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Abstract 

Background:  Natural hybridization can influence the adaptive response to selection and accelerate species diver‑
sification. Understanding the composition and structure of hybrid zones may elucidate patterns of hybridization 
processes that are important to the formation and maintenance of species, especially for taxa that have experienced 
rapidly adaptive radiation. Here, we used morphological traits, ddRAD-seq and plastid DNA sequence data to inves‑
tigate the structure of a Rhododendron hybrid zone and uncover the hybridization patterns among  three sympatric 
and closely related species.

Results:  Our results show that the hybrid zone is complex, where bi-directional hybridization takes place among 
the three sympatric parental species: R. spinuliferum, R. scabrifolium, and R. spiciferum. Hybrids between R. spinuliferum 
and R. spiciferum (R. ×duclouxii) comprise multiple hybrid classes and a high proportion of F1 generation hybrids, 
while a novel hybrid taxon between R. spinuliferum and R. scabrifolium dominated the F2 generation, but no backcross 
individuals were detected. The hybrid zone showed basically coincident patterns of population structure between 
genomic and morphological data.

Conclusions:  Natural hybridization exists among the three Rhododendron species in the hybrid zone, although pat‑
terns of hybrid formation vary between hybrid taxa, which may result in different evolutionary outcomes. This study 
represents a unique opportunity to dissect the ecological and evolutionary mechanisms associated with adaptive 
radiation of Rhododendron species in a biodiversity hotspot.
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Background
Natural hybridization is frequent in plants and plays a 
crucial role in the formation and maintenance of species. 
In recent decades, natural hybridization has been well-
documented for numerous herbaceous (e.g., Helianthus 
[1, 2], Iris [3], Senecio [4], Viola [5], Gagea [6], Brassica 
[7], Mimulus [8]) and some woody plant taxa (e.g., Pinus 
[9, 10], Ostryopsis [11, 12], Rhododendron [13–16]). For 
the most part, studies reveal that when two or more 
closely related species are in sympatry, hybridization 
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frequently occurs and natural hybrid zones are likely to 
form (e.g. [15, 17, 18]).

Hybrid zone formation is ultimately a response to 
selection and dispersal mechanisms acting on hybrids 
and parental species, where parental genomes are com-
bined and functionally selected [19]. In general, there 
are three main types of hybrid zones that have been 
documented in plant taxa; these include: tension zones, 
bounded hybrid superiority zones and mosaic hybrid 
zones [20, 21]. Within tension zones, hybrids are con-
tinually formed, but are selected against due to their low 
fitness relative to parental species (e.g., Populus fremontii 
× P. angustifolia [22, 23]; Senecio chrysanthemifolius × S. 
aethnensis [4, 24]). In bounded hybrid superiority zones, 
hybrids show higher fitness than both parental species in 
intermediate habitats, but lower fitness in parental habi-
tats (e.g., Picea glauca × P. engelmannii [25]; Artemisia 
tridentata ssp. tridentata × A. tridentata ssp. vaseyana 
[26–28]). For mosaic hybrid zones, hybrids have higher 
fitness than parental taxa across a patchwork of multi-
ple local habitats where the parental species overlap in 
range (e.g., Aquilegia formosa × A. pubescens [29]; Sene-
cio ovatus × S. hercynicus [30]). Ultimately, the evolu-
tionary outcome of natural hybridization between plant 
taxa is likely to depend on the type of hybrid zone that 
is formed, where understanding the genetic composition 
and structure of hybrid zones is an important first step 
in revealing the evolutionary mechanisms (e.g., selection, 
dispersal, reproductive isolation) and outcomes associ-
ated with natural plant hybridization  [17, 31–33].

