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Abstract

Background: Bread wheat (Triticum aestivum L.) is one of the most widely consumed cereal crops, but its complex
genome makes it difficult to investigate the genetic effect on important agronomic traits. Genome-wide association
(GWA) analysis is a useful method to identify genetic loci controlling complex phenotypic traits. With the RNA-
sequencing based gene expression analysis, putative candidate genes governing important agronomic trait can be
suggested and also molecular markers can be developed.

Results: We observed major quantitative agronomic traits of wheat; the winter survival rate (WSR), days to heading
(DTH), days to maturity (DTM), stem length (SL), spike length (SPL), awn length (AL), liter weight (LW), thousand
kernel weight (TKW), and the number of seeds per spike (SPS), of 287 wheat accessions from diverse country
origins. A significant correlation was observed between the observed traits, and the wheat genotypes were divided
into three subpopulations according to the population structure analysis. The best linear unbiased prediction (BLUP)
values of the genotypic effect for each trait under different environments were predicted, and these were used for
GWA analysis based on a mixed linear model (MLM). A total of 254 highly significant marker-trait associations
(MTAs) were identified, and 28 candidate genes closely located to the significant markers were predicted by
searching the wheat reference genome and RNAseq data. Further, it was shown that the phenotypic traits were
significantly affected by the accumulation of favorable or unfavorable alleles.

Conclusions: From this study, newly identified MTA and putative agronomically useful genes will help to study
molecular mechanism of each phenotypic trait. Further, the agronomically favorable alleles found in this study can
be used to develop wheats with superior agronomic traits.
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Background
Bread wheat (Triticum aestivum L.) is one of the most
widely consumed cereal crops worldwide, providing ap-
proximately 30% of dietary energy to humans [1]. Since
the first cultivation of wheat about 10,000 years ago, it
has spread over all continents, a fact which has primarily
been attributed to its wide adaptability to diverse envi-
ronments [2]. Furthermore, the development of plant
breeding contributed to the success of wheat after the
Mendelian genetic law was confirmed in 1900. In par-
ticular, the “Green Revolution” between 1965 and 1985
drastically increased the wheat yield by introducing
high-yielding semi-dwarf wheat varieties [3]. The yield of
winter wheat in the US in 2020 was 3.42 t/ha, which is
almost twice that from 50 years ago [4].
While conventional breeding is dependent on selecting

superior varieties by phenotyping, more recently, with
the development of sequencing technology, molecular
breeding began to utilize genetic diversity among var-
ieties. A number of molecular markers such as simple

sequence repeat (SSR), random amplified polymorphic
DNA (RAPD), and restriction fragment length poly-
morphism (RFLP) have been utilized in plant breeding
[5–7]. However, since the cost of next-generation se-
quencing (NGS) has begun to decrease, single nucleotide
polymorphisms (SNPs) are now becoming the most fre-
quently used marker, owing to their abundance through-
out all plant species [8].
Genome-wide association selection (GWAS) is a useful

method for identifying candidate genes explaining
phenotypic traits by testing the association between the
marker type and the phenotype of individuals in a popu-
lation [9]. As a genotyping tool for GWAS, genotyping-
by-sequencing (GBS) is one of the popular methods, and
array-based and NGS-based platforms for genome-wide
high-throughput genotyping have been developed for a
number of crops, such as maize [10], rice [11], and bar-
ley [12]. For wheat, several SNP genotyping arrays have
been developed, including the 9 K [13], 15 K [14], 35 K
[15], and 90 K [16] arrays. Among them, the 90 K iSelect

Table 1 Basic statistics of the phenotypic variations observed for nine quantitative traits

Trait Environmenta Genotype Mean SD Min. Max. Median CV H2

Winter survival rate (0: 0–10% to 9: 90–100%) E1 287 4.171 2.796 0 9 4.500 0.670 0.606

