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Abstract

Background: Alpinia species are widely used as medicinal herbs. To understand the taxonomic classification and
plastome evolution of the medicinal Alpinia species and correctly identify medicinal products derived from Alpinia
species, we systematically analyzed the plastome sequences from five Alpinia species. Four of the Alpinia species:
Alpinia galanga (L) Willd,, Alpinia hainanensis KSchum., Alpinia officinarum Hance, and Alpinia oxyphylla Miq., are listed
in the Chinese pharmacopeia. The other one, Alpinia nigra (Gaertn.) Burtt, is well known for its medicinal values.

Results: The four Alpinia species: A. galanga, A. nigra, A. officinarum, and A. oxyphylla, were sequenced using the Next-
generation sequencing technology. The plastomes were assembled using Novoplasty and annotated using CPGAVAS2.
The sizes of the four plastomes range from 160,590 bp for A. galanga to 164,294 bp for A. nigra, and display a conserved
quadripartite structure. Each of the plastomes encodes a total of 111 unique genes, including 79 protein-coding, 28 tRNA,
and four rRNA genes. In addition, 293-296 SSRs were detected in the four plastomes, of which the majority are
mononucleotides Adenine/Thymine and are found in the noncoding regions. The long repeat analysis shows all types of
repeats are contained in the plastomes, of which palindromic repeats occur most frequently. The comparative genomic
analyses revealed that the pair of the inverted repeats were less divergent than the single-copy region. Analysis of
sequence divergence on protein-coding genes showed that two genes (accD and ycf1) had undergone positive
selection. Phylogenetic analysis based on coding sequence of 77 shared plastome genes resolves the molecular
phylogeny of 20 species from Zingiberaceae. In particular, molecular phylogeny of four sequenced Alpinia species (A.
galanga, A. nigra, A. officinarum, and A. oxyphylla) based on the plastome and nuclear sequences showed congruency.
Furthermore, a comparison of the four newly sequenced Alpinia plastomes and one previously reported Alpinia plastomes
(accession number: NC_048461) reveals 59 highly divergent intergenic spacer regions. We developed and validated two
molecular markers Alpp and Alpr, based on two regions: petN-psbM and psaJ-rp/33, respectively. The discrimination
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success rate was 100 % in validation experiments.

Conclusions: The results from this study will be invaluable for ensuring the effective and safe uses of Alpinia medicinal
products and for the exploration of novel Alpinia species to improve human health.

Keywords: Plastome, Alpinia, Phylogenomic analysis, Species authentication

Background

Zingiberaceae is the largest plant family in the order
Zingiberales [1]. It contains about 1,587 species and 52
genera (The Plant List; last accessed: February 2021).
The family provides essential natural resources to
humans, including many useful products for food, spices,
medicines, dyes, perfume, and aesthetics [2, 3]. Alpinia
Roxb. is the largest, most widely distributed, and most
taxonomically complex genus in the Zingiberaceae, in-
cluding 230 species occurring throughout tropical and
subtropical Asia [4]. Alpinia comprises approximately 54
species in China. Many of the Alpinia species are well-
known medicinal herbs. Other Alpinia species have been
widely used for bioprospection of plant essential oils for
medicinal uses [5].

The Chinese pharmacopeia (2020 version) contains 15
Zingiberaceae species belonging to five genera, and four of
the 15 species belong to the genus Alpinia. These four
species are A. galanga, A. officinarum, A. oxyphylla, and
A. hainanensis. The first species, A. galanga, also called
“Hong Dou Kou,” has been used to manage dyspepsia,
fever, urinary incontinence, halitosis, and hoarseness of
voice in throat infections [6]. The second species, A. offici-
narum, has been used to relieve stomachache, treat colds,
invigorate the circulatory system, and reduce swelling.
Many chemical constituents have been isolated from this
plant, including monoterpenes, diarylheptanoids, flavo-
noids, phenylpropanoids, and neolignans [7]. The third
species, A. oxyphylla, also called “Yi Zhi,” is widely used to
treat dyspepsia, diarrhea, abdominal pain, spermatorrhea,
kidney asthenia, and poor memory [8]. The fourth species,
A. hainanensis is native to the Hainan Island in Southern
China. It has been used for its anti-emetic and stomachic
mechanism of action [9]. Another species, A. nigra has
been used traditionally to treat bronchitis, gastric ulcers,
parasitic intestinal infections. However, it is not included
in the Chinese pharmacopeia (2020 version) [10]. The
morphological identification of these species is problem-
atic. Misidentification will undermine the efficacy and
safety of medicinal products developed from them [11,
12]. Additionally, the genetic divergence among these spe-
cies and the complex evolutionary history of the genus are
often poorly understood, making it difficult for the bio-
prospecting of medicinal Alpinia species.

Plastomes provide a robust framework that can be
used to examine phylogenetic relationships among

plants and provide new probes for species identification
[13, 14]. Their comparatively conserved and well-defined
genome structures allow the investigation of a wide
range of crucial issues. Initially, genetic studies focused
on understanding each plastid genome, particularly of
the overview features, such as genome size, gene con-
tent, and sequence repetition [15]. Lately, the crucial
role of the plastomes in the evolution and impact for
speciation has become obvious demonstrated by the
sequence divergence, large inversion, differences in
coding and intergenic regions, and evolutionary ana-
lysis [16, 17].

