five plants (2020) from 
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each plot were harvested, and sun-dried. The samples 
were threshed using the laboratory threshing machine 
(LD 350, WinterSteiger, Reid, Austria). Seeds were 
counted using the seeds counting machine (Data Count 
S25, Data Technologies) and weighted in analytical lab 
weight to obtain seeds number per plant (SNPP), seed-
yield per plant (SYPP), and thousand-seed weight (TSW) 
for each plot.

Statistical analysis of phenotypic data
The JMP ver.15 pro statistical package (SAS Institute, 
Cary, NC, USA) and R [22] were used for all statisti-
cal analyses with a significant threshold of 5%. First, we 
calculated the best linear unbiased estimate (BLUE) for 
every trait for each genotype per year and for both years 
using the lme4 R package [23]. The mixed linear model 
for BLUE per year was fitted according to the formula:

where yio is the phenotypic observation for the ith gen-
otype in the oth block, μ is the intercept, gi is the geno-
type fixed effect, bo is the block random effect, and ϵ is 
the model residuals.

The BLUE for the combined data from the 2 years was 
calculated according to the formula:

where yiko is the phenotypic observation for the ith gen-
otype in the k th year and the oth block, μ is the intercept, 
gi is the genotype fixed effect, ek is the random effect of 
year, (ge)ik is the random effect of genotype-by-year inter-
action,  bko is the random effect of block nested within 
the year, and ϵ is the model residual. For the calculation 
of heritability, we fitted the same mixed model as above, 
except for genotype, which was considered as a random 
effect. A broad-sense heritability was calculated on the 
entry-mean basis according to Schmidt et  al. [24] using 
the estimated variance components:

where σ 2
G , σ 2

G×Y  and σ 2
ǫ  are the genetic, genotype-by-

year interaction, and residual variances, respectively, and 
nY is the number of years (2) and nr is the average number 
of replicates across years (6). The significance of variance 
components was evaluated by the likelihood ratio test 
using the lmerTest R package [25].

yio = µ+ gi + bo + ǫ,

yiko = µ+ gi + ek + (ge)ik + bko + ǫ,

H2
=

σ 2
G

σ 2
G +

σ 2
G×Y

nY
+

σ 2
ǫ

nY nr

,

We performed GWAS for each data set (referred to 
as 2018 data, 2020 data, and combined data, hereafter). 
The combined data set was used to infer phenotypic and 
genomic correlations and to conduct principal compo-
nents analysis (PCA), k-means clustering, and genomic 
heritability estimation. K-means clustering analysis was 
applied using the factoextra R package [26] on the cen-
tered and scaled values of each trait. Both PCA and 
clusters plot were drawn in the JMP ver.15 pro statisti-
cal package. Density plots and a correlation matrix were 
constructed using the ggplot2 [27] and the corrplot [28] 
R packages.

Genotyping and preparation of markers data set
Genomic DNA was extracted from young leaf tissues 
with a modified CTAB method [29]. We generated GBS 
data using the procedure described in Elshire et al. [30], 
with minor changes: 100 ng of genomic DNA and 3.6 ng 
of total adapters were used. Genomic DNA was restricted 
with ApeKI enzyme, and the library was amplified with 
18 PCR cycles. We used the Zhongzhi No. 13 (https://​
www.​ncbi.​nlm.​nih.​gov/​assem​bly/​GCF_​00051​2975.1) ref-
erence genome to perform reference-based single nucle-
otide polymorphisms marker (SNP) calls based on the 
STACKS 2.3 pipeline (http://​catch​enlab.​life.​illin​ois.​edu/​
stacks). Approximately 4,300,000 reads were obtained, 
resulting in the detection of 90,542 SNPs. The overall 
mean depth per site was five, and the proportion of hete-
rozygous was 2%. These SNPs included sites of unknown 
scaffolds and chloroplast genome. Markers of unknown 
scaffolds and chloroplast genome were eliminated and 
all the markers were filtered to a depth quality of 3 using 
TASSEL ver. 5.0 [31]. Imputation of missing genotypes 
was performed by BEAGLE ver. 5 [32]. We also removed 
markers that were tightly linked (r2 = 0.99) using PLINK 
[33]. Polymorphic sites with < 5% minor allele frequency 
and > 20% heterozygosity were filtered out by PLINK and 
TASSEL, respectively. The remaining 20,294 SNPs were 
used for further analysis.