E2 287 4.681 2.370 0 9 5.000 0.506

Days to heading E1 260 214.8 2.904 204.0 218.0 216.0 0.014 0.848

E3 188 189.3 2.136 181.0 195.0 189.0 0.011

E4 188 180.1 4.056 168.0 188.0 180.0 0.023

Days to maturity E1 135 253.0 1.789 249.0 258.0 253.0 0.007 0.815

E3 188 224.4 2.292 219.0 230.0 224.0 0.010

E4 188 217 2.904 209 222 217 0.013

Stem length (cm) E1 260 77.96 15.288 40.00 122.70 74.55 0.196 0.632

E2 249 82.540 10.432 50.700 107.300 82.700 0.126

E3 188 77.7 9.763 51.0 106.0 77.0 0.126

E4 188 88.09 12.085 56.00 123.00 86.50 0.137

Spike length (cm) E1 259 9.449 1.723 6.000 14.300 9.500 0.182 0.773

E2 249 9.116 1.430 3.300 13.000 9.000 0.157

E3 188 8.974 1.023 5.900 12.000 9.000 0.114

E4 188 8.719 1.060 5.500 11.800 8.700 0.122

Awn length (cm) E1 258 5.718 1.806 0.000 9.700 5.900 0.316 0.375

E2 249 5.286 1.550 0.000 9.800 5.500 0.293

E3 188 4.915 1.675 0.000 8.300 5.100 0.341

E4 182 4.729 1.479 0.500 9.100 4.800 0.313

Liter weight (g) E1 255 825.600 53.909 460.000 960.000 828.000 0.065 0.051

E3 188 789.7 19.648 731.0 833.0 793.0 0.025

Thousand kernel weight (g) E1 269 37.830 5.952 24.000 54.000 37.800 0.157 0.641

E3 188 41.65 4.180 30.90 53.30 41.70 0.100

Number of seeds per spike E1 169 52.770 13.283 26.300 91.300 52.300 0.252 0.421

E3 188 35.27 5.731 15.00 51.00 36.00 0.163
a E1: Deokso in 2018–2019 season, E2: Deokso in 2019–2020 season, E3: Jeonju in 2018–2019 season, E4: Jinju in 2018–2019 season
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SNP genotyping array, which was developed using 19
bread wheats and 18 durum wheats, is one of the most
reliable and widely used tools, and a number of SNPs re-
lated to important agronomic traits, such as kernel size
[17], grain yield [18], and spike related traits [19], have
been identified using the array. Furthermore, with the
recent announcement of the wheat reference genome
[20], the functional annotation of the genes located near
each SNP has become available.
In this study, we observed nine phenotypic traits of

287 wheat accessions from diverse origins in different
environments. The phenotypic data were statistically an-
alyzed, and the relationship between each trait was eluci-
dated. Genotyping of the wheat accessions was
performed using the wheat 90 K iSelect SNP genotyping
array, and GWA was analyzed. From the GWA analysis,
a number of significant genetic loci related to pheno-
typic traits and candidate genes were suggested, which
will be helpful in developing agronomic traits-fortified
wheats.

Results
Phenotypic data and correlation analysis
A total of nine agronomic traits of 287 wheat lines were
observed in two to four different environments and ana-
lyzed (Additional file 2: Fig. S1 and Table 1). It was

observed that WSR had the largest variation while DTH
and DTM had the smallest variation among the geno-
types based on the CV. H2 ranged between 0.051 and
0.848 in which LW and DTH had the smallest and lar-
gest values, respectively. From the ANOVA analysis
(Additional file 3: Table S2), it was revealed that signifi-
cant differences were present among the genotypes (p <
0.0001) and the environments affected these traits
(Genotype * Environment p < 0.0001). The Pearson’s
correlation coefficient between each observed trait’s
BLUP, except for WSR, was calculated (Fig. 1). DTH was
positively correlated with DTM, SL, SPL, AL, and SPS,
and DTM was positively correlated with SPL and SPS. A
positive correlation was also observed between SPL and
AL, TKW, and SPS, and between AL and TKW, while a
negative correlation was observed between SL and SPS,
and between LW and SPS.

Genome-wide distribution of SNP markers
Of the 81,587 SNP markers from the wheat 90 K iSelect
array used in the genotyping, 30,218 remained after re-
moving the markers with minor allele frequency < 0.05
and missing data > 10% (Additional file 4: Table S3). The
SNPs were distributed on all the chromosomes, with
5496; 5853; 3984; 2565; 4313; 3935; and 3900 on chro-
mosomes 1–7, respectively. A total of 172 SNPs were

Fig. 1 Pearson’s correlation analysis of the observed agronomic traits’ best-linear unbiased prediction (BLUP) values. The distribution of each
dataset is shown on the diagonal, and the bivariate scatter plots with a fitted line and the value of the correlation (R2) plus the significance level
are represented as stars on the bottom and top of the diagonal, respectively. DTH; days to heading, DTM; days to maturity, SL; stem length, SPL;
spike length, AL; awn length, LW; liter weight, TKW; thousand kernel weight, SPS; the number of seeds per spike (***: p < 0.001, **: p < 0.01,
*: p < 0.05)
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not physically mapped onto the wheat reference se-
quence. When comparing the subgenomes, the markers
were mostly positioned on the A and B genomes, with
13,408 and 12,629, respectively, whereas only 4009
markers were located on the D genome. The range of
the locations of the markers on the chromosomes was
diverse, with the smallest for 1D from 31.5 to 498,397 kb
and the largest for 3B from 240.2 to 851,642 kb.