To date, complete plastomes are available from more
than 100 Zingiberaceae species, including four Alpinia
species. Recently, a complete plastome of A. oxyphylla
(NC_035895) was analyzed, and the plastome shared the
highest sequence similarity of > 90 % to that of A. zerum-
bet [18]. Based on the single nucleotide polymorphism
(SNP) matrix among 28 whole plastomes, including a
plastome (NC_048461) of A. hainanensis and two plas-
tomes (NC_035895, MK262729) of A. oxyphylla, a
phylogenetic analysis showed that Alpinia and Amomum
are closely related in the family Zingiberaceae [19]. Such
results provided useful information to understand the
Alpinia evolution. However, they have not focused on
the species that are widely used for their medicinal
values and there is no phylogenetic analysis using nu-
clear markers in Alpinia species.

In previous reports, phylogeny, biodiversity assessment
within populations, and the authentication of Alpinia
species have been studied using several molecular
markers. Nuclear ribosomal DNA internal transcribed
spacers (ITS) sequences have been used as markers to
distinguish A. galanga from its adulterants (Zhao et al
2001). Efficacy of DNA barcode internal transcribed spa-
cer 2 (ITS2) was tested on species identification of Alpi-
nia species from Peninsular Malaysia [20]. Also, the
information of genetic relatedness was developed using
seven plastid barcoding loci among wild Alpinia nigra
(Gaertn.) B.L. Burtt populations [21].

Lately, chloroplast-derived DNA markers were devel-
oped to authenticate medicinal plants. One example is
SNPs and insertion-deletion mutations (Indels) of the
intergenic regions in the plastome of Panax ginseng spe-
cies [22, 23]. However, there are no systematic studies to
develop molecular markers for medicinal Alpinia
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species. Our short-term goal is to understand the taxo-
nomic relationship of medicinal Alpinia species and de-
velop molecular markers for their discrimination. And
our long-term goal is to develop a method for ensuring
the efficacy and safety of Alpinia medicinal products and
identify new Alpinia species for medicinal uses. In this
study, we reported and compared the four complete
plastome sequences of A. galanga, A. nigra, A. offici-
narum, and A. oxyphylla sampled from Guangxi, China.
The phylogenetic relationships of medicinal Alpinia spe-
cies were studied based on plastome sequences and
single-copy nuclear genes. Molecular markers based on
plastomes were furtherly developed for the discrimin-
ation of the five Alpinia species and were validated
successfully.

Results

Features of the Alpinia species plastomes

The plastomes are circular structures of 160,590 bp (A.
galanga), 164,294 bp (A. nigra), 162,140 bp (A. offici-
narum), and 161,394 bp (A. oxyphylla) long. The sche-
matic representation of the plastomes is shown in Fig. 1
and Figures S1, S2 and S3, respectively. The four plas-
tomes display the typical quadripartite characters and
show a high degree of conservation in organization and
structure. They consist of a Large Single-Copy (LSC) re-
gion (87,267 — 88,970 bp) and a Small Single-Copy (SSC)
region (15,349 — 17,908 bp), which were separated by
two Inverted Repeat (IR) regions (27,490-29,951 bp)
(Table 1). The overall GC contents of A. galanga, A.
nigra, A. officinarum, and A. oxyphylla plastomes are
36.24 %, 35.98%, 36.14%, and 36.16 %, respectively.
Whereas the GC contents of their coding sequences
(CDS) regions are 37.13 %, 36.91 %, 36.88 %, and 36.95 %,
respectively (Table S1), and are somewhat higher than
those of the whole plastomes.

All of the four Alpinia plastomes encode a set of 111
unique genes with identical gene order and gene clusters.
Seventy-nine of these are protein-coding genes, 28 are
tRNA genes, and four are rRNA genes (Tables S2, S3, S4
and S5). Fourteen genes (atpF, ndhA, ndhB, petB, petD,
rpl2, rpoCl, rpsl6, trnA-UGC, trnC-ACA, trnE-UUC,
truK-UUU, trnL-UAA, trnS-CGA) contain one intron,
while three genes, clpP, yc¢f3 and rpsl2, possess two in-
trons (Tables S6, S7, S8 and S9, Figures S4, S5, S6 and S7).
In particular, the rps12 is generated by trans-splicing and
has three exons (Figures S4, S5, S6 and S7, lower panels).
We also detected 2-262 heteroplasmic sites with minor al-
lele frequency (MAF) of 0.6-1 % in four sequenced Alpinia
species (Figures S8, S9, S10 and S11).

Sequence repetition in the Alpinia plastomes
Comparative analysis of sequence repetition between all
four plastomes found that the overall distribution, types,
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and numbers of repeats are highly similar among the
plastomes. Simple sequence repeats (SSRs) are sequences
composed of repeats with motifs from 1 to 6 bp in
length. They are widespread in plastomes and widely uti-
lized for species identification, genetic linkage construc-
tion, and molecular breeding [24]. A total of 293-296
SSRs were found in the Alpinia plastomes (Table 2).
The most abundant mononucleotide SSRs are polyade-
nine or polythymine repeat types. Interestingly, hexanu-
cleotide SSRs were not found in the plastomes of A.
galanga and A. oxyphylla but were detected in the other
two Alpinia plastomes. Further analysis of the size and
location of the different SSR units and comparison re-
vealed that the composite SSR was variable among the
four species, while the dinucleotide repeat of AT was
conserved (Tables S10, S11, S12, S13 and S14).