The genetic composition and structure of plant 
hybrid zones is often complex (i.e., multiple genera-
tions of filial and backcross hybrids), and depending 
on the strength of pre- and post-reproductive isolation 
among the parental taxa and their hybrids, hybrid taxa 
are able to persist, and can even form new species [34, 
35]. In many cases, however, the formation and persis-
tence of hybrids depends on the direction and symme-
try of hybridization among parental taxa. For example, 
numerous studies have detected hybridization patterns 
among parental taxa that are asymmetric [8, 17, 36–38]. 
In such a case, one likely outcome is asymmetric intro-
gression, where the genome of one parental taxon can 
become incorporated into the genetic background of 
another, due in part, to the preferential backcross of 
hybrids and the numerical asymmetries associated with 
parental taxa and their hybrids. The detection of such 
patterns can have profound implications for understand-
ing the formation and persistence of potential hybrid 
species within a hybrid zone; hybrids, and even some 
parental taxa, that are not reproductively isolated, are 
unlikely to persist under such a scenario [39–42]. Alter-
natively, adaptive introgression can play a central role in 

the formation and persistence of novel hybrid taxa, and 
may even lead to the formation of new species. Under 
this scenario, habitat selection can favor hybrids that 
incorporate parental genes, which enable them to colo-
nize and persist in novel habitats associated with the 
hybrid zone (i.e., hybridized habitats, which may be due, 
in part, to human disturbance [43]). Here, the adaptive 
introgression of parental traits in hybrids can buffer 
the deleterious effects of asymmetrical introgression, 
resulting in the formation and persistence of a complex 
hybrid zone that is composed of both filial and back-
cross generations [41, 44–46]. Detection of these unique 
gene × environment interactions (i.e., the composition 
of hybrids), in addition to an assessment of hybrid zone 
structure, may reflect plausible pathways for the forma-
tion and persistence of novel hybrid species [21, 40, 47].

Rhododendron L. (Ericaceae) is a large and taxonomi-
cally complex genus of woody plants that includes more 
than one thousand species, where more than half of 
which are endemic to China [48–50], and many species 
are of ornamental value. The species diversity of Rhodo-
dendron is rich in the Mountains of Southwest China, 
which is a global biodiversity hotspot [51, 52]. The 
morphology of Rhododendron species varies consider-
ably, due in part, to substantial adaptive radiation and 
reticulate evolution of species within the genus [53]. In 
addition, natural hybridization occurs frequent within 
Rhododendron [13, 16, 54–57]. Previous studies have ver-
ified that R. ×duclouxii H. Lévl., a hybrid taxon between 
R. spiciferum Franch. and R. spinuliferum Franch. that 
has intermediate leaf and flower morphology [54], exists 
in at least 15 natural hybrid zones in Yunnan, southwest 
China [16, 58]. A third species, R. scabrifolium Franch., 
also exists within some of these hybrid zones and it 
remains unknown as to the extent that this species con-
tributes to hybrid formation and hybrid zone structure. 
It’s worth noting that all three species, in addition to R. 
×duclouxii, are diploid and that R. scabrifolium and R. 
spinuliferum are sister taxa [58].

Recently, a putative novel hybrid taxon is suspected 
to exist in a region where R. spiciferum, R. spinuliferum 
and R. scabrifolium have overlapping ranges. These novel 
hybrids manifest a suite of morphological traits that not 
only differ from the three parental taxa at the site, but 
also differ from the known hybrid taxon R. ×duclouxii 
(e.g., flower size, flower color, corolla shape; Fig.  1) and 
may represent a new hybrid taxon. Here, we use genomic 
(ddRAD-seq) and morphological data to assess the 
genetic composition and structure of this Rhododendron 
hybrid zone in Yunnan Province, SW China (Fig. 2). We 
aim to address the following questions: (1) What is the 
origin of the novel hybrid taxon? (2) What is the genetic 
composition and structure of this hybrid zone? (3) Do 
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patterns of hybridization differ between the novel hybrid 
taxon and R. ×duclouxii?