Population structure and linkage disequilibrium (LD)
The population structure of the 287 wheat genotypes
was investigated following the ΔK method, followed by
validation via PCA and neighbor-joining kinship matrix
analysis. The outcomes of the three analyses indicated
that the genotypes could be divided into three subgroups
based on their genotypes (Fig. 2 and Additional file 1:
Table S1). The largest group (G1) contained 168 geno-
types, and G2 and G3 consisted of 72 and 46 genotypes,
respectively. The wheat genotypes derived from the
same country of origin were usually in the same sub-
group. The wheats originating from Australia, Austria,
Bulgaria, Canada, Ethiopia, Hungary, India, Ukraine, and
Uzbekistan belonged to G1, while those from
Afghanistan, Argentina, Colombia, and Russia belonged
to G2. Some of the wheats that came from China, Japan,
Mexico, North Korea, and the USA were in both G1 and
G2. The Korean breeding lines were divided into three
subgroups, but those with “Keumgang” wheat as an an-
cestor mostly belonged to G3.

From the LD decay analysis, critical r2 value 0.34 was
identified for all wheat genotypes by taking the 95th per-
centile of the coefficient square (represented by the red
dashed line in Additional file 9: Fig. S4). The highest
number of pair-markers were found on the A genome
(44%) followed by the B genome (42%) and the D gen-
ome (14%). It was observed that LD decay distance in D
chromosome was longer than that of A and B chromo-
some as shown in Fig. S4. The LD decay was con-
structed using chromosomal distance and the critical r2

value as the threshold to indicate the LD decay length,
which attained 250 kb for the whole genome.

Genome-wide association and gene expression analysis
The MTAs of nine agronomic traits were identified via
MLM with K +Q or K + P, followed by inspection of Q-
Q plots and Manhattan plots. The MTAs with -log10P >
3 were designated as significant, and the MTAs identi-
fied in both the K +Q and the K + P analysis were iden-
tical. The Manhattan plots of MTAs were revealed from
the K +Q analysis, and the Q–Q plot and MAF plot of
the SNPs are shown in Fig. 3 and Additional file 5: Fig.
S2, respectively. The number of significant MTAs identi-
fied in each agronomic trait were 63, 20, 17, 31, 23, 40,
24, 31, and 6 for WSR, DTH, DTM, SL, SPL, AL, LW,
TKW, and SPS, respectively (Additional file 7: Table S4).
The chromosomal distribution of the MTAs in each trait
was diverse among the chromosomes, as shown in Add-
itional file 7: Table S4.
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Fig. 2 Population structure and diversity analysis of 287 wheat genotypes used in this study based on 30,217 SNP markers. a Population structure
based on the STRUCTURE program when K = 3. G1, G2 and G3 represent each sub-population. b Δk over three repeats of structure analysis. c
Kinship matrix of 287 wheat genotypes based on the TASSEL5 program
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The genes located within 250 kb of each significant
locus were searched and annotated using the IWGSC
Wheat RefSeq v1.0. Based on the public RNAseq data, a
total of 28 genes with more than 2-fold gene expression
increase under cold treatment or with the relevant
tissue-specific expression were selected (Table 2 and
Additional file 6: Fig. S3). For WSR, ten genes closely lo-
cated to the significant MTAs were shown to respond to
cold temperatures. Most of the genes were found to be
located on chromosome 5, and each one was located on
chromosome 2 and 4, respectively, while two genes were
located on chromosome 7. For DTH, three genes specif-
ically expressed in the stem axis, flag leaf, or peduncle
were selected and located on chromosomes 2, 6, and 7.
For DTM, nine genes highly expressed in the grain or
spike were screened, among which three were located
on chromosome 4, while one and five genes were located
on chromosomes 5 and 6, respectively. For SL, two
genes representing specific expression in the internode
and peduncle were discovered, each of which was lo-
cated on chromosomes 4 and 5, respectively. For SPL,
one gene was found to be highly expressed in spike,
which was localized on chromosome 2. For AL, one F-
box family protein encoding gene with high expression
in spikelets and awn on chromosome 2 was observed.
For SPS, two genes specifically expressed in grains were
discovered, located on chromosomes 2 and 3.
Real-time PCR was performed to validate the gene ex-

pression of the candidate genes. At least two genes for
each trait were randomly selected and gene expression

was observed. For WSR, TraesCS5A01G391700, TraesC-
S5A01G394900, and TraesCS5B01G454100 showed in-
creased gene expression at 24 h, 12 h, and 12 h after cold
treatment (Additional file 10: Fig. S5). For DTH,
TraesCS6D01G212200 and TraesCS7A01G484300 repre-
sented high expression in stem and peduncle, or only in
peduncle, respectively (Fig. S6A). For DTM,
TraesCS4B01G225800 and TraesCS6A01G407500 were
highly expressed in spike (Fig. S6B). For SL,
TraesCS4B01G052400 represented high expression in
peduncle, and TraesCS5A01G320500 showed high ex-
pression in stem followed by peduncle and spike (Fig.
S6c). For SPL and AL, TraesCS2D01G036800 and
TraesCS2D01G064400 were highly expressed in spike
and flag leaf, respectively (Fig. S6d&e). For SPS,
TraesCS2B01G087000 represented the highest expres-
sion in spike, and TraesCS01G311000 was also highly
expressed in spike (Fig. S6f).