Long repeat analyses of four sequenced plastomes
showed that 45-49 dispersed repeats were detected,
which belong to forward, reverse, complementary and
palindromic repeats (Table 3). Forward (direct) and pal-
indrome (inverted) repeats were considerably higher in
number than reverse and complement repeats. The ma-
jority of these repeats with the repeat length range from
30 to 49 bp were located in intergenic spacer (IGS) re-
gions (Tables S15, S16, S17 and S18). We found the dis-
persed repeats within those genes were mostly located in
the exons but not in the introns. They can potentially fa-
cilitate structural rearrangements and develop variability
among plastomes in a population [25].

On average, the numbers of detected tandem repeats
range from 28 in A. officinarum up to 33 in A. oxyphylla.
The copy numbers of these repeats range from 1.9 to 5.3
copies per tandem repeat, and the repeat sizes range
from 30 to 158 bp per copy (Tables S19, S20, S21
and S22). The tandem repeats were found extensively in
the IGS regions.

Expansion of the IR regions in Alpinia plastomes
The variations in the single-copy and IR regions’ sizes and
boundaries commonly cause evolutionary events such as
contraction and expansion in the plastome architecture
[26]. We compared the IR and single-copy region bound-
aries among six species, including one Zingiber species
and the five Alpinia plastomes, the four Alpinia se-
quenced in our research, and A. hainanensis. Two A. oxy-
Pphylla genomes sequences previously were included in the
analysis. Some divergences were identified among the
plastomes of four Alpinia species and Z. spectabile (Fig. 2).
Particularly, IR expansions were found in the LSC/IRa
boundary of the four Alpinia species, which included the
complete rps19 gene in the IRs of these species.

In contrast, the ps19 gene is located in the LSC region of
Z. spectabile. The distances between the border of rps19
and the IR/LSC junction were 13, 160, 119, 129, and 129
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Fig. 1 Gene map of the Alpinia galanga plastome. The first circle shows the species name and specific information regarding the genome

(length, GC content, and the number of genes) from the center going outward. The optional GC content is depicted as the proportion of the
shaded parts of each section and the length of the corresponding single short copy (SSC), inverted repeat (IRa and IRb), and large single-copy
(LSQ) regions are also given in this circle. The outer circle shows the gene names and their optional codon usage bias. The genes are colored

based on their functional categories. Genes inside and outside of the circle are transcribed in clockwise and counterclockwise directions,
represented with arrows. The optional shaded area stretching from the inner sphere toward the outer circle marks the IR regions

bps in the plastomes of Z. spectabile, A. galanga, A. nigra,
A. officinarum, and A. oxyphylla, respectively. Another in-
teresting observation is that the ycfl gene is localized in the
IRb region. The ycfl gene sequence is significantly longer in
the Alpinia species, 3944 bp for A. nigra, 1428 bp for A. ga-
langa, and 3944 bp for A. nigra, compared with that of Z.
spectabile (924 bp) (Fig. 2).

Hypervariable regions
We compared the plastome sequences of five Alpinia
species, among them, A. oxyphylla with three accessions,

and Zingiber species to determine the overall variations
among the Alpinia and Zingiber species. As shown in
Fig. 3, the plastomes are highly conserved among these
species. The IR regions were less divergent than the LSC
and SSC regions. The coding regions were more con-
served than the noncoding regions. However, ndhA,
petB, ycfl, and ycf2 genes showed a relatively high degree
of sequence divergence. In contrast, the IGS regions
were highly diverse, particularly in the following regions:
rpsl6-trnQ, petN-psbM, psaC-ndhE, accD-psal, psal-
rpl33, matK-rps16, psbH-petB (Fig. 3).
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Table 1 General features of the four Alpinia plastomes
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A. galanga A. nigra A. officinarum A. oxyphylla
GeneBank Accession number MK940825 MK940826 MK940823 MK940824
Plastome Length (bp) 160,590 164,294 162,140 161,394
LSC? Length (bp) 87,702 88,970 87,267 87,293
e Length (bp) 17,908 15,422 15,349 16,177
IR® Length (bp) 27490 29,951 29,762 28,962
Number of Genes 135 135 135 135

LSC Large Single-Copy region
P$SC Small Single-Copy region

“IR Inverted Repeat region

Table 2 Type and number of Simple-Sequence Repeat (SSRs) found in the four Alpinia plastomes

Type

Repeat Unit

Numbers of Repeats

A. galanga

A. nigra

A. officinarum

A. oxyphylla

Mono-
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Penta-

Hexa-

Total No.
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AACT/AGTT
AATG/ATTC
AATT/AATT
ACAT/ATGT
AAAAT/ATTTT
AAATC/ATTTG
AAATT/AATTT
AACCC/GGGTT
AATAT/ATATT
AATATT/AATATT
AAATAT/ATATTT
AAGAGG/CCTCTT
ACTATC/AGTGAT
AAATTT/AAATTT
AAAATT/AATTTT

172
7
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2
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o W

O O O O O O w o o o o

293

179
6
65

1

21

o O o o o~ O o O w

o O o o o

294

178
7
64

o O

o O O o o o

296

177
7
64

o w o O

o O

o O O O O o O O

293




Yang et al. BMC Plant Biology (2021) 21:431

Table 3 Dispersed repeat sequences identified in the four
Alpinia plastomes. REPuter was used to recognize repeat
sequences with length = 30 bp and identity = 90%. F forward,
P palindromic, R reverse, and C complement

