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Abstract 

Background:  MYB transcription factors, comprising one of the largest transcription factor families in plants, play 
many roles in secondary metabolism, especially in anthocyanin biosynthesis. However, the functions of the PdeMYB 
transcription factor in colored-leaf poplar remain elusive.

Results:  In the present study, genome-wide characterization of the PdeMYB genes in colored-leaf poplar (Populus 
deltoids) was conducted. A total of 302 PdeMYB transcription factors were identified, including 183 R2R3-MYB, five 
R1R2R3-MYB, one 4R-MYB, and 113 1R-MYB transcription factor genes. Genomic localization and paralogs of PdeMYB 
genes mapped 289 genes on 19 chromosomes, with collinearity relationships among genes. The conserved domain, 
gene structure, and evolutionary relationships of the PdeMYB genes were also established and analyzed. The expres-
sion levels of PdeMYB genes were obtained from previous data in green leaf poplar (L2025) and colored leaf poplar 
(QHP) as well as our own qRT-PCR analysis data in green leaf poplar (L2025) and colored leaf poplar (CHP), which 
provide valuable clues for further functional characterization of PdeMYB genes.

Conclusions:  The above results provide not only comprehensive insights into the structure and functions of PdeMYB 
genes but also provide candidate genes for the future improvement of leaf colorization in Populus deltoids.
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Background
Transcription factors play important roles in the regu-
lation of gene expression, which can control the rate of 
transcription initiation of target genes. MYB transcrip-
tion factors, one of the largest and best-characterized 
transcription factor gene families in plants, are widely 
distributed in all eukaryotic organisms, including ani-
mals, plants, and fungi [1, 2], which can be involved in 
various types of plant growth and development.

Most transcription factors are structurally classified 
into different families based on their domain diversity 
[3, 4]. Similarly, MYB transcription factors can be clas-
sified into four types according to the number of MYB 
domains: 1R-MYB, R2R3-MYB, R1R2R3-MYB, and 
4R-MYB [5–8]. Among these MYB transcription factors, 
the R2R3-MYB group is the largest transcription factor 
subfamily in plants [8, 9]. As the R2R3-MYB transcrip-
tion factor is the largest transcription factor subfamily, 
genome identification of R2R3-MYB transcription factors 
has been conducted in several sequenced plants. There 
are 126 R2R3-MYB transcription factors in Arabidopsis 
thaliana [10], 108 in grape [11], 100 in sweet orange [12], 
222 in apple [13] and 192 genes in Populus trichocarpa 
[14].
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Most R2R3-MYB proteins among different species 
are largely conserved, and they can cluster into the 
same subgroups according to their sequence similar-
ity. However, divergence between them also exists. A 
comparative analysis of R2R3-MYB genes among differ-
ent plant species revealed that this transcription factor 
gene family has undergone extensive expansion during 
evolution. The expansion of the R2R3-MYB family in 
plants fits well with the observation that many R2R3-
MYB members participate in various biological pro-
cesses and plant-specific processes [15].

More and more R2R3-MYB transcription factors 
have been functionally identified since the first iden-
tification of the plant MYB gene C1 from Zea mays 
[16]. The R2R3-MYB transcription factors are mainly 
involved in stamen and pollen maturation [17], tra-
choma initiation [18], root formation and development 
[19, 20], hormone signal transduction [21], embryo-
genesis, and stress [22–24]. Recently, the functions of 
R2R3-MYB transcription factors in the regulation of 
secondary metabolism (particularly anthocyanin bio-
synthesis and metabolism) have been reported in many 
species, including apple [25], grape [26], litchi [27] 
and strawberry [28]. Based on phylogenetic analysis, 
the R2R3-MYB transcription factors associated with 
anthocyanin biosynthesis in different species typi-
cally belong to the same subgroup. In P. trichocarpa, 
the anthocyanin content of male catkins is higher, and 
the transcript levels of R2R3-MYB transcription fac-
tors, including PtrMYB116, PtrMYB117, PtrMYB118, 
and PtrMYB119, in the male catkins of P. trichocarpa 
are also higher. Another R2R3-MYB transcription fac-
tor, PtrMYB120, could play a role in vegetative tissues 
by evoking anthocyanin biosynthesis to protect them 
from the deleterious effects of UV light [14]. Trans-
genic poplars overexpressing PtrMYB119, PtrMYB120, 
or PdeMYB118 show an elevated accumulation of 
anthocyanins throughout the plant [29, 30]. Although 
some R2R3-MYB transcription factors associated with 
anthocyanin biosynthesis have been identified, many 
more MYB transcription factors associated with antho-
cyanin biosynthesis are required to obtain new colored-
leaf tree species.