Results
Morphometric analysis
The distribution of variance in the PCoA based on mor-
phological traits of 97 individuals distributed across the 
five taxa, was 69.7 % 10.0 % and 7.8 % for the first three 
axes, respectively, resulting in a cumulative value of 
87.5 %. Individuals of the three parental species (R. spic-
iferum (SC), R. spinuliferum (SN), R. scabrifolium (SA)) 
form distinct clusters (Fig. 3a). For the two hybrid taxa, 
individuals of R. ×duclouxii (SN×SC) clustered between 
the three parent species, while individuals of the putative 
novel hybrid (SN×SA) were mainly distributed between 
R. scabrifolium and R. spinuliferum;  hybrid individu-
als (R. ×duclouxii and SN×SA) showed some degree of 
overlap (Fig.  3a). When we considered variation among 
parental and hybrid individuals for the 14 quantitative 
traits separately, some interesting patterns were detected. 
Firstly, values for individuals of R. spinuliferum are larger 
than both R. spiciferum and R. scabrifolium for six traits 
(leaf length, leaf width, leaf area, flower tube length, 
style length, filaments length) revealing an inverted ‘V’ 
pattern (R. spinuliferum > hybrid > R. spiciferum/R. 

scabrifolium) (Fig. 3b, Fig. S1), while other traits (flower 
tube width, stigma width, ovary width) show a pattern 
that resembles an inverted ‘U’ (R. spinuliferum≈hybrid > 
R. spiciferum/R. scabrifolium) (Fig. 3c, Fig. S1). In addi-
tion, the flower width of SN×SA individuals were similar 
to that of R. scabrifolium individuals, while R. ×duclouxii 
individuals have a flower width that is more similar to 
individuals of R. spiciferum (Fig.  3d). Individuals of R. 
scabrifolium and R. spinuliferum had similar petiole 
length (Fig.  3e), and the two types of hybrid individu-
als had longer corolla lobes when compared to parental 
taxa (Fig.  3f ). For some flower traits (e.g., style length, 
stigma width, filaments length), the magnitude of vari-
ation among SN×SA individuals was greater than those 
of R. ×duclouxii individuals (Fig. S1). The leaf width and 
pedicel length of SN×SA were significantly larger than R. 
×duclouxii (Fig S1a, d). For the other quantitative traits, 
the differences between SN×SA and R. ×duclouxii are 
not significant.

The genetic structure of the hybrid zone
Approximately 40 Gb ddRAD-seq raw data was gener-
ated for all 45 individuals. After mapping to the Rho-
dodendron williamsianum reference genome [50], on 
average, 617,833 loci (RAD tags) were assembled and 

Fig. 1  Images of the three parental species of Rhododendron and two types of natural hybrids. (a) Rhododendron spiciferum; (b) R. spinuliferum; (c) R. 
scabrifolium (d) R. ×duclouxii; (e) the putative novel hybrid taxon. Solid-line indicates a confirmed result while dashed-line represents our hypothesis 
for the origin of the novel hybrid taxon
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the average coverage depth per locus was 27.7×. Fur-
thermore, 30,346 SNPs were retained based on the 
populations pipeline analysis in Stacks. Finally, 11,011 
SNPs were identified for Dataset A after Plink filter-
ing. Admixture analysis based on the SNPs in Dataset 
A, showed that when K=3, the three parental species 
(R. spiciferum, R. spinuliferum, R. scabrifolium) formed 
three distinct genetic groups (Fig. 4a), and was the best-
fit model. Individuals of SN×SA were a genetic admix-
ture of R. scabrifolium and R. spinuliferum. Of which five 
individuals contained approximately 50 % of the  genetic 
component from each parental species, another eight 
individuals contained a  greater genetic proportion of R. 
scabrifolium than R. spinuliferum (Fig. 4a). The individu-
als of R. ×duclouxii revealed complex genetic profiles 
composed of varying amounts of R. spinuliferum and R. 
spiciferum genetic admixture (Fig. 4a). No R. scabrifolium 
× R. spiciferum hybrid individuals were detected in the 
hybrid zone. When K=4 and K=5, neither SN×SA nor 
R. ×duclouxii individuals formed a unique genetic clus-
ter (Fig. S2).