Population structure, kinship, and linkage disequilibrium
We used PCA and a centered identity-by-state matrix (G) 
constructed from TASSEL to infer population structure 
in the sesame panel. The ADMIXTURE software [34] 
was used to estimate a Q-matrix, which is the ances-
try among the accessions. To select the number of sub-
populations (K), we ran the software from K = 1 to 10 
with five-fold cross-validation. This analysis outputs the 
cross-validation error (%) for a given K. The number of 
subpopulations was determined as K that produced the 
lowest cross-validation error. The lowest value of cross-
validation error was achieved with K = 7 (Supplemental 
Table S2), and the Q-matrix was constructed with 1000 
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bootstrapping. The results from the PCA analysis and 
ADMIXTURE software outputs were plotted using the 
ggplot2 R package. The fixation index (Fst) among the 
seven subpopulations was calculated with VCFtools [35] 
according to Weir and Cockerham [36]. Genome-wide 
linkage disequilibrium (LD) was obtained through pair-
wise correlations between markers with a sliding window 
of 10 markers using PLINK [33]. The correlation between 
markers (r2) was plotted against their physical positions 
(i.e., base pairs) and the extent of LD pattern and decay 
was obtained by fitting a non-linear model according to 
Hill and Weir [37] as described in Marroni et al. [38]. We 
used a value (in base pairs) in which LD halves from its 
initial value for defining haplotypes and mining for can-
didate genes (CG) around significant markers.

Genomic heritability and genomic correlations
Genomic heritability estimates and genomic correlations 
were inferred using the BGLR R package [39]. To obtain 
genomic heritability for each trait, we fitted a Bayesian 
univariate genomic best linear unbiased prediction using 
the equation:

where Y is the vector of single-trait BLUE phenotypes 
(combined data), μ is the intercept, X is a design matrix 
for fixed effects, b is the vector of fixed effects containing 
three PCs to account for population structure, u is the 
vector of random effects, and ϵ is a vector of the model 
residuals. The following distributions were assumed for 
random effects:

where G represents the first genomic relationship 
matrix of VanRaden [40], I is the identity matrix, and σ2u 
is the additive genomic variance explained by genetic 
markers, and σ2

ǫ
 is the model residuals. Genomic herita-

bility was calculated as: h2 = σ
2
u

σ2u+σ2
ǫ

.
Genomic correlations were estimated using the multi-

variate version of the model described above, where Y is 
the vector of multi-trait phenotypes. The following distri-
butions were assumed for random effects:

where Σμ and Σϵ refer to the genetic and residual vari-
ance-covariance matrices, respectively, and ⨂ is the Kro-
necker product.

Y = µ+ Xb+ u + ǫ,
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,

Genomic correlations between traits were derived from 
the genomic variance-covariance matrix as:

where u1 and u2 are the breeding values of traits 
Y1 and Y2, σ2u1u2 is the additive genomic covariance 
between u1 and u2, and σ2u1 and σ2u2 are additive genomic 
variances for Y1 and Y2, respectively.

Association mapping
To identify genomic regions associated with the traits 
of interest, we used a mixed linear model of Hender-
son [41] coupled with the first three PCs and G matri-
ces to account for population structure and relatedness 
among individuals, respectively, using the rrBLUP R 
package [42]. We fit an additive single-marker GWAS 
model as the following:

where Y is the vector of phenotypes, b is the vector 
of fixed effects including a SNP and 3 PCs, u is a vector 
of random additive genetic effects with mean zero and 
variance-covariance Gσ 2

u  , X and Z are the known inci-
dence matrices, and ϵ is the vector of residuals [43]. The 
P-value threshold (1.551509 × 10− 5) was determined by 
calculating the number of effective independent tests 
(Meff ) as described in Li and Ji [44] with the follow-
ing formula: P = 1 - (1-0.05)^(1/Meff ), where P is the 
genome-wide P-value threshold and 0.05 is the desired 
level of significance, and Meff = 3306. This analysis was 
conducted on a single-year basis (2018 and 2020) and 
the BLUEs of the combined two-year data.

Haplotypes estimation and candidate gene analysis
Haplotypes encompassing associated markers that 
corresponded to the LD-decay pattern in the SCHUJI 
panel were constructed in TASSEL. We included only 
haplotypes with a frequency greater than 5% and only 
genotypes that were homozygous in all the genetic 
markers within a haplotype. The effects of haplotypes 
on the phenotypic variation were estimated using anal-
ysis of variance (JMP pro ver. 15) at a significant level 
of 5%. The phenotypic response was the BLUE of 2018 
and 2020 growing seasons. A haplotype plot was pro-
duced using the Rainclouds R package [45]. We used 
LD-decay for mining CGs around significant SNPs and 

corr(u1,u2) =
σ
2
u1u2

√

σ2u1

√

σ2u2

,

Y = Xb+ Zu + ǫ,
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analyzed them according to the Zhongzhi No. 13 refer-
ence genome (https://​www.​ncbi.​nlm.​nih.​gov/​assem​bly/​
GCF_​00051​2975.1).