Type Size (bp) A. galanga A. nigra A. officinarum A. oxyphylla

F 30-39 2 5 4 5
40-49 12 11 7 7
50-59 1 1 2 2
60-69 0 0 2 2
270 3 5 0 0
P 30-39 8 3 18 14
40-49 13 14 8 8
50-59 1 1 3 3
60-69 0 0 2 2
270 4 3 0 0
R 30-39 1 1 0 4
40-49 0 1 0 0
50-59 0 0 0 0
60-69 0 0 0 0
270 0 0 0 0
@ 30-39 0 0 2 2
40-49 0 0 0 0
50-59 0 0 0 0
60-69 0 0 0 0
270 0 0 0 0
Total 45 46 49 49

Hypervariable regions can be used to resolve phyloge-
nies and to discriminate closely related plant species
[27]. The pairwise comparison of intergenic spacer re-
gions was conducted to identify divergence hotspot re-
gions among the five Alpinia species using the Kimura
2-parameter (K2p) model. The average K2p distance
ranged from 0.00 to 6.793 among 59 IGSs extracted
from these species. Among them, the IGS regions psbE-
petL, petN-psbM, accD-psal, petD-rpoA showed the lar-
gest distances of 6.79, 6.32, 5.51, and 5.27, respectively
(Fig. 4, Table S23).

Phylogenomic analyses based on plastome data

The availability of more complete plastome sequences of
Alpinia species allows us to conduct phylogenomic ana-
lyses with higher resolution in Zingiberaceae (Fig. 5).
We performed a phylogenetic analysis using the Max-
imum likelihood (ML) method based on DNA sequences
of 77 genes shared among 20 species from Zingibera-
ceae, including the four Alpinia species sequenced in the
study (Table S24). The sister genus of Alpinia is Amo-
mum with a Bootstrap score (BS) of 100. The species of
Alpinia are distributed in two main clades. The first
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clade (BS: 100) is formed by A. galanga and A. nigra,
both medicinal species. The second clade (BS: 100) con-
tains most of the species sampled to date. These species
are from the tropical and subtropical geographic regions
and many species are of medicinal value. Two accessions
of A. oxyphylla are clustered together (BS: 99), which are
subsequently clustered together with A. officinarum
(Fig. 5). Also, the phylogenetic positions of A. galanga
and A. nigra were reported for the first time based on
the plastomes. The bootstrap scores are high for all
branches indicating the high degree of reliability of the
phylogenetic tree.

Phylogenetic analysis based on nuclear markers

The low-coverage sequence data generated from this
study allowed us to perform phylogenetic analysis using
additional nuclear markers. We extracted nuclear genes
from sequence data among the Angiosperms-mega 353
gene set [28]. Among these genes, 352, 353, 353, 352
genes had mapped reads, and the reads mapped to 173,
28, 93, 59 genes were assembled into contigs for A. ga-
langa, A. nigra, A. officinarum, and A. oxyphylla, respect-
ively. Among these assembled contigs, only four genes
(AT4G04780, AT3G53760, AT5G53800, AT1G06240)
were shared among the four species. These four genes
were used to construct a phylogenetic tree using the same
method as that for the complete plastome sequences. The
reconstructed ML tree with these four genes was well re-
solved overall. And two of the nodes were supported with
bootstrap values of 75 and 69 % (Fig. 6). Among the four
Alpinia species, A. galanga was sister to A. nigra, and A.
officinarum was sister to A. oxyphylla. To compare if the
relationships in both the nuclear and plastome trees are
consistent, the phylogenetic analysis of plastomes with the
same taxon sampling as the nuclear tree was conducted.
The relevant result was consistent with the results of
phylogenetic inferences obtained with nuclear markers
(Fig. 6). This approach enabled us to define further the
phylogenetic relationship between the four Alpinia species
using nuclear genes.

Variation and evolutionary selection of protein-coding
genes

Purifying/positive selection analyses of 77 protein-coding
genes in the Alpinia plastomes showed that most genes
exhibited w values less than 0.5. Five genes (psbl, petN,
psbM, petL, and psbT) had the lowest w ratios close to
0. In contrast, the w values of ycf2, accD, rpl23, rps7, and
ycfl were more than 1.00, respectively (Table S25). The
results showed that the genes accD and ycfl were under
positive selection. The likelihood ratio test identified
three and five amino acid sites in accD and ycfl that
were positively selected (under posterior probability >
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0.95), respectively (Table 4). These sites are also highly
polymorphic in the two genes.

Molecular marker development based on Alpinia
plastomes

To discriminate the five medicinal Alpinia species, we
selected two hypervariable IGS regions, petN-psbM, and
psal-rpl33, to develop two DNA markers named Alpp
and Alpr, respectively. The PCR primers used to amplify
these two markers are shown in Table S26. PCR amplifi-
cation of total DNAs from all five medicinal species
samples resulted in products having expected size (Fig. 7,
Figure S12, Table S27). The DNA fragments were ex-
tracted from each band and then subjected to Sanger se-
quencing. The sequencing results were identical to the
expected sequences (Figures S13 and S14). Marker Alpp,
derived from the petN-psbM IGS region, has two spe-
cific SNP loci and one Indel loci. These three variable
loci can be used to differentiate three of the five Alpinia
species, except A. officinarum and A. oxyphylla. The
marker Alpr, derived from the psaJ-rpl33 1GS region. It
has two SNP loci and one Indel loci. When using the
SNP and Indel loci from both Alpp and Alpr, all the five
species can be differentiated successfully (Fig. 8). We
also have tested the new primers on all ten available
Alpinia plastomes obtained from NCBI and this study in
silico. These markers can discriminate all eight species

based on the SNP and Indel loci from both Alpp and
Alpr (Figures S15 and S16).