The effect of alleles on agronomic traits
To investigate the allele effect on the observed agro-
nomic traits, the phenotypic data distribution of the
wheat genotypes possessing different numbers of favor-
able or unfavorable alleles in different environments
were compared (Fig. 4). In this study, the high winter
survival rate, shorter days to heading and maturity, short
stem length, spike length, short awn length, heavy liter
weight, and thousand kernel weight, and large number
of seeds per spike were considered favorable. In most
cases, the number of favorable/unfavorable alleles had a
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significant positive or negative effect on each agronomic
trait, except for the unfavorable alleles for WSR, SPL,
and SPS, and the favorable alleles for DTH, SL, AL, and
TKW, for which there were no wheat genotypes posses-
sing all five unfavorable or favorable alleles. Further-
more, the allele effect for each agronomic trait was
observed regardless of different environments, except for
the favorable alleles in E3 for SL and the favorable/un-
favorable alleles in E4 for LW.

Discussion
In this study, nine phenotypic traits of wheat were ob-
served in two to four different environments and utilized
in the GWA analysis (Additional file 2: Fig. S1). WSR
was observed in four environments; however, in E3 and
E4, there was little difference among the genotypes due
to their warm climate condition, and these were there-
fore removed from the analysis. DTH and DTM repre-
sented large variations depending on the different
environments. It was shown that they had higher values
in the cold environment (E1) than in the warm environ-
ment (E4). In the Pearson’s correlation analysis between

each phenotypic trait (Fig. 1), DTH and DTM were
highly correlated with each other, and also represented a
positive correlation with SPL and SPS. This is consistent
with previous studies [21, 22], which might indicate that
nutrient absorption during the longer vegetative devel-
opment period results in a larger spike length, and even-
tually a larger number of seeds per spike. A positive
correlation between AL and TKW was also observed in
a previous study [23], which still needs to be further
studied.
The relationships among the genotypes were analyzed

by three different methods: structure subpopulation ana-
lysis, PCA, and kinship matrix (Fig. 2 and Additional file
1: Table S1). All three analyses produced the same three
subpopulations, which proves the reliability of the geno-
type analysis. It was thus shown that the genotypes were
mostly divided into two subpopulations G1 and G2,
while G3 was mostly composed of KU-developed lines
possessing “Keumgang” as a maternal line. Since the
phenotypic traits of the wheats in G3 were diverse, the
focused investigation of these lines would help to iden-
tify a major QTL in a similar genetic background.

Fig. 4 The effect of alleles on the agronomic traits in different environments. The numbers on the X-axes indicate the number of the favorable or
unfavorable alleles, while the Y-axes represents the phenotypic data distribution of the genotypes possessing each number of alleles. The bottom,
middle and top lines in each boxplot represent 25, 50 and 75% of the phenotypic data, respectively. E1: Deokso in 2018–2019 season, E2: Deokso
in 2019–2020 season, E3: Jeonju in 2018–2019 season, E4: Jinju in 2018–2019 season. The equation of regression line between each phenotypic
data and the number of alleles, and the adjusted R-square values are represented (***: p < 0.001, **: p < 0.01, *: p < 0.05)
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The LD analysis showed that the paired markers were
relatively less in D chromosomes and LD decay distance
was also especially longer in D chromosomes (Fig. S4).
This phenomenon was observed in a previous study

[21]. This might be due to small number of SNPs in D
chromosomes in the iSelect 90 K chip, which had been
caused by little polymorphism in D genome among
wheat genotypes [16]. This is thought to be natural since

Table 2 The significantly agronomic traits-associated markers and the putative genes concerned with the agronomic traits

Gene ID Annotation Associated SNP SNP position on
chromosome

P-value Alleles MAF

Winter survival rate

TraesCS2D01G032800 GroES-like zinc-binding alcohol
dehydrogenase family protein

RAC875_c38003_164 2D:13007354 0.0008 G/A 0.21724

TraesCS4A01G469900 Homeobox BEL1-like protein Kukri_c18677_237 4A:731352373 0.0008 A/G 0.36738