Results
High phenotypic diversity among the sesame panel
To test the level of phenotypic diversity among the newly 
established SCHUJI panel, we characterized the sesame 
genotypes under Mediterranean basin conditions over 
two seasons. In general, the SCHUJI panel exhibited 
rich variation for phenological, plant architecture, and 
yield components (Fig.  1; Supplemental Table S3; Fig. 
S1). Flowering date (FD) showed a similar pattern across 
years and spread along most of the growing season, rang-
ing between 39.86 to 76 and 39.2 to 70 days after sow-
ing (DAS) for 2018 and 2020, respectively. In both years 
(2018 and 2020), most genotypes (135 and 146) flowered 
before 55 DAS (Fig. 1A). Plant architecture traits showed 
a wider range in the 2020 than 2018 seasons for HTFC 
(29-140 vs. 36-198 cm; Fig.  1B), PH (80-177 vs. 103-
251 cm; Fig. 1v), and RZ (20 to 104 vs. 28 to 141 cm; Fig. 
S1). In contrast, RI exhibited a similar range in both sea-
sons (0.13-0.73 vs. 0.12-0.76; Fig. 1D). Most yield compo-
nents showed a similar pattern across years (SYPP and 
TSW) except SNPP which exhibited a much wider varia-
tion in 2020 (21-7719 vs. 508-13,591) (Fig. 1F-H).

To test the effect of genotype (G), year (Y), and geno-
type-by-year interaction (G × Y), we estimated the vari-
ance component of each parameter for all the traits. In 
general, genotype and year had significant effects for 

most of the traits, with a significant G × Y interaction. 
The estimates of broad-sense heritability ranged from 
moderate (0.66) for SNPP to high (0.97) for FD (Table 1).

To examine the relationship between vegetative-related 
traits (late FD, PH, and NBPP) and yield-related traits 
(RI and yield components), we applied PCA to BLUEs 
from the combined data. Based on this analysis, three 
PCs (eigenvalues > 1) accounted for 75.1% of the total 
phenotypic variance among the genotypes (Fig.  2A). 

Fig. 1  Density distribution of the measured traits. Phenological traits: (A) Flowering date. Plant architecture traits: (B) height to the first capsule, (C) 
plant height, (D) reproductive index, and (E) number of branches per plant. Yield components: (F) seed yield per plant, (G) seed number per plant, 
and (H) thousand-seed weight, grown in 2018 (blue) and 2020 (red) seasons

Table 1  Variance component estimates of the random effects 
for each trait

σ2
G is the genetic variance, σ2

Y is the year variance, σ2
G × Y is the genotype-by-

year variance, σ2
ǫ
 is the error variance, and H2 is the broad-sense heritability. 

Flowering date (FD), height to the first capsule (HTFC), plant height (PH), 
number of branches per plant (NBPP), reproductive index (RI), seed-yield per 
plant (SYPP), seed number per plant (SNPP), and thousand-seed weight (TSW). 
n.s., *, and *** indicate non-significant, significant differences at P ≤ 0.05, and 
P < 0.001, respectively, as determined by the likelihood ratio test