Discussion

Here, we studied five medicinal Alpinia species, Alpinia
galanga, A. hainanensis, A. officinarum, A. oxyphylla,
and A. nigra. We sequenced the four plastomes of these
five species. Three of them belonging to Alpinia ga-
langa, A. officinarum, and A. nigra were reported for the
first time. Two plastomes of A. oxyphylla were released
during the study period. We carried out a detailed ana-
lysis of the genome features, performed the phylogenetic
analysis with plastid proteomes and nuclear makers.
Lastly, we developed a set of two primers that can distin-
guish these five medicinal species.

Compared to the plastomes of previously published
Alpinia species, all the plastomes presented in this study
exhibited consistent genomic structure, gene order, and
content. And there are no significant structural rear-
rangements, such as inversions or gene relocations
(Fig. 1, Table S1). The size of the A. oxyphylla plastomes
(MK940824) in this study is almost identical to the other
two reported plastomes, which were 161,394 bp
(MK940824), 161,410 bp (MK262729) [19], and
161,351 bp (NC_035895) [18]. We found that the most
abundant mononucleotide SSRs are of polyadenine or
polythymine repeat types in the four Alpinia species,
consistent with those reported previously [29]. Plastomes
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are well-arranged, except for the expansion of the IR re-
gions in the Alpinia species. Judged from comparative
analysis with the plastome of Z. spectabile as a reference,
the IR lengths of all the four Alpinia species plastomes
were all increased to > 160 kbp. Also, one evidence sup-
porting this expansion is that the rps19 gene has moved
to the IR regions. In other species of Alpinia, plastomes
reported so far [18, 19], the entire rps19 gene is also lo-
calized in the IR region, which is consistent with our
findings. The analysis revealed that the four Alpinia spe-
cies sequenced in our study have heteroplasmy sites in
their plastomes. However, the positions of these detected
heteroplasmic sites and two developed molecular
markers did not overlap.

Classifications and phylogenetic analysis among Zingi-
beraceae were previously reported based on morpho-
logical features and DNA sequences of the nuclear
internal transcribed spacer (ITS) and plastid matK re-
gions [1, 30-32]. We use four new plastome sequences
to define the position of four Alpinia species in Zingi-
beraceae. The new accession of A. oxyphylla sequenced
(MK 940,824) in this study was most closely related to
the other one A. oxyphylla plastomes reported previ-
ously (NC_035895) [19]. To date, the phylogenetic infer-
ence of Alpinia species has mainly relied on plastid

markers [18, 19] and few multi-copy nuclear ribosomal
regions such as ITS [33]. Our phylogenetic analysis re-
sults create reliable phylogenies of the four Alpinia spe-
cies sequenced by us using the nuclear markers for the
first time. In addition, phylogenetic analysis using plas-
tome and nuclear sequences revealed the identical
phylogenetic relationships for the four Alpinia species.
Because of the lack of mobility, plants must deal with
the challenge of abiotic stresses, such as soil salinity,
drought, and extreme temperature. Many genes from
plastomes, such as clpP [34], rbcL [35], and matK [36],
ycfl and ycf2 [37], have been positively selected. The
positive selection of the plastome genes may serve as an
adaptive evolution for adjusting to environmental
changes. In the selective pressure analysis, five genes
were positively selected, and their selection might reflect
the adaptive evolution of these Alpinia species. The re-
sults are consistent with the reports that accD and ycf1
evolved under positive selection in the Zingiber plas-
tomes [37]. Particular amino acids were identified to
have been positively selected in two genes, accD, and
ycfl. For example, the plastid accD is an essential gene
required for leaf development [38], and the ycfl is cru-
cial for plant viability [39]. In the current research, all
four Alpinia species studied distributed in tropical and
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subtropical areas. Their living environment’s high
temperature and humidity may be the reason for the
positive selection of the accD and ycf1 genes.

One of our goals is to develop markers that can distin-
guish the five medicinal Alpinia species. DNA markers
derived from the plastomes have been widely used and
are considered highly discriminatory for species identifi-
cation such as Panax and Cruciata, including SNPs and
InDels [22, 40]. So far, these plastome-derived DNA
markers are usually used to analyze intraspecies level di-
versity and phylogenetic analysis in Alpinia [20, 21]. The
most variable regions of the complete plastome can be
used for DNA barcoding of closely related plant species
[27]. Therefore, we developed the specific markers for
discriminating Alpinia species based on the plastomes’
hypervariable regions. The hypervariable regions identi-
fied in our study, such as petN-psbM, psaC-ndhE, accD-
psal, were similar to those reported previously [19]. We
found two markers derived from the petN-psbM and
psal-rpl33 1GS regions that successfully distinguished
the five Alpinia species. The marker Alppl can’t dis-
criminate between A. officinarum and A. oxyphylla, be-
cause they are more closely related than with the other
studied species. It has to be used combined with the
marker Alprl for successful discrimination of the five
Alpinia species.

Only a handful of Alpinia plastomes are sequenced
and available in databases. Because the genus includes

more than 200 spp., the information on the phylogeny of
the genus is still rather limited. The complete Alpinia
plastome sequences provided in this study expanded the
taxonomic sampling and subsequently formulated new
hypotheses about new potential relationships among
Alpinia taxa [41]. From this point forward, additional
plastomes of Alpinia species should be sequenced, which
allow us to take a broad view of the evolutionary rela-
tionship and evolutionary processes of Alpinia species,
lay the foundation for the further usage of these plants
for the benefit of human lives. In this study, we devel-
oped molecular markers for the five Alpinia species that
are of economic importance. With the identification of
additional economically important Alpinia species, the
same methodology can be used to identify their corre-
sponding differentiating markers.