With the development of the social economy, the roles 
of colored-leaf trees in urban beautification are increas-
ing. Leaf color formation is very complicated, and the 
distribution and concentration of anthocyanins play 
important roles in the formation of leaf color. Anthocya-
nin accumulation is controlled through the coordinated 
expression of genes encoding the anthocyanin biosyn-
thetic pathway enzymes, and R2R3-MYB transcription 
factors are considered crucial in the regulation of antho-
cyanin synthesis.

In the current study, a comprehensive investigation 
of PdeMYB transcription factors in colored-leaf pop-
lar (Populus deltoids) was conducted, and the analysis 
of phylogenetic relationships, sequence features, gene 
duplication, chromosome distribution, and motif rec-
ognition was performed. In addition, a comprehensive 
expression analysis of PdeMYB genes in green leaf pop-
lar (L2025) and colored leaf poplar (QHP) using previ-
ous RNA-seq data was performed. The expression levels 
of candidate PdeMYB genes in green leaf poplar (L2025) 
and colored leaf poplar (CHP) were also evaluated by 
qRT-PCR analysis. These findings should not only pro-
vide a characterization of the PdeMYB gene superfamily 
but also provide valuable information for further func-
tional elucidation of these genes in colored-leaf poplar, 
which is useful for generating colored-leaf tree species by 
genetic engineering.

Results
Genome‑wide identification of the PdeMYB gene family 
in P. deltoids
A total of 302 PdeMYB genes were identified based on 
the complete genome sequences of P. deltoids. The length 
of amino acids for the identified PdeMYB proteins ranged 
from 51 bp (PdeMYB190) to 1717 bp (PdeMYB289), with 
an average of 342.8 bp (Additional file  1). The molecu-
lar weight of the identified PdeMYB proteins ranged 
from 5.6084 kDa (PdeMYB190) to 188.4509 kDa (Pde-
MYB289), and the predicted isoelectric points of these 
ranged from 4.08 (PdeMYB223) to 10.98 (PdeMYB298). 
In addition, the subcellular localization of the identified 
PdeMYB proteins was also predicted, and 208 of 302 
(approximately 69%) PdeMYB proteins were localized in 
the nucleus (Additional file 1).

In plants, MYB proteins are characterized by a highly 
conserved MYB domain at the N-terminus, which con-
tains one to four imperfect repeats, and can be classified 
into four major subfamilies: 1R-like MYB, R2R3-MYB, 
R1R2R3-MYB, and 4R-MYB. In our study, a total of 302 
PdeMYB transcription factors were identified, including 
183 R2R3-MYB, five R1R2R3-MYB, one 4R-MYB, and 
113 1R-MYB.

Phylogenetic analysis of the PdeMYB gene family 
between P. deltoids and Arabidopsis
An unrooted phylogenetic tree among the R2R3-MYB, 
R1R2R3-MYB, and 4R-MYB genes of P. deltoids, rice, and 
Arabidopsis was constructed using the neighbor-joining 
method with MEGA 7.0 (Fig.  1). The PdeMYB genes of 
P. deltoids were divided into 10 groups (I to X) accord-
ing to their sequences. Each group contained a differ-
ent number of PdeMYB genes. Group III contained 50 
PdeMYB genes, which was the largest number in the 
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10 groups, while group IV contained 4 PdeMYB genes, 
which was the smallest number in the 10 groups. Except 
group IV, VII, and X, the other groups of P. deltoids pos-
sessed much more MYB gene members than these of 
Arabidopsis and rice in the seven out of ten groups. Each 
group could be further divided into several subgroups. 
Some subgroups just included P. deltoids MYB genes but 
no AtMYB and OsMYB gene, indicating that these genes 

may have occurred in P. deltoids during evolutionary pro-
cess. While some subgroups just contained AtMYB or 
OsMYB genes with no P. deltoids MYB genes, suggesting 
that some evolutionary changes occurred in the genome 
– the MYB genes could have been either acquired in 
Arabidopsis or rice during evolution or lost in P. deltoids. 
The gain and loss of species-specific MYB genes could 
have resulted in functional divergence.
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Fig. 1  Phylogenetic analysis of R2R3-MYB, R1R2R3-MYB and 4R-MYB gene families in Arabidopsis, rice and P. deltoids. An un-rooted phylogenetic 
tree of MYB genes in Arabidopsis, rice and P. deltoids was constructed using the neighbor-joining method in MEGA 7.0 software with a bootstrap test 
(replicated 1000 times). The MYB gene families in Arabidopsis, rice and P. deltoids were marked light green, dark green and yellow, respectively
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The phylogenetic tree of 1R-MYB genes in Arabi-
dopsis, rice, and P. deltoids was constructed using the 
neighbor-joining method with MEGA 7.0 (Fig.  2). The 
PdeMYB genes in P. deltoids were divided into seven 
groups based on their sequences. Most groups con-
tained the 1R-MYB genes of P. deltoids, rice and Arabi-
dopsis, while Pr1 group just contained the 1R-MYB 
genes of P. deltoids and rice. Pr2 contained 20 Pde-
MYB genes, which was the largest number in the 