Trait Variance component

σ2
G σ2

Y σ2
G × Y σ

2
ǫ

H2

FD 61.48*** 0.39n.s. 2.77*** 8.84 0.97

HTFC 1069 *** 214.60*** 71.49*** 125.95 0.96

PH 441.81*** 1174.8*** 44.18*** 289.12 0.89

RZ 356.97*** 394.51*** 31.97*** 204.56 0.91

RI 0.02*** 0.0003* 0.0009*** 0.003 0.97

NBPP 4.04*** 0.72** 0.64*** 2.83 0.88

SYPP 28.36*** 0.72n.s. 10.21*** 54.66 0.74

SNPP 1,723,700.70*** 3,696,689.40* 854,375.30*** 5,260,739 0.66

TSW 0.17*** 0.02*** 0.03*** 0.05 0.88

https://www.ncbi.nlm.nih.gov/assembly/GCF_000512975.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000512975.1
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PC1 explained 54.3% of the variation, loaded positively 
to FD, HTFC, PH, and NBPP, and negatively loaded to 
RI, SNPP, SYPP, and TSW. PC2 explained 20.8% of the 
variation and loaded positively to HTFC, PH, NBPP, 
SYPP, SNPP, and TSW and negatively loaded to FD and 
RI. SYPP was positively correlated with SNPP (r = 0.86) 
and TSW (r = 0.37), however, no significant relationship 
was observed between these two traits (r = − 0.04; Sup-
plemental Table S4). Overall, FD and PH were positively 
correlated (r = 0.7) and both were negatively correlated 
with RI (r = − 0.89 and r = − 0.68, respectively; Fig.  2A; 
Supplemental Table S4).

Flowering date affects the final seed‑yield 
via morphological modifications
To further dissect the relationship between flower-
ing date, plant architecture, and yield components, we 
applied k-means clustering analysis using the combined 
data. This analysis partitioned the panel into three clus-
ters: early flowering (average 44.84 DAS), mid flowering 
(48.76 DAS), and late flowering (61.65 DAS) (Fig.  2B; 
Supplemental Table S5). Comparison between clusters 2 
and 1 (early and mid-flowering) shows that they are dif-
ferent in terms of morphological and yield components. 
Although cluster 2 genotypes have larger RI (0.63 vs. 
0.5), genotypes from cluster 1 had greater PH and NBPP 
(142.23 vs. 166.69 cm and 3.29 vs. 5.12 branches per 
plant, respectively). These alternations in the plant archi-
tecture traits affect the outcome, as we observed higher 
SYPP, SNPP, and TSW for cluster 1 genotypes (Fig.  2B; 
Supplemental Table S5). When we compared clusters 1 

and 2 to cluster 3, we observed a major difference in FD 
(61.65 days) that led to a long vegetative phase and higher 
PH (181.77 cm) and NBPP (5.67), but these cluster 3 gen-
otypes had lower RI (0.31) and lower SNPP, SYPP, and 
TSW performance.

Allelic diversity and population structure of the sesame 
panel
To examine the genetic diversity at the genomic level, we 
used 20,294 SNP markers that spread along the sesame 
genome. Principal component analysis on the SNP data 
explained 30.8% of the genetic variation between geno-
types. The PCA did not show any separation between 
genotypes relative to their geographical origins (Fig. 3A). 
ADMIXTURE analysis partitioned the panel into four 
major (K1, K5, K6, and K7) and three minor (K2, K3, 
and K4) sub-populations (Fig.  3B). Fst values of these 
seven sub-populations ranged from 0.08 to 0.32, which 
showed a weak to moderate differentiation among the 
subpopulations (Supplemental Table S6). Genome-wide 
LD analysis showed that LD decayed rapidly to half of 
its initial value (0.22) at 58,774 base pairs (Supplemental 
Fig. S2).

Genomic heritability and genomic correlations
To elucidate the trait similarity at the genomic level, 
we computed genomic heritability for each trait and 
genomic correlations between the measured traits. Esti-
mates of genomic heritability ranged from 0.37 (PH) to 
0.58 (SYPP) presenting moderate values for all the traits 
(Supplemental Table S7). Figure  4 presents phenotypic 

Fig. 2  Multivariate analysis of the measured traits. (A) Principal component (PC) analysis of phenotypic traits of the combined data (2018 and 2020). 
Each dot represents one genotype. (B) K-means clustering analysis of the primary traits. Y-axis is the centered and scaled values for each trait and 
the lines are the cluster means with their confidence intervals. Clusters 1 (Green), 2, (Blue), and 3 (red) were estimated using the K-means clustering 
analysis. The traits included Flowering date (FD), height to the first capsule (HTFC), plant height (PH), number of branches per plant (NBPP), 
reproductive index (RI), seed-yield per plant (SYPP), seed number per plant (SNPP), and thousand-seed weight (TSW)



Page 7 of 14Sabag et al. BMC Plant Biology          (2021) 21:549 	

(upper triangular elements) and genomic (lower trian-
gular elements) correlations between the traits. Overall, 
the phenotypic and genomic correlations showed simi-
lar patterns (Fig. 4; supplemental Tables S4, S8). FD was 

positively correlated with HTFC and PH (0.88 and 0.58, 
respectively), while negatively correlated with morpho-
logical yield-related traits, such as RZ and RI. HTFC was 
found to be positively correlated with PH (0.71) while 