Conclusions

The complete plastomes of A. galanga, A. nigra, and A.
officinarum are reported for the first time in this study.
In addition, two molecular markers were developed from
the hypervariable regions that can distinguish these five
medicinal Alpinia species. The results obtained from
these studies will contribute to our understanding of
Alpinia classification, plastome evolution, and the dis-
crimination of medicinal products derived from Alpinia
species.
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Methods China (108°19” E, 22°51’ N, 530,023), for the four species:

Plant materials and total DNA preparation
Fresh leaves were collected from plants grown in the
Guangxi Medicinal Plant Garden in Nanning, Guangxi,

A. galanga, A. nigra, A. officinarum, and A. oxyphylla.
We collected these samples from five individual plants
with different genotypes for each species for sequencing.

Alpinia galanga MK940825

Alpinia nigra MK940826

MK840823

|
0.20

the nuclear tree using the same methods in phylogenomic analysis

Alpinia
Alpinia oxyphylla MKIA40824--------wvveesosiviosivin

Orysa sativa L

0.050

Fig. 6 Phylogenetic trees based on common genes identified using HybPiper pipeline and the shared DNA sequences of 77 protein-coding
genes in the plastomes for the same five species. The phylogenetic tree on the left panel was constructed with the sequences of 4 shared
contigs for nuclear genes present in 4 Alpinia species found by the HybPiper pipeline using the maximum likelihood method implemented in
Phylosuite. The Oryza sativa L. was used as the outgroup. Bootstrap support scores were calculated from 1000 replicates. And the phylogenetic
tree on the right panel was constructed with the shared DNA sequences of 77 protein-coding genes in the plastomes of the same five species in
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Table 4 Likelihood ratio tests to identify positively selected sites within the accD and ycfT genes across 21 Alpinia plastomes
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Gene Model compared Df* -2dinL® p-values of LRT® Positively selected sites®
accD M1a (neutral) vs. M2a (selection) 2 17.060598 0.000197396
M7 (beta) vs. M8 (beta & w >1) 2 17.143904 0.000189343 1 F 0.995*,
241 0.997*%,
181 N 0.977*
M8a (w=1) vs. M8 (selection) 1 17.051707 0.000036376
ycf1 M1a (neutral) vs. M2a (selection) 2 17.751095 0.000139765
M7 (beta) vs. M8 (beta & w >1) 2 15933493 0.000346805 3 F 0.964%,
141 F 0.969%,
259 E 0.968%,
303 Y 0.965%,
326 L 0.990**
M8a (w=1) vs. M8 (selection) 1 15.839639 0.000068943

?Degree of freedom
PDifference between the log likelihood values
°LRT Likelihood Ratio Test

9Sites potentially under positive selection, indicated by the high Empirical Bayes values (*: > 0.95; **': > 0.99)

The samples were silica-dried and stored at the Herbar-
ium of the Institute of Medicinal Plant Development
(voucher numbers: Implad201910413, Implad201910414,
Implad20180327, and Implad20180362). To develop mo-
lecular markers of Alpinia species, we collected fresh
leaves of another group from Guangxi Medicinal Plant
Garden in Nanning, Guangxi, China, and the ginger gar-
den of South China Botanical Garden, China (113°36 E,
23°18 N, 510,650). All samples were collected with per-
mission from the Garden authorities. Detailed informa-
tion is shown in Table S27. A plant genomic DNA kit
(Tiangen Biotech, Beijing, Co., Ltd.) was used to extract
total DNAs. The purity of total DNA was evaluated
using electrophoresis on 1.0 % agarose gels. And the
concentration was measured using a Nanodrop spectro-
photometer 2000 (Thermo Fisher Scientific Inc., Wal-
tham, MA, USA). This study complies with relevant
institutional, national, and international guidelines and
legislation.

Plastome sequencing, assembly, and annotation

The sequencing libraries of total DNA from each species
were prepared using the TruSeq DNA Sample Prep Kit
(lumina, Inc., San Diego, CA, USA) following the

manufacturer’s instructions. The total DNA was sheared
into fragments at approximately 500 bp long for paired-
end library construction. The libraries were sequenced on
an Illumina HiSeq 3000 platform (Illumina Inc, San
Diego, CA, USA). After obtaining the paired-end reads
(2x 250 bp), we downloaded the plastid genomes from
the GenBank database (https://www.ncbi.nlm.nih.gov/
genome/organelle/). These plastome sequences were used
to search against Illumina paired-end reads using BLASTn
with an E-value cutoff of le-5. The filtered reads were
considered plastome-related and used for the downstream
genome assembly. SPAdes (v. 3.10.1) [42] and CLC Gen-
omics Workbench (v. 7, QIAGEN, Aarhus, Denmark)
were used for de novo assembly. The dot plot of the con-
tigs and reference genome were constructed and visual-
ized for evaluating the assembly quality. The contigs were
subjected to reassembly using the Seqman module of
Lasergene (v. 11.0, Madison, Wisconsin). Only one contig
was obtained for each of the Alpinia species.