seven groups, while Group Pr1 contained 9 PdeMYB 
genes, which was the smallest number in the seven 
groups. Except group Pr4 and Pr7, the other groups 
of P. deltoids possessed much more MYB gene mem-
bers than these of Arabidopsis and rice in the five out 
of seven groups. In Pr1 group, one of the subgroups 
contained all 1R-MYB genes of P. deltoids includ-
ing PdeMYB215, PdeMYB258, PdeMYB253, Pde-
MYB255 and PdeMYB254. In Pr6 group, one of the 
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subgroups contained all 1R-MYB genes of rice, such as 
OsMYB173, OsMYB136, OsMYB157, OsMYB206 and 
so on. In Pr4 group, one of the subgroups contained 
all 1R-MYB genes of Arabidopsis including AtMYB156, 
AtMYB163, AtMYB164, AtMYB166, AtMYB169, and 
AtMYB170. There are much more MYB gene members 
of rice in Pr7 than these of P. deltoids and Arabidopsis, 
which indicated that these MYB genes could be either 
acquired in rice during evolution or lost in P. deltoids 
and Arabidopsis. The above results also indicated the 
differences during the evolutionary process of 1R-MYB 
genes between P. deltoids and Arabidopsis.

Conserved gene structure and protein motif analysis 
of the PdeMYB gene family in P. deltoids
To better understand the structural diversity and motif 
composition of PdeMYB genes, the intron-exon struc-
ture pattern was analyzed and visualized using the 
Gene Structure Display Server 2.0 (Fig.  3). A total of 
292 PdeMYB genes possessed exons varying from 1 to 
10, which accounted for 97% of the total PdeMYB genes. 
Sixteen PdeMYB genes lacked introns and had only one 
exon, including PdeMYB14, PdeMYB24, PdeMYB25, 
PdeMYB59, PdeMYB76, PdeMYB121, PdeMYB126, 
PdeMYB127, PdeMYB190, PdeMYB229, PdeMYB248, 
PdeMYB264, PdeMYB266, PdeMYB267, PdeMYB294, 
and PdeMYB295. The majority (164 of 302) of the Pde-
MYBs had typical splicing, with three exons and two 
introns. PdeMYB256 and PdeMYB257 contained 19 
exons and 18 introns, which was the greatest number of 
exons in the total PdeMYB genes. Moreover, the num-
ber of introns in the MYB genes appeared to be limited, 
as most PdeMYB genes (75%) had no more than two 
introns. Phylogenetic analysis of the PdeMYB gene fam-
ily was performed according to the intron number and 
exon length. As the position(s) of the intron(s) were 
fully conserved, genes in the same subgroups had simi-
lar intron patterns, such as in PdeMYB238/PdeMYB246 
and PdeMYB113/PdeMYB142 (Fig. 3).

As shown in Fig.  4, six conserved motifs were pre-
dicted to further reveal the diversification of PdeMYB 
genes in P. deltoids. In most cases, a motif is repeated 
only once or twice, and one gene has only one motif 
repeated. However, only a few special cases exist. Pde-
MYB71, PdeMYB194, PdeMYB170, and PdeMYB83 
contained two repeated motifs, and each motif was 
repeated twice. PdeMYB6 contained three repeated 
motifs: motif 3 repeated three times, motif 4 repeated 
twice, and motif 6 repeated four times. PdeMYB57 also 
contained three repeated motifs, and each motif was 
repeated twice. PdeMYB21 contained four repeated 

motifs: motif 2 repeated twice, motif 3 repeated twice, 
motif 4 repeated twice, and motif 5 repeated twice.