The results of the PCoA analysis based on the SNPs 
Dataset A were in accordance with the results of 
the Admixture analysis. The first two principal axes 

explained 12.7 % and 10.1 % of the variance, respectively 
(Fig. 4b). The three parental species, and the two types 
of hybrid taxa (R. ×duclouxii and SN×SA), formed five 
respective well-differentiated clusters (Fig.  4b), which 
corresponded relatively close  to those identified in the 
PCoA based on morphology. Rhododendron ×duclouxii 
individuals were intermediate between R. spinuliferum 
and R. spiciferum, while the individuals of SN×SA were 
intermediate between R. spinuliferum and R. scabrifo-
lium (Fig.  4b). There were obvious genetic differences 
between individuals of SN×SA and R. ×duclouxii; the 
individuals of SN×SA were distinctly separated from 
the two parents, while individuals of R. ×duclouxii 
were placed on a continuum from R. spiciferum to R. 
spinuliferum, although more individuals were closer 
to R. spiciferum (Fig.  4b), which is consistent with 
the result of the  Admixture analysis. Furthermore, no 
hybrid individuals between R. scabrifolium and R. spic-
iferum were detected. Minimum Spanning Network 
(MSN) analysis showed a similar result to the PCoA, 
where the three species separated well and the two 
types of hybrids fell between their parents, although 
two individuals of R. ×duclouxii clustered much closer 
to R. spinuliferum (Fig. 4c).

Fig. 2  The distribution of the sampled five taxa of Rhododendron. Three parent species (R. spiciferum, R. spinuliferum, R. scabrifolium) and two types 
of hybrids (R. ×duclouxii, and the novel hybrid [SN×SA: R. spinuliferum × R. scabrifolium]) were found in a natural hybrid zone in Yunnan province, 
China. Samples were collected from six plots within the hybrid zone in this study. The map of China (left) was drawn by R package maptools and 
ggplot2 and the base map of the plots distribution (right) was download from https://​gdex.​cr.​usgs.​gov/​gdex/

https://gdex.cr.usgs.gov/gdex/
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Extent and direction of hybridization
NewHybrids results indicated that nearly all the hybrid 
individuals were divided into a specific class except 
for one individual of R. ×duclouxii (Fig.  4a). For indi-
viduals of SN×SA, two were assigned to F1 class, while 
others were assigned to F2 class, corresponding to the 
results of the SNPs Admixture analysis (Fig.  4a). The 
R. ×duclouxii individuals were assigned to multiple 
classes: four were F1, three were F2, one was back-
cross to R. spinuliferum, three were backcrosses to R. 
spiciferum, and one was unidentified (possible F3 or 
later generation). One individual of R. spiciferum was 
assigned as backcross with R. spiciferum, suggestive of 

a possible hybrid individual, corresponding well to the 
results of Admixture and PCoA (Fig. 4a).

The sister groups R. scabrifolium and R. spinuliferum 
shared the same trnL-F haplotype (R. spinuliferum hap-
lotype) as shown in Yan et al. [58]. In this study, we found 
all the individuals of R. scabrifolium and SN×SA share 
the R. spinuliferum trnL-F haplotype (Fig. 4a). For the R. 
×duclouxii individuals, four individuals contained the 
R. spiciferum haplotype, while eight comprised the R. 
spinuliferum haplotype. One individual of R. spiciferum 
had the R. spinuliferum trnL-F haplotype, but the nDNA 
genetic structure indicated it was R. spiciferum (Fig. 4a). 
The discrepancy between cpDNA and nDNA for this 

Fig. 3  Traits analysis for three parental species of Rhododendron and their two types of hybrids. a. PCoA result of total trait variation for 97 samples; 
b-f. Results of ANOVA analysis for single trait variation of 97 samples (b. leaf length; c. corolla tube width; d. flower width; e. petiole length; f. corolla 
lobes length). Letters above each of box plots indicate significant differences. (R. spiciferum [SC], R. spinuliferum [SN], R. scabrifolium [SA], R. ×duclouxii 
[SN×SC], the novel hybrid [SN×SA: R. spinuliferum × R. scabrifolium])
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individual is probably due to hybridization followed by 
repeated backcrossing with R. spiciferum.