We used the CpGAVAS2 web server [43] was used to
annotate the four genomes. Cutoffs for the E-values of
BLASTn and BLASTx were set to le-10. After the pre-
filtering step, the number of top hits for annotation in-
cluded in the reference gene sets was set to 10. Manual

-

Fig. 7 The gel electrophoresis results of the amplification of DNA barcodes using designed primers. Lane M was the marker of DL1000. The lanes
from left to right corresponded to products amplificated from the first individual of A. galanga, A. hainanensis, A. nigra, A. officinarum, and A.
oxyphylla by primer Alpp and Alpr, respectively. The original uncropped image is shown in Figure S12



https://www.ncbi.nlm.nih.gov/genome/organelle/
https://www.ncbi.nlm.nih.gov/genome/organelle/

Yang et al. BMC Plant Biology (2021) 21:431

Page 12 of 16

G

Alga1_Alpp Ak ks
L/\/\l‘\/\ﬂ\/\"‘_\L
R .

Alha1_Alpp o 7
O YWV Y

( G T G T 6
ANAAN /\/"\ /\ I\ MJ\ N Mj\
C G ( T G G

C G C T CC ( cT G G« G
AM / & MAMAMN /\/\n\ /\/\N\\ﬂ AW\
( T G G C C( G G« G

‘\/\/\ /F\ /\ /\l“/\\ /\ "‘h\\ {\‘ /QJ\F ’F\\ [’F\H’k/\ 4
‘ 6 [ 3

[4 T cT

Alni1_Alpp

AN \
W IAAAVY

6 C

ANAAN \ N AR \ A
AN /\A" /\ »/\ /\ /\ /\u’\ e /(\/\/\
C G C «

G 6

Alof1_Alpp

Alox1_Alpp

/\rfl /\A A /\J\[\A /\/‘A “/\\ /\/\ w‘j\\ /\“ﬂ\ ‘/ﬂv\/’\_/\l\[k“ﬂ\ﬂ A I

Alga1_Alpp agatatal-atctaatc atgtacatacatattftatattga)

IALEYI:\IJsllagatatalslatctaatclsatgtacatacatattftatattga
Alni1_Alpp agatataiatctaatc atgtacatacatattz tatattga)
Alof1_Alpp agatataiatctaatcatgtacatacatatt tatattgal

N[O ql:\[.].Bagatatasatctaatcldatgtacatacatattftatattgal

C T C( G ( ( T6 T G
YA WYY AJJ\A M/\ /WA ’J\ / /\//J\ l
A B

Alof1_Alpr

G 6 G
Alga1_Alpr A A A A
- N NAA AN AT AN \ A
WA\ W WYV WA RAANAMPAAMAANN
H G 6 G U
Alha1_Alpr i
\ //\ /\j,’\ j‘\ N ’H\ /\f\ AMA AN 0\ I
19 6 G G
Alni1_Alpr )
N s AaanA A AAAAR )\
AN\ /\”J\ﬁ JATATAVAY WAV AN
G T G G C C

Alox1_Alpr

' flaa A I
AVA A _J\s‘\/\" ATV VWA
D

Algal_Alpr gttagaaagaa

PALEVINJdot tagaaasaaaitgtattt atctataaaata
Alni1_Alpr gttagaaa!aa Ctgtatttd atctataaaata

I\GlaW:-\[J@lgttagaaapFaaatgtattt atctataaaata
Alox1_Alpr gttagaaagaaa€tgtattt atctataaaata
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corrections were performed to determine the positions
of the start and stop codons and the intron/exon bound-
aries. Codon usage frequency and GC content (i.e., the
relative content of guanines and cytosines) were calcu-
lated using custom scripts. Their circular gene maps
were drawn by the cpgview web server (http://www.
herbalgenomics.org/cpgview/). The raw data and the an-
notated plastomes have been submitted to GenBank.
The accession numbers of raw data were SRR9072115
(A. galanga), SRR9072120 (A. nigra), SRR9080445 (A.

officinarum), and SRR9080447 (A. oxyphylla). The acces-
sion numbers of annotated plastomes were MK940825
(A. galanga), MK940826 (A. nigra), MK940823 (A. offici-
narum), and MK940824 (A. oxyphylla). We tested het-
eroplasmy patterns used NOVOPlasty in the four
sequenced Alpinia species.

Repeat sequence analysis
SSRs were detected using the MISA Perl Script (http://
pgrc.ipk-gatersleben.de/misa/). The minimal numbers of
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repeat units are eight for mononucleotide repeats,
four for di- and trinucleotide repeats, and three for
tetra-, penta-, and hexanucleotide repeats. Long repeat
sequences with a minimal length of 30 bp and hamming
distance = 3 were predicted using REPuter [44]. Tandem
repeat structures were scanned with Tandem Repeats
Finder [45]. We set the parameters to 2 for matches and 7
for mismatches and Indels. In contrast, we set the mini-
mum alignment score and maximum period size to 50
and 500, respectively. The minimum repeat size was
30 bp, and the cutoff for similarities among the repeat
units was 90 %. All of the identified repeat structures were
verified manually. Nested or redundant repeats were
removed.