TraesCS5A01G359900 Phosphatase 2C family protein RAC875_c23340_2243 5A:561565292 0.0008 A/G 0.3723

TraesCS5A01G360000 Low temperature and salt
responsive protein

RAC875_c23340_2243 5A:561565292 0.0008 A/G 0.3723

TraesCS5A01G391700 Vrn-A1 IAAV3043 5A:586537895 0.0003 A/C 0.08451

TraesCS5A01G394900 UDP-glucose 6-dehydrogenase BobWhite_c471_2245 5A:588454245 0.0002 A/G 0.44624

TraesCS5B01G397500 ABC transporter B family protein BS00065936_51 5B:574848793 0.0002 A/G 0.16135

TraesCS5B01G454100 Protein kinase family protein wsnp_Ku_rep_c102339_89347150 5B:626668012 0.0003 A/G 0.12121

wsnp_Ex_c53426_56666788 5B:626666488 0.0007 G/A 0.15548

TraesCS7A01G389900 Extracellular ligand-gated ion
channel protein

BS00024617_51 7A:566002702 0.0001 A/G 0.21715

TraesCS7D01G357200 Transmembrane protein, putative Ra_c51831_507 7D:460532222 6.71E-08 G/A 0.0669

Days to heading

TraesCS2D01G468900 Starch synthase family protein CAP11_c1070_54 2D:577071973 0.0002 G/A 0.42179

TraesCS6D01G212200 Phenylalanine ammonia-lyase RAC875_c26887_562 6D:300325843 0.0009 G/A 0.09666

TraesCS7A01G484300 Receptor-like kinase wsnp_Ku_c42539_50247597 7A:675380487 0.0002 C/A 0.08772

Days to maturity

TraesCS4B01G129300 Exostosin family protein RAC875_c35152_372 4B:168404351 0.0009 A/G 0.11228

TraesCS4B01G225800 Proline-rich protein Kukri_c5502_2513 4B:534190263 0.0009 A/C 0.31317

TraesCS4B01G226000 Proline-rich protein Kukri_c5502_2513 4B:534190263 0.0009 A/C 0.31317

TraesCS5B01G356300 UTP--glucose-1-phosphate
uridylyltransferase

RAC875_c30584_75 5B:536161912 0.0004 C/A 0.41472

TraesCS6A01G117600 Homeobox protein wsnp_BG262421A_Ta_2_2 6A:87936718 0.0009 G/A 0.15114

TraesCS6A01G406900 F-box family protein RAC875_c14887_829 6A:612287507 0.0002 G/A 0.19965

TraesCS6A01G407000 F-box family protein RAC875_c14887_829 6A:612287507 0.0002 G/A 0.19965

TraesCS6A01G407500 F-box family protein RAC875_c14887_829 6A:612287507 0.0002 G/A 0.19965

TraesCS6A01G407600 F-box family protein RAC875_c14887_829 6A:612287507 0.0002 G/A 0.19965

Stem length

TraesCS4B01G052400 MYB transcription factor Excalibur_c36630_2194 4B:41020506 0.0007 G/A 0.20285

TraesCS5A01G320500 Myb factor Tdurum_contig30483_167 5A:533701309 0.0004 A/G 0.49734

Spike length

TraesCS2D01G036800 Cullin-associated NEDD8-
dissociated protein 1

BS00062567_51 2D:13994909 0.0008 A/G 0.14312

Awn length

TraesCS2D01G064400 F-box family protein Tdurum_contig42153_6232 2D:27609458 0.0009 G/A 0.08673

Number of seeds per spike

TraesCS2B01G087000 Response regulator 1 BS00067781_51 2B:48944396 0.0006 C/A 0.21617

TraesCS3A01G311000 Cytokinin oxidase/dehydrogenase RFL_Contig2616_1422 3A:549908041 0.0001 G/A 0.05944
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D genome had been relatively recently incorporated into
wheat genome after the mix of A and B genome [1] so
that D genome had little chance to diverge than A and B
genome. The LD decay distance was estimated to be
250 kb, which was higher than 74.7 kb of [18] and lower
than 393 kb of [24].
GWA analysis and candidate gene search for MTA