Discussion
Confirmation of a novel hybrid taxon
In this study, we screened the origin of a putative novel 
hybrid taxon (SN×SA) for 13 individual plants collected 
from our Rhododendron hybrid zone. Morphologi-
cally, the majority of these individuals were distributed 
between R. scabrifolium and R. spinuliferum, while a 
few samples were distributed between R. spiciferum and 
R. spinuliferum (Figs. 1e and 3a). In addition, the Bayes-
ian genetic clustering results indicated that the genetic 
composition of SN×SA individuals is composed of R. 
scabrifolium and R. spinuliferum (Fig. 4a), and the trnL-
F haplotype analysis showed they share the same mater-
nal chloroplast haplotype as the two parental species 

[58]. Given that all three parental species (R. spiciferum, 
R. spinuliferum R. scabrifolium) formed independent 
clusters based on either morphology or ddRAD data, 
collectively our results indicate a novel hybrid taxon 
(SN×SA) is present at our study site and is of R. scabri-
folium × R. spinuliferum origin. This result represents 
a first step to understand the potential evolutionary 
effects of natural hybridization among Rhododendron 
taxa within our hybrid zone, where further study on the 
ecological and genetic mechanisms (e.g., fitness differ-
ences, dispersal ability, reproductive barriers) governing 
formation and persistence of these novel hybrid taxa is 
needed [21, 33, 59, 60].

Complex hybridization among three closely related species
Our morphological and genetic results indicate that 
the hybrid zone is a complex hybrid swarm from two 

Fig. 4  The genetic structure of the three parental species of Rhododendron and their two types of hybrids. (a) Results of Admixture analysis (K=3), 
NewHybrids analysis (BC-SN = backcross with SN, BC-SC = backcross with SC, UN = unidentified) and individual haplotypes for the trnL-F cpDNA 
region; (b) PCoA analysis of the hybrid zone based on the five groups of taxa; (c) MSN analysis showing the genetic distance among individuals 
within each of the five groups. (R. spiciferum [SC], R. spinuliferum [SN], R. scabrifolium [SA], R. ×duclouxii [SN×SC], the novel hybrid [SN×SA: R. 
spinuliferum × R. scabrifolium])
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types of hybrid taxa among three closely related spe-
cies. Our study site is located in one of the species 
diversification and distribution centers of Rhodo-
dendron in China, where most of the species were 
formed in Pliocene and Quaternary (< 5  Ma) due 
to adaptive radiation and subsequent rapid evolu-
tion [49, 53, 61–63]. In addition, this region contains 
many natural hybrid zones of Rhododendron species 
[13, 58, 64–68]. At our study site, which intersects the 
distribution range of our three parental species [16, 
58], it would appear that gene flow among R. scabri-
folium, R. spiciferum and R. spinuliferum is possible, 
although we found no evidence for the formation of 
hybrids between the former two species. Our previ-
ous studies show that post-zygotic reproductive bar-
riers between R. spinuliferum and R. spiciferum are 
weak [69], and given that R. scabrifolium is the sis-
ter taxon of R. spinuliferum [58], it seems reasonable 
that the three species can hybridize with each other, 
although only two types of hybrid taxa were detected 
at the study site.

Based on field observations, the lack of hybrids pro-
duced between R. scabrifolium and R. spiciferum may 
be due to strong pre-zygotic barriers to reproduction. 
At our study site, R. scabrifolium and R. spiciferum 
appear to occupy different micro-environments: R. 
scabrifolium grows in lush evergreen broad-leaf forest, 
whereas R. spiciferum prefers to grow in more open 
disturbed habitats (Fig.  2; Table S1). In addition, the 
two species were often found in different plots within 
the hybrid zone, which may also reduce pollination 
opportunities, and subsequent gene flow, between R. 
scabrifolium and R. spiciferum at our study site. Thus, 
ecological niche divergence may play an important 
role for our study species, and this has also been found 
in other species (e.g., Silene [70], Senecio [71]). Based 
on our observations, the flowering phenology is also 
different between R. scabrifolium and R. spiciferum in 
the hybrid zone; peak anthesis for R. scabrifolium is in 
mid-February, whereas R. spiciferum typically flowers 
mid-March. Taken together, these factors may form a 
strong reproductive  barrier between R. scabrifolium 
and R. spiciferum. Although we acknowledge that 
another possible reason for the lack of hybrids pro-
duced between R. scabrifolium and R. spiciferum may 
due to sampling bias (i.e., more sampling may increase 
the chances of finding such hybrids), these plausible 
barriers to gene flow could also  explain why we didn’t 
find hybrid individuals between R. scabrifolium and R. 
spiciferum at our study site. Pollination experiments 
and further studies are needed to assess the magnitude 
of pre- and post-zygotic barriers to hybrid formation 
among the parental taxa.