Phylogenomic analysis

For phylogenetic analyses, the DNA sequences of 77
protein-coding genes from 21 species of the Zingibera-
ceae family were extracted from the whole plastome se-
quences and aligned using MAFFT v.7 [46]. The 77
genes included accD, atpA, atpB, atpE, atpF, atpH, atp],
cesA, cemA, clpP, infA, matK, ndhA, ndhB, ndhC, ndhD,
ndhk, ndh¥, ndhG, ndhH, ndhl, ndh], ndhK, petA, petB,
petD, petG, petl, petN, psaA, psaB, psaC, psal, psa],
psbA, psbC, psbD, psbE, psbF, psbH, psbl, psb], psbK,
psbL, psbM, psbN, psbT, rbcL, rpll4, rpll6, rpl2, rpl20,
rpl22, rpl23, rpl32, rpl33, rpl36, rpoA, rpoB, rpoCl,
rpoC2, rpsll, rpsl2, rpsl4, rpsl5, rpsl6, rpsl8, rpsl9,
rps2, rps3, rps4, rps7, rps8, ycfl, ycf2, ycf3, and ycfd. All
aligned gene sequences were concatenated, and the best-
fit evolutionary model (JTT +F +1+ G4) was selected
following the Bayesian information criterion (BIC) scores
computed by ModelFinder [47]. The maximum likeli-
hood (ML) tree was constructed by IQTREE v1.6.10 [48]
with 1000 non-parametric bootstrap replications, and
Costus pulverulentus, Costus viridis, and Canna indica
as the outgroup taxa. Finally, the consensus tree was vi-
sualized using the MEGA X software [49].

Identification of nuclear markers for phylogenetic analysis
To explore the phylogenetic relationship implied by
single-copy nuclear markers, we used the HybPiper v1.2
[50] to identify nuclear markers among the
Angiosperms-mega 353 gene set [28] from our sequen-
cing reads for the four Alpinia species and then used
them for phylogenetic analysis. The command line is
“./reads_first.py -b mega353.fasta -r sample_001.fastq
sample_002.fastq --prefix sample_result —bwa”. The
HybPiper package contains an internal reference set of
353 genes. It can identify genes from high-throughput
sequencing results that are homologous to these 353
genes and extract them for phylogenetic analysis. In par-
ticular, the expanded Angiosperms353 target file [28],
which is a drop-in replacement for the original
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Angiosperms353 file [51] in the HybPiper analyses, was
used to capture loci in our sequence reads. We identified
the potential genes for phylogenetic analysis as follows.
Firstly, we used the retrieval script in HybPiper to iden-
tify contigs matching each probe (https://github.com/
mossmatters/HybPiper). This was done using the reads_
first.py script. Secondly, the common genes among the
four species were selected. Finally, the contigs of these
genes were used to create a phylogeny. Briefly, a phylo-
genetic tree was constructed with the contigs of these
nuclear genes as above by IQTREE v1.6.10 [48] with
1000 non-parametric bootstrap replications, except the
best-fit model is HKY + F and the outgroup is Oryza
sativa L. The phylogenetic analyses based on these nu-
clear sequences were conducted for the sample taxa as
those based on the shared coding sequences of 77
protein-coding genes in the plastomes.

Selective pressure analysis

The levels of selective pressure for a protein-coding gene
are measured by the ratio of nonsynonymous to syn-
onymous substitutions (w) [15]. To detect the Alpinia
plastid genes that were under positive selection, we ex-
tracted 77 protein-coding genes common to the 21 Zin-
giberaceae plastomes, performed multiple sequence
alignment using MAFFT, and constructed a maximum
likelihood (ML) tree using IQTREE v1.6.10 [48]. Then
we calculated the ratio of nonsynonymous (dN), syn-
onymous (dS) and » (dN/dS) values were using CodeML
in PAML Version 4.9 [52] with a One-ratio model
(model = 0, seqtype = 1, NSsites = 0). If the w value is > 1,
the Bayes empirical Bayes (BEB) method implemented in
the program EasyCodeML which is called site models
(seqtype =1, model =0, NSsites=0, 1, 2, 3, 7, 8) [53]
were used to identify positively selected sites.

Identification of the hypervariable regions

We conducted a comparative genome analysis for the
complete Alpinia plastomes using the software mVISTA
(http://genome.lbl.gov/vista/mvista/submit.shtml) in the
Shuffle-LAGAN mode. The annotated Z. spectabile plas-
tome (NC_020363) was used as the reference in the analysis.
To identify the most divergent regions, we wrote a custom
script to extract the start and end of the IGS regions from
the GenBank files for the five plastomes, together with the
plastome of A. hainanensis. A total of 59 IGSs shared by the
five Alpinia plastomes were identified. The sequences were
extracted and aligned using the ClustalW2 (v. 2.0.12) pro-
gram with options “-type = DNA -gapopen = 10 -gapext = 2”
[54]. Pairwise distances were calculated using the K2p evolu-
tion model implemented in the distmat program from the
EMBOSS package (v. 6.3.1) [55].
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Identification and validation of molecular markers for
species discrimination

We used variable intergenic regions to discriminate the
five medicinal Alpinia species as a template to develop
molecular markers. Primers were designed using the Pri-
mer3 program (http://bioinfo.ut.ee/primer3-0.4.0/). PCR
amplifications were performed in a final volume of 25
uL with 12.5 pL 2xTaq PCR Master Mix, 0.4 uM of each
primer, 2 uL template DNA, and 10.1 pL ddH2O. All
amplifications were carried out in a Pro-Flex PCR sys-
tem (Applied Biosystems, Waltham, MA, USA) under
the following conditions: denaturation at 94 °C for
2 min, followed by 35 cycles of 94 °C for 30 s, at specific
annealing temperature (Tm) for 30 s, 72 °C for 60 s and
72 °C for 2 min as the final extension. PCR amplicons
were visualized on 1.5 % agarose gels and then subjected
to Sanger sequencing on an ABI 3730 x | instrument
(Applied Biosystems, USA) using the same set of primers
used for PCR amplification.
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