Chromosomal location and duplication events of PdeMYBs 
in P. deltoids
To determine the genomic distribution of the PdeMYB 
gene family in P. deltoids, the chromosomal locations 
of PdeMYBs were evaluated according to their genomic 
sequences. There are 19 chromosomes in the P. deltoids 
genome, and each of the 19 P. deltoids chromosomes 
contained PdeMYB genes (Fig.  5). Although PdeMYB 
genes were distributed on all chromosomes in P. deltoids, 
their distribution on each chromosome seemed to be 
uneven. In the present results, there were 289 PdeMYB 
genes assigned to 19 chromosomes: 32 PdeMYBs were 
present on chromosome 1; 23 on chromosome 2; 20 on 
chromosomes 4 and 15; 19 on chromosomes 6 and 8; 
18 on chromosome 17; 16 on chromosomes 3 and 10; 
14 on chromosome 5; 13 on chromosomes 12, 13, and 
14; 12 on chromosomes 9 and 18; 11 on chromosome 
19; 9 on chromosome 9; 5 on chromosome 16; and 4 on 
chromosome 11. Chromosome 1 had the highest num-
ber of PdeMYB genes (32), followed by chromosome 2 
(23). Chromosome 11 had the least number of PdeMYB 
genes (4). In addition, 13 PdeMYB genes belonged to the 
scaffold.

Gene duplication, especially tandem and segmental 
duplication events, contributes greatly to the diversity 
and evolution of gene families. In the present study, there 
were 59 duplicated PdeMYB gene pairs in the P. deltoids 
genome, and most of them belonged to the segmental 
duplication or whole genome duplication event. A total 
of 56 pairs of PdeMYB genes were identified as whole 
genome duplication or segmental duplications, including 
53 duplication events between different chromosomes as 
well as three duplication events within the same chromo-
some (PdeMYB10/PdeMYB11, PdeMYB12/PdeMYB13, 
and PdeMYB47/PdeMYB48), while three pairs of Pde-
MYBs were found as tandem repeats in P. deltoids, includ-
ing PdeMYB156/PdeMYB157, PdeMYB53/PdeMYB54, 
and PdeMYB155/ PdeMYB156. Interestingly, genes such 
as PdeMYB156, PdeMYB277, PdeMYB162, and Pde-
MYB47 occurred in more than two gene pairs (Addi-
tional file 2).

To evaluate the selection of the duplicated PdeMYB 
gene pairs, the non-synonymous to synonymous substi-
tution ratios (Ka/Ks) were calculated according to the 
whole genome analysis of gene duplications. When the 
Ka/Ks ratio is greater than one, the identified genes are 
under positive selection; when the Ka/Ks ratio is one, the 
identified genes are under neutral selection; when the Ka/
Ks ratio is less than one, the identified genes are under 
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negative purifying selection. In the present study, there 
were 57 PdeMYB gene duplicated pairs, the Ka/Ks ratios 
of which were less than one, indicating that these genes 
are under negative purifying selection and contribute 

largely to the maintenance of function in the PdeMYB 
gene family of P. deltoids. There were two PdeMYB 
gene duplicated pairs, the Ka/Ks ratios of which were 
more than one, indicating that these genes have likely 
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Fig. 4  Distribution of conserved motifs in each PdeMYB gene. Schematic diagram of motif structure in P. deltoids PdeMYB gene family using 
MEME. The relative positions of each conserved motif within the PdeMYB proteins are shown in color. The black lines represent the non-conserved 
sequences. The scale bar represents 200 aa
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experienced positive selection. Ks was used as a proxy 
for time to estimate the dates of the duplication event. 
The segmental duplicated events in P. deltoids appeared 
to have occurred from 0.001264253 (Ks= 3.79E-05) to 
50.944 mya (Ks= 1.52832). The Ks of tandem duplica-
tion of PdeMYB genes occurred from 1.823416667 to 
7.34143333 mya (Additional file 2).

To evaluate the possible relationship between the 
PdeMYB genes and potential duplication events, the 
collinearity of the PdeMYB gene family in P. deltoids 
was identified using the BLASTP and MCScanX meth-
ods. A total of 56 segmental duplication events with 

102 PdeMYB genes were identified in the P. deltoids 
genome (Fig.  6). PdeMYB genes were located within 
synteny blocks on all chromosomes. Intrachromosomal 
duplication was also observed in the P. deltoids genome.

To further evaluate the potential evolutionary mecha-
nisms of the PdeMYB gene family in P. deltoids, two 
comparative syntenic maps were constructed between 
P. deltoids, Arabidopsis, and rice (Fig. 7). There were 60 
collinear MYB gene pairs between P. deltoids and Arabi-
dopsis and 77 orthologs between P. deltoids and rice. The 
details of the collinear MYB gene pairs were provided 
in Additional files 3 and 4. The number of orthologous 

Fig. 5  Chromosomal locations of PdeMYB genes in P. deltoids. There are 289 PdeMYB genes mapped on 19 chromosomes, and the other 13 PdeMYB 
genes belonged to unassembled scaffolds. The chromosomal position of each PdeMYB gene was mapped according to the P. deltoids genome. The 
chromosome number is indicated at the top of each chromosome
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events of PdeMYB-OsMYB was much greater than that of 
PdeMYB-AtMYB as there were much bigger genome size 
and much more chromosome numbers.