identified a number of genes with functions relevant to
phenotypic traits (Table 2 and Additional file 6: Fig. S3).
Ten genes were identified for WSR. Six out of ten genes
were located on the long arm of chromosome 5 posses-
sing Fr-1 and Fr-2 locus, which controls cold tolerance
[25]. An earlier GWAS study regarding cold tolerance
also reported that significant MTAs were mostly located
on the long arm of chromosome 5 [24]. They found
polymorphisms in CBF genes, an important transcrip-
tion factor regulating cold response pathway [25], but
MTAs regarding CBF genes were not identified in this
study. Instead, other putative candidate genes in
chromosome 5 were suggested according to previous
studies. TraesCS5A01G359900 (Phosphatase 2C family
protein) belongs to the major group of protein phospha-
tases in plants and plays multiple roles in diverse plant
metabolism. It was found that rice PP2C negatively regu-
lates ABA signaling and enhances abiotic stress toler-
ance in Arabidopsis [26]. TraesCS5A01G360000 (low
temperature and salt responsive protein) was extremely
highly expressed under cold temperature, and the pro-
tein is conserved in diverse species; however, its function
still needs to be elucidated [27]. TraesCS5A01G391700
(Vrn-A1) controls flowering time and is located in the
frost Resistance-1 (Fr-1) locus, which is reported as a
major QTL for cold tolerance [28], and is now thought
to have pleiotropic effects in both traits [29]. TraesC-
S5A01G394900 (UDP-glucose 6-dehydrogenase) is in-
volved in sucrose/polysaccharide metabolism and cell
wall biosynthesis, and the overexpression of UDP-
glucose dehydrogenase from Larix gmelinii in Arabidop-
sis enhanced cold tolerance [30]. TraesCS5B01G397500
(ABC transporter B family protein) is a large ABC trans-
porter family protein, which functions as a plasma mem-
brane modifier that could activate the biotic and abiotic
stress responses [31]. TraesCS5B01G454100 (protein
kinase family protein) is involved in multiple plant me-
tabolism pathways, and several protein kinases such as
calcium-dependent protein kinase (CDPK), CBL-
interacting protein kinase (CIPK), and mitogen-activated
protein kinase (MAPK) have been identified to regulate
cold tolerance in diverse plant species [32]. Putative can-
didate genes on other chromosomes were also suggested.
TraesCS2D01G032800 (GroES-like zinc-binding alcohol
dehydrogenase family protein) is an alcohol dehydrogen-
ase family in wheat, and it was previously predicted that
this gene family may play an important role in anaerobic

waterlogging stress [33]. TraesCS4A01G469900 (Homeo-
box BEL1-like protein) is a BEL1 transcription factor
that interacts with the KNOTTED protein and responds
to wound response, as studied in potato [34]. TraesC-
S7A01G389900 (Extracellular ligand-gated ion channel
protein) is not well characterized in plants, but Ca2+ ion
increase inside the cell is thought to be a triggering fac-
tor of the cold response pathway [35], which makes it a
putative ion channel for Ca2+ influx.
TraesCS7D01G357200 (Transmembrane protein) is not
characterized, but the cell membrane is the key organelle
in cold perception [35] and several transmembrane pro-
teins have been shown to control cold tolerance [36, 37].
For DTH and DTM, three and nine putative genes

were suggested, respectively. DTH and DTM are highly
quantitative traits and also significantly affected by grow-
ing environments. GWAS studies regarding DTH and
DTM have been performed earlier by diverse research
groups [21, 38, 39], but there were no overlapped candi-
date genes and a number of MTAs were identified. The
putative candidate genes we suggest are known to have
functions related to flowering and maturing, but over-
lapped genes with the previous studies were also not
identified. TraesCS2D01G468900 (Starch synthase family
protein) was highly expressed in the stem axis and ped-
uncle; this gene controls the synthesis of amylose in
starch granules, and it has been suggested that it could
increase sugar mobilization at floral transition, thus be-
ing involved in florigenic signaling [40].
TraesCS6D01G212200 (Phenylalanine ammonia-lyase) is
mainly involved in the lignin biosynthesis pathway, but
its knock-down Brachypodium mutant revealed a late
flowering phenotype [41], which might be related to
flowering time in plants. TraesCS7A01G484300 (recep-
tor-like kinase) also represented peduncle-specific gene
expression. Several receptor-like kinases have been
found to be involved in flowering by interacting with the
main flowering regulators [42], which requires further
investigation of this gene. TraesCS4B01G129300 (Exo-
stosin family protein) was mainly expressed in the spike
and anther. The function of this gene has not yet been
elucidated in plants, but its expression in the pistil in to-
mato [43] and in the leaf at floral transition in maize
[44] was observed, which implies its involvement in
flowering regulation. TraesCS4B01G225800 and
TraesCS4B01G226000 encode Proline-rich proteins that
are specifically expressed in the spike. It has been sug-
gested that the tomato hybrid proline-rich protein regu-
lates flower abscission in tomato by controlling the
ethylene response [45], which should be studied in
wheat as well. TraesCS5B01G356300 (UTP--glucose-1-
phosphate uridylyltransferase) was expressed in the an-
ther and the grain, which was proposed as a vegetative
and reproductive phase rate-limiting factor in
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Arabidopsis [46]. TraesCS6A01G117600 (Homeobox
protein) was expressed in developing grains, and overex-
pression of the WUSCHEL homeobox transcription fac-
tor OsWOX13 in rice revealed an early flowering
phenotype [47]. TraesCS6A01G406900, TraesC-
S6A01G407000, TraesCS6A01G407500, and TraesC-
S6A01G407600 encode F-box family proteins that are
highly expressed in the spike or grain. F-box protein is
known to be involved in diverse molecular pathways,
and its regulation of flowering and spike development
has been observed in a number of plant species, includ-
ing wheat [48].
For SL, two MYB transcription factors,