Fig. 3  Population structure of the SCHUJI panel. (A) Principal component analysis and (B) ADMIXTURE when K = 7. Every single dot or line 
represents an individual genotype

Fig. 4  Heatmap of phenotypic (upper triangular elements) and genomic (lower triangular elements) correlation matrix between the primary traits: 
Flowering date (FD), height to the first capsule (HTFC), plant height (PH), reproductive index (RI), number of branches per plant (NBPP), seed-yield 
per plant (SYPP), seed number per plant (SNPP), and thousand-seed weight (TSW). Colors indicate the level of correlations (r) from positive (blue) to 
negative (red)
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negativity correlated with RZ (− 0.75), RI (− 0.96), SYPP 
(− 0.56), and SNPP (− 0.6). SYPP was positively corre-
lated with SNPP (0.93) and TSW (0.44), whereas SNPP 
and TSW seemed to be less related (0.17).

Association mapping of agronomic traits
In an attempt to identify consistent and specific QTL 
across years, we performed a single-marker regression 
GWAS for all the traits and detected 11, 19, and 20 SNPs 
that are associated with trait mean differences for 2018, 
2020, and combined data, respectively (Supplemen-
tal Table S9). For FD, we identified two major genomic 
regions on linkage group (LG) 2 and 11 that were consist-
ent across years (4, 4, and 5 SNPs for 2018, 2020, and com-
bined data, respectively; Fig.  5A). In total, 9 SNPs were 
found significantly associated with the plant architecture 
traits, including 4 for HTFC (Fig. 5B), 3 for RI (Fig. 5C), 
and 2 for RZ (Supplemental Fig. S3A). For PH and NBPP, 
there was no clear peak (Supplemental Fig. S3B-C).

For SYPP and SNPP, we detected one major genomic 
region on LG2 (except for SNPP in 2018) (Fig.  6A-B). 
SYPP was associated with 20 SNPs while SNPP was asso-
ciated with 7 SNPs (Supplemental Table S9). For TSW, 
we found one SNPs on LG1 that was slightly below the 
significant threshold (−log10(p) = 4.77), only in the 2020 
season (Fig. 6C, and Supplemental Table S9). To elucidate 
the genetic architectures of the measured traits, we com-
pared the mapping results to find SNPs that overlapping 
across traits. HTFC had one genomic region overlap-
ping with RI on LG16 (Supplemental Table S9). FD had a 

major genomic region overlapping with SYPP and SNPP 
(Figs. 5-6; Supplemental Table S9).

Flowering date promotes yield stability in sesame
A significant genomic region in the length of 96,491 base 
pairs that contained 10 SNPs on LG2 was found to be 
associated with FD, SNPP, and SYPP (Supplemental Table 
S9). In total, four SNPs inside this region overlapped with 
FD and SYPP and were within the range of the LD-decay 
pattern of our panel (Supplemental Fig. S2). To explore 
their influence on the phenotypic variation of these two 
traits across the two growing seasons, we defined haplo-
types for these four overlapping SNPs. Two possible hap-
lotypes were found. The first haplotype (Hap1) was more 
common (n = 140) than the second haplotype (Hap2, 
n = 30) (Fig.  7). Hap1 was found associated with earli-
ness while genotypes that included Hap2 exhibited late 
flowering under the Mediterranean climate (P < 0.0001, 
Fig. 7A). Moreover, these two haplotypes also differed in 
yield performance, with Hap1 promoting higher seed-
yield (Fig. 7B). To test the phenotypic stability of the hap-
lotypes across years, we perform an analysis of variance 
for haplotypes, year, and their interaction using FD and 
SYPP from BLUE per year analysis. While the haplo-
types had a significant effect on the traits (P < 0.0001 for 
FD and SYPP), we did not observe any significant inter-
action between haplotypes and year (P = 0.087 for FD 
and P = 0.82 for SYPP). These results may indicate that 
this genomic region promotes yield stability via modi-
fications in FD. Moreover, we obtained differences in 

Fig. 5  Manhattan plots for phenological and plant architecture traits. (A) Flowering date, (B) height to the first capsule, and (C) reproductive index 
in 2018, 2020, and combined data. The dashed line represents the genome-wide significance threshold
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phenotypic responses within haplotypes (per genotype) 
in FD and SYPP across years. For FD, we found that gen-
otypes in both haplotypes had a similar pattern (P = 0.5 
and P = 0.12, for year effect) as expressed in parallel trend 
lines between genotypes across years (Fig. 7A). For SYPP, 
the differences in mean values across years were on the 
edge of statistical significance (P = 0.055 and P = 0.32 
for Hap1 and Hap2, respectively), but the genotypes 

within each haplotype had different values across years as 
expressed with the crossing lines that connected the same 
genotypes between the two growing seasons (Fig. 7B).