Hybrid zone structure
Results of the PCoA and ANOVA analysis of morpho-
logical traits indicated that R. ×duclouxii and SN×SA 
share some similar morphological characters (Figs. 1 and 
3, S1), which may shed light on the genetic architecture 
of shared phenotypic traits among the hybrid taxa pre-
sent in the hybrid zone [72]. However, our genetic data 
revealed that the genetic structure of these two types of 
hybrids is quite different. Rhododendron ×duclouxii indi-
viduals consisted of multiple kinds of offspring, which 
include not only F1 individuals, but also backcrosses 
and F2 individuals, whereas SN×SA individuals were 
only composed of F1 and F2 offspring, and no backcross 
individuals were detected. In addition, we found more 
R. ×duclouxii individuals have the R. spinuliferum trnL-
F sequence compared to those with R. spiciferum. This 
result indicates that for the formation of R. ×duclouxii 
hybrids is bidirectional but asymmetric between R. spi-
nuliferum and R. spiciferum, which was also reported in 
our previous studies [58, 69]. For the formation of the 
novel hybrid taxon (SN×SA), we could not ascertain 
the symmetry or direction of hybridization because the 
sequence for the trnL-F region, and even for the whole 
plastid genome (unpublished data), of R. scabrifolium 
is same as that for R. spinuliferum [58]. Taken together, 
it seems likely that our hybrid zone represents a mosaic 
model, where different classes and generations of hybrids 
are selected by different microhabitats in areas of sympa-
try among the parental species at our study site, although 
we acknowledge that more environmental data, and fit-
ness assessments, are necessary to verify this hypothesis. 
While this model is common in herbaceous perennial 
plants, e.g. Aquilegia [29, 73], Senecio [30], Petunia [74], 
its occurrence in hybridizing woody plant taxa is rare and 
requires additional evidence.

Although determining the structure of hybrid zones 
is essential for discerning the mechanisms and poten-
tial evolutionary outcomes of hybridization [33, 75, 76], 
systems that involve three or more parental taxa can 
make this process particularly challenging, especially 
when comparing results among studies. For example, 
three species of Ligularia (L. duciformis, L. yunnanensis 
and L. cyathiceps) are known to hybridize and form two 
groups of hybrids, a result that is similar to our findings, 
but unlike our study, both groups of the Ligularia hybrid 
taxa are restricted to F1 with no history of gene intro-
gression [18]. Although in our study the two groups of 
hybrid taxa shared R. spinuliferum as one of their paren-
tal species, they display a different pattern in population 
structure than  that found in Ligularia [18]. When com-
pared to our study, the degree of  reproductive isolation 
between parental taxa has been shown to be weak in 
both this study and our previous studies [58, 69], it seems 
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likely that, R. ×duclouxii is in close proximity, may con-
tribute to the formation of complex hybrid swarm in the 
future. Other hybrids zones that include three hybrid-
izing parental species have shown that recurrent gene 
flow can induce adaptive introgression [43, 77–79]. Our 
study system represents a novel opportunity to explore 
mechanisms of potential adaptive introgression in Rho-
dodendron, where further empirical study may determine 
whether the presence of novel hybrid taxa at our study 
site is the result of reproductive or ecological isolation 
resulting in unique genetic architectures that influence 
the adaption of hybrids in novel habitats. Further study, 
with increased sampling within our hybrid zone, may 
enable us to uncover the ecological and evolutionary 
mechanisms that ultimately contribute to hybrid specia-
tion in the genus Rhododendron.