Expression profile of the PdeMYB genes in QHP and L2025 
by RNA‑seq
To evaluate the expression pattern of PdeMYB genes in 
colored-leaf poplar, the expression profiles of PdeMYB 

genes in the leaves and buds of QHP and L2025 were 
screened from the previous data. The expression lev-
els of candidate PdeMYB genes in the leaves of QHP 
and L2025 were also evaluated (Fig. 8). The expression 
level of candidate PdeMYB genes in the leaves of QHP 
was more than 10 times that in L2025 or specifically 
expressed in the leaves of QHP or L2025, and these 
candidate PdeMYB genes are shown in Additional 

Fig. 6  Chromosomal localization and paralogs of PdeMYB genes in P. deltoids. The chromosomal position of each PdeMYB was mapped according to 
the P. deltoids genome. A red link indicates that two genes belong to the PdeMYB gene family, a green link indicates that one of the genes belongs 
to the PdeMYB gene family, and a gray link indicates that none of the genes belong to the PdeMYB gene family
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file 5. The expression level of PdeMYB154 in the leaves 
of QHP was 13.28 times higher than that of L2025, 
and 33.21 times higher for PdeMYB155. Many Pde-
MYB transcription factors are specifically expressed in 
QHP, such as PdeMYB25, PdeMYB27, PdeMYB60, Pde-
MYB114, and PdeMYB160, which indicated that these 
genes might play important roles in the formation of 
colored leaves in QHP.

Expression analyses of PdeMYB genes in CHP and L2025 
by qRT‑PCR analysis
To better explore the expression pattern of PdeMYB 
genes in leaf-colored poplar, the candidate PdeMYB 
genes were also evaluated in the leaves of CHP and 
L2025 (Fig. 9). The expression levels of some PdeMYB 
genes between CHP and L2025 were not substantially 
different, such as PdeMYB25, PdeMYB99, and P9de-
MYB279, which may not be important in the colora-
tion of CHP. Some PdeMYB genes such as PdeMYB60, 
PdeMYB70, PdeMYB96, and PdeMYB114, which are 
specifically expressed in the leaves of CHP, may be 
candidate PdeMYB genes to further explore the mech-
anism of leaf coloration in poplar. Other PdeMYB 
genes, such as PdeMYB4, PdeMYB37, PdeMYB72, 
and PdeMYB146, which are specifically expressed in 
the leaves of L2025, may also be important candidate 
genes for studying their functions.

Discussion
MYB transcription factors play important roles in sec-
ondary metabolism (especially in the anthocyanin path-
way), development, signal transduction, and disease 
resistance, and comprise one of the largest transcription 
factor families in plants [7]. Many reports have indi-
cated that MYB transcription factor genes can regulate 
the formation of leaf coloration in plants. Transgenic 
Arabidopsis overexpressing PAP1/AtMYB75 increases 
the expression level of structural genes associated with 
anthocyanin biosynthesis, which contributes to higher 
anthocyanin accumulation [7, 31, 32]. Tobacco overex-
pressing IbMYB1a can upregulate the expression lev-
els of several structural genes, such as ANS and DFR 
22, which can promote the accumulation of anthocya-
nin [33]. Tobacco overexpressing CsMYB6A increases 
the expression levels of structural genes associated with 
flavonoid synthesis, such as 3GT and CHS, leading to 
a high accumulation of anthocyanins in the leaves of 
transgenic tobacco [34]. Transgenic poplar overexpress-
ing MYB6 shows a red color in the young leaves and 
shoots by increasing their anthocyanin accumulation 
[35]. PtrRML1, a repressor motif-containing poplar R3 
MYB-like transcription factor, the overexpression of 
which in transgenic Arabidopsis can reduce their antho-
cyanin content in stems, petioles, and rosette leaves [36]. 
Overexpression of PtoMYB156, PtrMYB57, MYB182, 
MYB165, and MYB194 separately can also downregulate 