TraesCS4B01G052400 and TraesCS5A01G320500, were
found to be highly expressed in the peduncle and inter-
node. Plant height of wheat is known to be mainly con-
trolled by Reduced Height (Rht) genes through
regulating the pathway of hormones, reactive oxygen
species, and cell wall structure [49]. Previous studies
represented multiple candidate genes that could be in-
volved in the pathway under Rht gene, such as auxin
binding protein and protein kinase [21], zinc finger pro-
tein [39], bHLH74, GDP-mannose transporter and etc.
[50] and we suggest MYB transcription factors as such
candidate genes. Studies regarding MYB transcription
factor in wheat have mostly concentrated on diverse abi-
otic stress tolerance [51]. However, it has been reported
that the novel MYB-like transcription factor OsMPH1
(MYB-like gene of Plant Height 1) regulates internode
cell size and eventually plant height. Further studies to
investigate MYB transcription factor function in plant
height regulation should be performed in the future.
Two single genes were identified as having a putative

role in regulating SPL and AL, respectively. Wheat spike
morphology is known to be controlled by at least three
loci, Q, C, and S, which resides on chromosome 5A, 2D,
and 3D, respectively [52]. These genes affect various
spike traits including spike length, spike morphology,
grain size and shape, but since all known common
wheats have QcS genotype, it is likely that there are
other genes which contribute to spike morphology [53].
For awn length, three dominant awn length inhibitors,
Hooded (Hd), Tipped1 (B1), and Tipped2 (B2) are known
but their functions have not been characterized yet [54].
TraesCS2D01G036800 (Cullin-associated NEDD8-
dissociated protein 1) has not been widely studied, but
in tomato, the suppression of this gene resulted in sev-
eral phenotypic changes, including dwarfism, early flow-
ering, and suppression of seed germination [55]. Its
function in wheat, especially governing spike develop-
ment, still needs to be uncovered. TraesCS2D01G064400
(F-box family protein) is involved in diverse plant me-
tabolism as described above, but its role in awn length
has not been reported. Nevertheless, another GWAS

study in wheat suggested two MYB transcription factors
as putative regulators of awn length [56], which might
imply another uncharacterized role of MYB transcription
factors.
For SPS, two genes showing high expression in grain

were suggested as candidate genes. SPS is positively cor-
related with the number of spikelets per spike [57], and
it is highly affected by biotic or abiotic stresses, which
makes it difficult to find genetic factor determining its
trait. Numerous MTAs or candidate genes were identi-
fied in previous studies, MTAs in chromosome 2A, 4A
[58], 7B [19], and bHLH-encoding gene in chromosome
5D [39]. Our analysis revealed two genes in chromosome
2B and 3A, respectively. TraesCS2B01G087000 (Re-
sponse regulator 1) is one of the signal transduction re-
sponse regulators with an unknown function. One of the
response regulators, the phosphate starvation response
regulator PHR1, is known as a regulator of the phos-
phate starvation response in plants, and it was revealed
that in wheat the overexpression of Ta-PHR1-A1 in-
creased grain yield by increasing the grain number per
spike [59]. TraesCS3A01G311000 (cytokinin oxidase/de-
hydrogenase) regulates plant growth and development
by controlling cytokinin levels in plants. Previous studies
found that the gene expression levels of the cytokinin
oxidase genes TaCKX2.1 and TaCKX2.2 were correlated
with the grain number per spike [60] and TaCKK2.4-si-
lenced wheat lines represented significantly increased
grain numbers per spike [61].
The GWA analysis was performed using the BLUP

values from the combined environments or from the
separate environments (E1 to E4). The consistency of
the MTAs was verified as shown in Additional file 7:
Table S4. However, the markers for some traits such as
DTM in E1, AL in E4, and LW in E4 were not shown in
the combined environment. It might be because these
traits are more variable depending on the environments
than the other traits and also the number of the investi-
gated accessions are different in each environment, so
that significance of each marker can be different in other
environments.
Real-time PCR was conducted to validate the stress-