Conclusions
Our results uncover the presence of a complex hybrid 
zone in Yunnan, SW China that is comprised of three 
parental Rhododendron species (R. scabrifolium, R. spi-
nuliferum, R. spiciferum) and two types of hybrid taxa, 
including a novel hybrid taxon of R. scabrifolium × R. 
spinuliferum recognized for the first time. Although the 
two types of hybrid taxa found at our site share R. spi-
nuliferum as one of the parents, hybrid genetic admix-
ture varies among them; individuals of R. ×duclouxii are 
an admixture of F1, F2, and backcrosses, while the novel 
hybrids are dominated by F2, with a low proportion of 
F1 and no backcross individuals. This study represents a 
unique opportunity to dissect ecological and evolution-
ary mechanisms associated with adaptive introgression, 
where hybridization among three parental taxa can result 
in the formation of complex hybrid swarms that consist 
of hybrid taxa that vary in their evolutionary potentials.

Methods
Study site and plant sampling
The hybrid zone is located in Nanhua County, Chuxiong 
Prefecture, Yunnan Province, southwest China (Fig.  2). 
Three closely related species in the Rhododendron sub-
sect. Scabrifolia (R. scabrifolium, R. spiciferum, and R. 
spinuliferum) and their hybrids were found in sympatry 
within this hybrid zone. Voucher specimens (two to three 
duplicates per individual) and DNA samples (healthy 
leaves dried immediately with silica-gel) were collected 
from the wild. A total of 45 individuals were sampled: 
nine individuals of R. spiciferum, six of R. spinuliferum, 
five of R. scabrifolium, 12 individuals of R. ×duclouxii, 
and 13 individuals of the putative novel hybrid taxon 
(SN×SA) (Table S1). Total genomic DNA was extracted 
using the modified CTAB method [80]. All specimens 
were identified based on morphology, and were deposited 

in the herbarium of Kunming Institute of Botany (KUN), 
Chinese Academy of Sciences, Kunming, China.

ddRAD‑seq and cpDNA sequencing
Library construction of double digest restriction-site-
associated DNA sequencing (ddRAD-seq) was according 
to the protocol of Yang et al. [81]. Genomic DNA of each 
individual was digested with two restriction enzymes 
(AvaII, NEB Cat#: R0153S; MspI, NEB Cat#: R0106S), 
and then size-selected to a range of 500-700 bp. Library 
sequencing was performed on an Illumina HiSeq X Ten 
(San Diego, CA, USA) with 150 bp paired-end reads by 
Cloud Health (Shanghai, China). Libraries were pooled to 
a target of approximately 1.2 Gb raw data per individual. 
To determine cpDNA haplotypes, the chloroplast DNA 
region trnL-F was sequenced for all 45 sampled indi-
viduals from the hybrid zone. The protocols of PCR and 
sequencing  followed Yan et al. [58].

Morphometric data collection
To examine morphological differentiation among R. 
spiciferum, R. spinuliferum, R. scabrifolium, and the two 
types of hybrid taxa (R. ×duclouxii and SN×SA), we 
chose 41  of the 45 individuals  to measure 23 morpho-
logical traits (Table S2), which include nine traits that 
are qualitative (calyx lobe conspicuous/inconspicuous; 
density of abaxial and adaxial leaf hairs; density of corolla 
scales; filament hair present/absent; style hair present/
absent; flower color; stigma color; anther color) and 14 
quantitative traits (leaf length, width, thickness, and area; 
petiole length; pedicel length; corolla lobe length; corolla 
tube width and length; flower width; style length; fila-
ment length; stigma width; ovary width). For each indi-
vidual, a total of three leaves and three flowers, without 
obvious symptoms of pathogen or physical damage, were 
selected for trait measurement. Qualitative floral traits 
were assessed by visual inspection at the site, while quan-
titative floral traits were measured by vernier caliper; leaf 
area measurements were based on scanned images (Can-
onScan LiDE 220; Canon, Tokyo, Japan). In addition, the 
23 morphological traits were  measured for 19 individu-
als of R. spinuliferum, 20 individuals of R. scabrifolium, 
and 17 individuals of R. spiciferum from other allopatric 
populations (close to the hybrid zone) to supplement the 
dataset.