Fig. 7  Gene duplication and synteny analysis of MYB genes between P. deltoids, Arabidopsis, and rice. a Gray link in the background indicates the 
collinear blocks within P. deltoids and Arabidopsis genomes, while the red link highlights the syntenic MYB gene pairs. b Gray link in the background 
indicates the collinear blocks within P. deltoids and rice genomes, while the red lines highlight the syntenic MYB gene pairs
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Fig. 8  Expression profile of PdeMYB genes in the leaves and buds of the QHP and L2025. QHP-L, QHP leaf; L2025-L, L2025 leaf; QHP-B, QHP bud; 
L2025-B, L2025 bud
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anthocyanin biosynthesis in transgenic poplar [37–40]. 
Transgenic poplar overexpressing PtrMYB119 and Pde-
MYB118 separately has higher anthocyanin content in 
leaves compared with that in wild-type poplar [29, 30]. 
Although some MYB genes from poplar can regulate 
the biosynthesis of anthocyanin, many more MYB genes 
are needed to regulate the leaf color of poplar. To date, 
only PtrMYB119 and PdeMYB118 from poplar have been 
shown to change the leaf color of poplar under normal 
conditions. Therefore, genome-wide analysis of the MYB 
family genes in poplar was characterized, and many more 
MYB family genes from poplar associated with anthocya-
nin biosynthesis need to be identified in the future.

Many MYB gene families have been identified in differ-
ent plant species. There are 198, 233, and 197 MYB genes 
in Arabidopsis, rice, and soybean, respectively [41, 42]. 
In the present study, 302 PdeMYB transcription factors 
were identified in the P. deltoids genome. Among these, 

R2R3-MYBs accounted for 61% of the identified MYB 
transcription factors, and MYB-related proteins were the 
second largest subfamily of MYB proteins, accounting for 
37% in our study, which is similar to the fraction of MYB-
related proteins in rice (40%) [43]. In P. trichocarpa, there 
are 192 R2R3-MYB and 5 R1R2R3-MYB [14], which is 
similar to our results in the P. deltoids genome.

Gene duplication plays an important role in gene fam-
ily expansion in plants [44], either in the form of seg-
mental duplication, tandem duplication, or transposition 
events [45]. When gene duplication occurs within the 
same chromosome, tandem duplication occurs. In differ-
ent chromosomes, this is considered segmental duplica-
tion. Both segmental and tandem duplication can lead to 
the diversification of species, which might also be crucial 
for increasing the adaptability of plants to different envi-
ronmental conditions [46]. In the present study, expan-
sion of the R2R3-MYB gene family in P. deltoids resulted 

Fig. 9  The relative expression level of candidate PdeMYB genes in the leaves of L2025 and CHP. Bars indicate the mean ± SE, n = 3
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from both segmental duplication and tandem duplication 
events, which are similar to those in maize and Gossyp-
ium raimondii [45, 47]. There were three tandem dupli-
cations and 56 segmental duplications for PdeMYB genes 
in P. deltoids, which indicated that segmental duplication 
events were a major cause of the expansion of PdeMYB 
genes.

It is generally believed that PdeMYB members that fall 
within certain clades may have common evolutionary 
origins and conserved functions. Therefore, the putative 
functions of the P. deltoids MYB proteins can be specu-
lated through the functional clades of Arabidopsis MYBs. 
Phylogenetic analyses and evolutionary relationships of 
the PdeMYB gene family have been systematically studied 
among different species, suggesting the conservation and 
expansion of P. deltoids MYBs. In addition, the pattern of 
gene structures can be used to evaluate the phylogenetic 
relationships in a gene family. The number of exons in 
the 302 PdeMYB genes ranged from one to ten, and most 
of the PdeMYBs had three exons and two introns, which 
is similar to the results in other plants [9]. Remarkably, 
the PdeMYB members within the same subfamily shared 
similar exon/intron patterns [11]. In our study, most of 
the PdeMYB genes were disrupted by no more than two 
introns, which is consistent with previous reports that 
most MYB-related genes in land plants contain up to two 
introns [48].

Phylogenetic classification of genes into subfamilies 
was performed according to the gene structure and 
domain analysis. In general, members of the same sub-
family often share similar sequences, conserved motifs, 
and even binding partners, and are likely to share simi-
lar functions [49, 50]. Therefore, when there is a lack of 
sufficient data, functional characterization of unknown 
proteins is generally carried out based on comparisons 
with annotated proteins [13, 51]. In the present study, 
PdeMYB genes were clustered into the same group as 
those in Arabidopsis thaliana, indicating the func-
tional conservation of R2R3-MYBs between species. 
In Arabidopsis thaliana, MYB75, MYB90, MYB113, 
and MYB114 have been reported to be involved in 
the regulation of anthocyanin biosynthesis [7, 10, 51]. 
PdeMYB155, PdeMYB157, PdeMYB156, PdeMYB153, 
and PdeMYB154 were clustered into the same group 
as AtMYB75, AtMYB90, AtMYB113, and AtMYB114 
in Arabidopsis thaliana, indicating that these genes 
in poplar might be involved in the synthesis of antho-
cyanin. In accordance with this, the expression level of 
PdeMYB154 and PdeMYB155 in the leaves of QHP was 
much higher than these in L2025 (Fig.  8), and a simi-
lar situation occurred in another colored leaf cultivar, 
CHP (Fig. 9). PdeMYB60 and PdeMYB114 are specially 