To find the genetic basis underlying the biological influ-
ence on the traits, we searched for candidate genes (CGs) 
within this LG2 hotspot genomic region. Overall, we 
found 20 CGs: 7 CGs were located inside of the genomic 
region (i.e., within the significant SNPs boundaries), 

Fig. 6  Manhattan plots for yield components traits. (A) seed-yield per plant, (B) seed number per plant, and (C) thousand-seed weight. The dashed 
line represents the genome-wide significance threshold

Fig. 7  Haplotype analysis of the major genomic region on LG2. Analysis of variance of haplotypes allele on (A) flowering date and (B) seed-yield 
across two years. Every dot represents a genotype. Blue color represents the 2018 growing season, orange represents the 2020 growing season, and 
grey lines connect the same genotypes in the two growing seasons
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while 13 CGs were consisted of upstream (8) and down-
stream (5) of the genomic region (Supplemental Table 
S10). All the 10 SNPs were located in regulatory or cod-
ing sequences of the CGs. Although four of the CGs 
encode uncharacterized proteins, most of the CGs were 
involved in signaling pathways and regulation and four of 
them (LOC105156148, LOC105156152, LOC105156159, 
and LOC105156313) were associated with controlling 
flowering time, floral development, and productivity in 
Arabidopsis and rice [46–49].

Discussion
Understanding the genetic basis of agronomic traits is 
important for research and breeding efforts. Here, we 
explored the genetic and phenotypic variation in a newly 
established sesame panel (SCHUJI) aiming at dissecting 
the genomic architecture of morpho-agronomic traits. 
We hypothesized that as ‘orphan crop-plant’ sesame has 
not been subjected to modern selection, the geographi-
cally distributed panel preserved an ample allelic rep-
ertoire for agronomically important traits. Evaluation 
of the level and extent of genetic diversity among the 
sesame panel surprisingly showed that there is no clear 
geographical separation between genotypes (Fig.  3A). 
Similarly, previous genetic characterization of other 
sesame panels showed no clustering associated with 
continents and suggested sub-geographical regions or 
latitudes as key factors [19, 50]. Moreover, the ADMIX-
TURE analysis resulted in seven sub-populations (K = 7) 
with low to moderate differences between them (Fig. 3B; 
Supplemental Table S6). Thus, the lack of geographic sig-
nature in our, as well as other genetic panels, may be a 
consequence of recent genetic materials exchange [51] 
or unavailable information at the collection sites. As an 
example, even the smallest sub-populations (2, 3, and 4) 
that were more genetically uniform showed the various 
origin of genotypes (i.e., sub-population 4 included geno-
types from Thailand, Israel, or unknown) (Fig. 3B).

Wide phenotypic diversity among the sesame panel 
highlights the tradeoff between flowering date 
and productivity traits
High phenotypic diversity was found for all morpho-
agronomical traits across the 2 years, with 2020 express-
ing higher values (Fig.  1). This observation agrees with 
previous studies using other sesame panels [19, 52]. In 
general, FD was found to be negatively correlated with 
yield components, such as RI, SYPP, and SNPP. On the 
other hand, late FD was associated with high NBPP, 
HTFC, and PH (Figs. 2, 4; Supplemental Table S4). Addi-
tional support for the key effect of FD on productivity 
comes from the k-means clustering analysis. This analy-
sis clustered the panel into three groups (Fig. 2B), which 

were also associated with the genetic structure of the 
panel (Supplemental Fig. S4). Comparison between the 
mid-FD group (green) and the early FD (blue) showed 
that NBPP and PH have a positive effect on productiv-
ity traits, which is in line with previous reports in sesame 
[53]. Gadri et  al. [7] showed in sesame that increasing 
the source size (i.e., vegetative organs) can support a 
higher seed set and filling. Thus, the higher yield poten-
tial of cluster 1 can be a consequence of greater vegeta-
tive biomass accumulation following more reproductive 
branches. Interestingly, the late-flowering group (red) 
had a similar number of branches as the intermedi-
ate group (green); however, most of them were not fer-
tile due to the late-flowering phenotype. RI is a key trait 
for yield potential assessment and represents the ratio 
between RZ and PH. As expected, RI and FD are nega-
tively correlated (Fig. 2). However, it is worth noted that 
a high value of RI can be a consequence of either high PH 
with low HTFC or small plants. Therefore, to promote 
higher yield potential, it is important to combine high RI 
with high RZ values.