Data analysis
To assess the dispersion of morphological traits in mul-
tivariate trait space, Principal Coordinates Analysis 
(PCoA) for morphometric distance (i.e., Gower distance) 
was conducted in the R package ggfortify [82]. Varia-
tions of each quantitative trait were shown in boxplots 
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generated by the  R program [83]. ANOVA analysis was 
performed for each quantitative trait using SPSS v19 [84].

The ddRAD sequencing data was analyzed by Stacks 
v.2.04 [85]. In the first step, raw reads were de-multi-
plexed and quality-filtered by using the pipeline pro-
cess_radtags. FastQC v.0.11.4 [86] was used to assess read 
quality and GC-content. All reads were then trimmed to 
140 bp to remove low quality bases by using -t parameter 
in Stacks v.2.04. The genome of R. williamsianum [50] 
was used as a reference in the reference-based analyses 
pipeline. To obtain a large number of high-quality SNPs, 
we treated the three Rhododendron species, and the two 
hybrid taxa (R. ×duclouxii and SN×SA), as five differ-
ent populations in the populations pipeline. Loci were 
filtered in two steps. Firstly, the number of SNPs were 
reduced based on the following parameters: write_single_
snp (restrict data analysis to only the first SNP per locus), 
r = 0.7 (a locus must exist in at least 70 % of the individu-
als for each of the populations), p = 5 (a locus should be 
present in each of the five populations), and min-maf = 
0.05 (minimum minor allele frequency required to pro-
cess a nucleotide site at a locus) [18]. After this reduc-
tion step, SNPs with data missing call rates exceeding 
0.2 (geno=0.2), and a Hardy-Weinberg equilibrium exact 
test p-value below 0.01 (hwe=0.01), were further filtered 
with Plink v1.90 [87]. All SNPs generated from these two 
filtering steps were used as Dataset A. To distinguish 
hybrids in the NewHybrids analysis, another dataset 
(Dataset_B) was screened by the top 400 highest species 
pairwise FST unlinked SNPs using the function getTop-
Loc() in the hybriddetective R package [88, 89].

To uncover the genetic structure of the hybrid zone, 
Dataset A was analyzed by a Bayesian genetic cluster-
ing approach using Admixture v.1.3.0 [90] and the best 
K value (number of genetic clusters ranging from 2 to 7) 
was evaluated by the CV (cross-validation) value in the 
log file. To visualize the genetic similarities among the 
five taxa, Principal Coordinate Analysis (PCoA) was per-
formed using the ape package in R [91]. The MSN (Mini-
mum Spanning Network) analysis for all individuals was 
conducted by poppr package in R [92] and the graphs 
were produced using the ggplot2 package v3.3.3 [93].

We used NewHybrids v.1.1 to calculate the probabil-
ity of each individual belonging to a particular genotypic 
class (P1, P2, F1, F2, BC1, BC2) [94]. Since we identified 
a priori two different types of hybrid taxa in this hybrid 
zone, NewHybrids analysis was based on two differ-
ent SNPs Datasets (high FST): Dataset_B1 includes all 
individuals from R. spinuliferum, R. scabrifolium and 
SN×SA, and Dataset_B2 includes all individuals from R. 
spinuliferum, R. spiciferum and R. ×duclouxii. This anal-
ysis was run for 100,000 rounds after a 100,000 burn-in 
iteration. If an individual was assigned to a genotype class 

with a probability ≥ 0.9, this individual was regarded as 
belonging to that class.

To detect the trnL-F cpDNA haplotype, trnL-F 
sequences of all individuals within the hybrid zone were 
aligned in Geneious v.8.1 [95]. The informative sites were 
summarized, and the haplotypes belonging to R. spic-
iferum and R. spinuliferum were then assigned following 
Yan et al. [58].
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