expressed in the leaves of QHP and CHP plants, indi-
cating that they may play important roles in leaf col-
oration in poplar (Figs.  8 and 9). In contrast to the 
expression patterns of PdeMYB60 and PdeMYB114 in 
QHP and CHP, PdeMYB25 was specifically expressed 
in the leaves of QHP, but there was no significant dif-
ference in its expression level between CHP and L2025 
(Figs. 8 and 9), which indicated that PdeMYB25 might 
not be a critical gene during leaf coloration in poplar. 
Although many genes might be involved in leaf colora-
tion in poplar, the detailed functions of these antho-
cyanin-related genes should be further identified by 
experimental assays in the future.

Methods
Identification of the PdeMYB gene family in P. deltoids
The hidden Markov Model profile of MYB binding 
domain with accession number was obtained from the 
Pfam database (http://​pfam.​xfam.​org/) [52], which was 
used to search candidate PdeMYB genes from P. del-
toids genome with HMMER 3.1, with a cutoff value 
of 0.01. The P. deltoids genome was downloaded from 
the Joint Genome Institute’s Plant Genomics Portal 
(https://​phyto​zome-​next.​jgi.​doe.​gov/), and HMMER 
3.1 was downloaded from http://​hmmer.​org/​downl​oad.​
html. In addition, MYB genes in Arabidopsis thaliana 
and rice were used to further identify candidate Pde-
MYB genes in P. deltoids genome, which were down-
loaded from the Arabidopsis Information Resource 
(TAIR; http://​www.​arabi​dopsis.​org/) and RGAP release 
7 (http://​rice.​plant​biolo​gy.​msu.​edu/). The SMART and 
NCBI-CDD were used to confirm the acquired Pde-
MYB proteins in P. deltoids, the website of which were 
http://​smart.​embl-​heide​lberg.​de and http://​www.​ncbi.​
nlm.​nih.​gov/​Struc​ture/​cdd/wrpsb.cgi.

Sequence analysis and structural characterization 
of PdeMYB genes in P. deltoids
Based on the conserved domains and genome sequence 
of the PdeMYB genes, the exon-intron organization of 
the PdeMYB genes, including intron distribution pat-
terns, phases, and intron-exon boundaries, was graphi-
cally displayed by the Gene Structure Display Server 
GSDS2.0 (http://​gsds.​cbi.​pku.​edu.​cn/). The conserved 
motifs of the PdeMYB transcription factors were pre-
dicted using a MEME Suite analysis [53], and the soft-
ware was downloaded from http://​meme-​suite.​org/​
tools/​meme. The maximum number of motifs was set 
to identify 20 motifs, and the optimum width of motifs 
was set from 6 to 100 amino acids.

http://pfam.xfam.org/
https://phytozome-next.jgi.doe.gov/
http://hmmer.org/download.html
http://hmmer.org/download.html
http://www.arabidopsis.org/
http://rice.plantbiology.msu.edu/
http://smart.embl-heidelberg.de
http://www.ncbi.nlm.nih.gov/Structure/cdd/
http://www.ncbi.nlm.nih.gov/Structure/cdd/
http://gsds.cbi.pku.edu.cn/
http://meme-suite.org/tools/meme
http://meme-suite.org/tools/meme
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Chromosome distribution, gene duplication, and synteny 
of PdeMYB genes in P. deltoids
The chromosome distribution of PdeMYB genes was 
obtained from the database of the P. deltoids genome 
(https://​phyto​zome-​next.​jgi.​doe.​gov/), and the chromo-
somal locations of the PdeMYB genes were visualized 
using MapChart software [54]. Segmental duplication, 
tandem duplication, and synteny blocks of the ortholo-
gous PdeMYB genes between P. deltoids and Arabidop-
sis as well as P. deltoids and rice were evaluated using 
MCscanX (Multiple Collinearity Scan toolkit; http://​
chibba.​pgml.​uga.​edu/​mcsca​n2/) [55]. The synonymous 
(Ks) and nonsynonymous (Ka) substitutions of PdeMYB 
genes were calculated using KaKs_Calculator 2.0 to 
estimate their duplication events [56], and circos v0.69 
was used to graphically present the synteny blocks of 
the orthologous PdeMYB genes between P. deltoids and 
Arabidopsis, P. deltoids, and rice [57].