Langham [5] reported that photoperiod responsiveness 
plays a key role in sesame flowering date and vegetative 
biomass accumulation. Our results show that while most 
genotypes that belong to the late FD and low RI group 
clustered together, they differ in their geographical ori-
gins (Fig. 3A; Supplemental Fig. S4), which may suggest 
the involvement of other genetic and/or environmental 
factors.

Genetic architecture of agronomical traits reveals hotspot 
of overlapping genomic regions
To detect the genetic basis underlying observed pheno-
typic variation, we conducted single-marker regression 
GWAS. Overall, we detected 50 associated SNPs for 
all the traits, with 11 for 2018 and 19 for 2020 seasons, 
and 20 for the combined data that were spread along the 
entire sesame genome. While all the traits exhibited phe-
notypic variation (Fig.  1), we detected a relatively small 
number of SNPs associated with these traits, which could 
be the outcome of small population size (n = 184) or low 
genetic variation in QTL sites.

The flowering date was mapped to two genomic 
regions (13 SNPs) on LGs 2 and 11 that were consistent 
across years (Fig.  5A and Supplemental Table S9). The 
major genomic region on LG2 detected in the current 
study under the Mediterranean climate was previously 
reported in another sesame panel, however, it was less 
significant under other environments [19]. The advan-
tage of using a diversity panel to detect new alleles is 
exemplified by comparing our results with a bi-parental 
population that was grown under the same environmen-
tal conditions. While Teboul et al. [3] detected six QTLs 
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using the F2 population (S-91 × S-297), only the genomic 
region on LG11 was overlap with the current study.

The plant architecture traits were associated with 9 
SNPs [HTFC (4), RZ (2), and RI (3)], with some over-
laps (Fig.  5B, C; Supplemental Fig. S4A; Supplemental 
Table S9). Two genomic regions on LG2 and 16 showed 
overlaps for HTFC and RI, which correspond to a high 
genomic correlation (r = − 0.96) between those traits. 
These results suggest that genotypes with shorter HTFC 
will have the potential to extend the growth period and 
develop more capsules (i.e., high RI). In addition, while 
HTFC and RZ had different mean values across years, 
the mean values of RI were similar, which pinpoint the 
potential of this trait in breeding programs to ensure high 
productivity. In the current study, we did not detect any 
genomic region associated with PH. This is a complex 
trait assembled through HTFC, RZ, and other morpho-
logical traits, such as internode number and length, that 
were not measured in this study. A previous study in ses-
ame reported several QTLs, but most of them explained 
a small proportion of the phenotypic variation [54, 55], 
suggesting the complex nature of this trait (PH). While 
FD and PH showed positive phenotypic and genomic 
correlations (0.70 and 0.58, respectively), clustering anal-
ysis suggested that different genotypes with similar PH 
can differ in FD. Thus, the lack of genomic region asso-
ciated with PH might result from many small effect loci 
or be masked by phenology. It is also worth noting that 
since sesame is grown as a summer crop under irriga-
tion and characterized with indeterminate growth habits, 
various genetic, environmental, and management (i.e., 
G × E × M interactions) might affect the diversity of PH 
(Supplemental Table S3).

Twenty-eight SNPs were significantly associated with 
yield components. Of those, 20 were associated with 
SYPP, 7 for SNPP, and 1 for TSW. Seed size (TSW) is 
known to have moderate-high heritability in sesame [56, 
57], as was found in the current study (0.88) and other 
crops, such as wheat [58] and pea (Pisum sativum L. 
[59]), was associated with only one region in 2020, with 
no overlap with SNPP and SYPP. Likewise, a small num-
ber of associated loci for TSW were found in bi-parental 
sesame populations [3, 60], which may suggest that this 
trait is under less complex genetic control or under the 
regulation of many small-effect genomic regions. The 
absence of significant genomic signals for TSW (as well 
as other traits in the current study) indicates that other 
approaches, such as a multi-locus GWAS model [61] or 
genomic prediction [62], may contribute to the under-
standing of the genetic basis. The positive phenotypic 
and genomic correlations between TSW and SYPP (0.37 
and 0.44, respectively), and between SNPP and SYPP 
(0.86 and 0.93) on one side, and the absence of both 

correlations between TSW and SNPP (− 0.04 and 0.17, 
respectively) on the other side, open up the possibility to 
breed simultaneously for both traits and improve yield.

SYPP and SNPP are highly polygenic traits associated 
with various anatomical and morphological traits (e.g., 
NBPP, RZ, RI, PH, number of capsules per plant, num-
ber of capsules per leaf axil, carpel number per capsule, 
and seed size). For SNPP and SYPP, we found one shared 
genomic region on LG2 overlapping with FD (Supple-
mental Table S9), which is supported by the negative 
phenotypic and genomic correlations between these 
traits (Fig. 4) and demonstrates the important role of FD 
on productivity. The effect of flowering on seed yield can 
be also attributed to the indetermine growth habit of ses-
ame, and the agronomic practices to stop the irrigation 
to harvest the crop before it rains in autumn. Under such 
conditions, plants that were able to flower earlier had a 
longer period to produce flowers and capsules and obtain 
a higher yield. In contrast, genotypes that flowered later 
in the season were more exposed to environmental and 
management conditions. A similar pattern was found 
in other indetermined crops such as soybean [63] and 
chickpea (Cicer arietinum L. [64]). It is worth noted that 
while FD had high broad-sense heritability (0.97), both 
SYPP and SNPP had relatively lower broad-sense herit-
ability estimates (0.74 and 0.66, respectively) (Table  1). 
These results, along with haplotypes analysis (Fig. 7), sug-
gest that these yield components are controlled by other 
less heritable factors not related to FD.

In sesame, allelic variation within flowering-related 
genes contributes to variation in flowering date [65, 66]. 
In the current study, we found two genomic regions (LGs 
2 and 11) that were associated with FD across years. The 
significant marker on LG11 causes a non-synonymous 
mutation in the first exon of the gene LOC105173174, 
which encodes to AT-hook motif nuclear-localized pro-
tein 9. The members of this gene family are associated 
with the regulation of flowering dates in other plants spe-
cies [67]. The co-localization of the major genomic region 
on LG2 for FD and yield components together may sug-
gest that this region contains one major gene with a 
pleiotropic effect or cluster of several genes. Analysis of 
CGs within this genomic region highlighted 20 flowering 
and productivity-related genes (Supplemental Table S10). 
LOC105156148 is encoding nitrate transporter (NRT1) 
and was found in Arabidopsis to interact with two flow-
ering regulators transcription factors, CONSTANS and 
FLOWERING LOCUS C (FLC) [49]. LOC105156159 
is encoding abscisic acid receptor PYR1-like, a mutant 
allele of this gene is found to be associated with growth 
and productivity in rice [48]. Two of the significant mark-
ers within this QTL were within the regulatory region 
(I.e., introns) of the LOC105156152 gene that encodes 
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CHROMATIN REMODELING 19. This gene was found 
regulating floral organs development in Arabidopsis [47]. 
Additional gene (LOC105156157) is translated to IAA-
alanine resistance protein 1 and contains three SNPs in 
both regulatory and coding sequences. This gene was 
characterized in Arabidopsis and associated with auxin 
conjugate and homeostasis [68], and several mutants in 
this locus were associated with late flowering [69]. Yet, 
additional study is needed to test if contradictory geno-
types will exhibit different expression levels or DNA pol-
ymorphisms (insertion/deletion) that were not detected 
in the current study.

The functional annotation of these genes and the co-
localization of them in the same genomic region dem-
onstrated how the variation in FD and SYPP could be 
genetically controlled together. Further investigation 
is needed to study how this genomic region (and the 
genes inside it) interact with other identified genomic 
regions for a deeper understanding of the genetic basis 
and mechanisms underlying FD and SYPP variations in 
sesame.

Conclusions
While sesame is still mostly grown under a traditional 
cropping system, future sesame breeding targets should 
focus on improving yield and adaptively to more diverse 
environments. Thus, elucidating the genetic architecture 
controlling phenological, morphological, and yield com-
ponents traits will aid in understanding selection criteria 
and better genetic-based breeding. Here we established 
a new sesame panel (SCHUJI) and explored its genetic 
variation for morpho-agronomic traits under the Medi-
terranean climate conditions. We showed the benefits of 
using the globally distributed panel for discovering new 
alleles associated with these traits. A major genomic 
region on LG2 was found in association with  flowering 
date and yield components, indicating the crucial role of 
phenology on sesame production. A better understand-
ing of the genetic variability underlying flowering date in 
sesame will serve as a basis for improving sesame adap-
tively to new cropping systems. Moreover, it will enhance 
breeding efforts and enable turning this important crop 
from domestically grown to global production in inten-
sive agriculture.
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