Phylogenetic analysis and classification of PdeMYB 
proteins in P. deltoids
Phylogenetic analysis was performed using the full-
length amino acid sequences of PdeMYB, OsMYB, 
and AtMYB proteins. An unrooted neighbor-joining 
phylogenetic tree was constructed through multi-
ple sequence alignments of these MYB proteins using 
MEGA 7.0, and these MYB proteins were classified into 
different groups based on the topology of the phylo-
genetic tree. The parameters were as follows: pairwise 
deletion, Poisson model, and 1000 bootstrap replica-
tions [58]. The data matrices and resulting trees were 
deposited in TreeBase (http://​purl.​org/​phylo/​treeb​ase/​ 
phylo​ws/​study/​TB2:​S28602 and http://​purl.​org/​phylo/​
treeb​ase/​ phylo​ws/​ study/​TB2:​S28603), and the acces-
sion numbers are 28602 and 28603, respectively.

Expression analyses of PdeMYB genes in Quanhong poplar 
(QHP) and Populus sp. Linn. 2025 (L2025) by RNA‑seq
To explore the expression pattern of PdeMYB genes in 
colored-leaf polar QHP and green leaf poplar L2025, 
the expression profiles of the putative PdeMYB genes 
in the leaves and buds of the QHP and L2025 were 
retrieved from previous research with PdeMYB gene 
IDs as the queries [59]. The transcript abundance of 
PdeMYB genes was calculated as fragments per kilo-
base of exon model per million mapped reads (FPKM). 
The log2 (FPKM +1) from the RNA-seq data were sub-
jected to hierarchical clustering with Cluster 3.0, 

and the results were graphically displayed using Java 
TreeView [53].

Expression analyses of PdeMYB genes between CHP 
and L2025 by qRT‑PCR analysis
Colored leaf poplar with bright red leaves, CHP, and 
green leaf poplar, L2025, were cultivated in the experi-
mental field of the Nanjing Botanical Garden Mem. 
Sun Yat-Sen (32°3′N, 118°49′E). To better identify the 
candidate PdeMYB genes associated with leaf color, the 
expression level of candidate PdeMYB genes in previ-
ous research that showed significant changes between 
QHP and L2025 were further evaluated. The leaves of 
CHP and L2025 were collected in August 2020, and the 
RNA was extracted using an RNA Aprep Pure Plant Kit 
(Tiangen, Beijing, China). The quality and concentration 
of each RNA sample was evaluated by gel electropho-
resis and using a NanoDrop 2000 spectrophotometer 
(Thermo Fisher Scientific, Waltham, MA, USA), and 
the higher quality RNA with a 260/280 ratio of 1.8-2.1, 
260/230 ratio≥2.0, were stored at −80 °C for further 
analyses. cDNA was synthesized using a ReverTra Ace 
qPCR RT kit (TOYOBO, Osaka, Japan). The expression 
levels of candidate PdeMYB genes in the leaves of CHP 
and L2025 were evaluated by qRT-PCR using an Applied 
Biosystems 7500 Real-Time PCR system (Applied Bio-
systems, Waltham, MA, USA). Gene-specific primers 
were designed according to the sequence of candidate 
PdeMYB genes (Additional file 6), and the ACTIN2 gene 
was used as a control gene [29]. The thermal cycling 
conditions were as follows: 95 °C for 2 min, followed by 
40 cycles of 95 °C for 5 s, and products collected at 60 
°C for 34 s. The relative expression levels of genes were 
evaluated by the 2−ΔΔCt method [60], and analyzed using 
SPSS 17.0, with three biological replicates.

Conclusions
In the present study, 302 PdeMYB transcription factors 
identified in P. deltoids. Genomic localization and par-
alogs of PdeMYB genes mapped 289 genes on 19 chro-
mosomes, with collinearity relationships among genes. 
The conserved domain, gene structure, and evolution-
ary relationships of PdeMYBs were also established and 
analyzed. The expression levels of some PdeMYB genes 
were significantly different among different colored-
leaf poplar varieties, which provided valuable clues for 
further functional characterization, in addition to pro-
viding candidate genes for the future improvement of 
leaf colorization in P. deltoids.

https://phytozome-next.jgi.doe.gov/
http://chibba.pgml.uga.edu/mcscan2/
http://chibba.pgml.uga.edu/mcscan2/
http://purl.org/phylo/treebase/%20phylows/study/TB2:S28602
http://purl.org/phylo/treebase/%20phylows/study/TB2:S28602
http://purl.org/phylo/treebase/%20phylows/%20study/TB2:S28603
http://purl.org/phylo/treebase/%20phylows/%20study/TB2:S28603
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