responsive or tissue-specific gene expression of the can-
didate genes in planta (Fig. S5 and S6). The candidate
genes related to WSR were responsive to cold stress
(Fig. S5), and tissue-specificity of the other genes’ ex-
pressions were mostly consistent with those of the RNA-
seq data (Fig. S3). Especially, TraesCS2B01G087000
represented dramatically high expression in spikes, ap-
proximate 140,000 times higher than in leaves, which
makes it a promise candidate gene for SPS (Fig. S6f).
However, TraesCS2D01G064400 expression did not
show a great difference among the tissues, which could
be because awn tissue was not examined in the real-time
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PCR analysis (Fig. S6e). Further experiments will be
needed to characterize the function of
TraesCS2D01G064400.
The allele effect of the MTAs in each agronomic trait

was observed (Fig. 4). The accumulation of the favorable
alleles was positively associated with a higher WSR,
shorter DTH, DTM, and SL, longer SPL and AL, higher
LW, TKW, and SPS, and the accumulation of unfavor-
able alleles negatively affected those traits. The allele ef-
fect was observed in most of the environments, except
for in E3 for SL and in E4 for LW. This might be par-
tially due to low H2 in LW (Table 1), which implies that
these traits are highly affected by environments rather
than that by genotypes.

Conclusions
In the present study, GWA analysis was performed for
nine phenotypic traits of wheat in the field, and a total
of 254 significant MTAs and 28 candidate genes were
predicted for the seven traits, including winter survival
rate, days to maturity, stem length, spike length, awn
length, liter weight, and seeds per spike. Previously iden-
tified genes with known functions were observed, and
several novel genes with possible uncharacterized func-
tions in each trait were also identified. Further studies of
these candidate genes and the utilization of the signifi-
cant SNP markers will help to verify their molecular
functions in the relevant trait and also to develop agro-
nomic traits-improved wheats.

Methods
Plant materials and phenotype measurements
In this study, 287 wheat cultivars and advanced lines
were planted at the Korea University Experimental Field
Station in the Deokso area (N37.35°, E127.14°, Eleva-
tion = 62 m) in the 2018–2019 (E1) and 2019–2020 (E2)
growing seasons. A total of 189 lines were also planted
in the test field of the National Institute of Crop Science
of Korea in Jeonju (E3; N35.50°, E127.02°, Elevation = 32
m) and Gyeongsangnam-do Agricultural Research & Ex-
tension Services in Jinju (E4; N35.12°, E128.06°, Eleva-
tion = 20 m) during the 2018–2019 growing season. The
field experiments were in accordance with local legisla-
tion of Korea government. Wheat accessions indicated
as “Developed in KU” in “Country of origin” column are
breeding lines developed in Korea University. Any acces-
sions indicated as numbers in “IT number” column are
germplasms that were kindly provided by National Agro-
biodiversity Center in Rural Development Administra-
tion, Korea (Additional file 1: Table S1). The materials
were planted on the 4th, 25th, and 29th of October in
2018, and harvested in June 2019, when the plants were
fully matured in Deokso, Jeonju, and Jinju, respectively.
For the 2019–2020 growing season in Deokso, the wheat

was planted on the 17th of October, 2019 and harvested
in June 2020. Five grams of seeds from each germplasm
were planted in a 1.2 m row spaced 40 cm apart, and the
experiment was conducted in two replications following
alpha lattice design in each region.
Phenotype measurements were performed as follows.

Freezing tolerance was evaluated as winter survival in in-
tegers representing the survival rate of plants per geno-
type, ranging from 0 (0–10%) to 9 (90–100%) after
winter. Heading and spike maturity dates were recorded
when spikes of half of each germplasm had emerged or
browned, respectively. DTH and DTM were calculated
by subtracting the planting date from those dates. Three
plants were randomly selected and SL was measured
from the ground to the bottom end of the spike. The
main spikes of three plants were randomly selected and
the SPL was measured from the base of the rachis to the
topmost spikelet, and AL was measured. SPS was
counted for three spikes in each germplasm. For LW,
200 mL of seed weight of each line was measured and
multiplied by five. For TKW, 200 seeds of each line were
counted and the weight was multiplied by five.

Phenotypic data analysis
All phenotypic data analyses were conducted using R
version 4.4.0 (R Core Team). The mean, standard devi-
ation, median, and coefficient of variation (CV) of quan-
titative data in each environment were calculated. For
each accession, BLUP (best linear unbiased prediction)
values across all environments were calculated using the
“lme4” package [62] in R and the broad sense heritability
(H2) was estimated on the basis of entry mean following
VG/[VG + (VE/y) + Verror], where VG is the genotypic
variance, VE is the environment variance. Verror is the re-
sidual error variance, and y is the number of environ-
ments. Analysis of variance (ANOVA) was conducted by
including the genotypes, environment, and genotype ×
environment interactions as random factors. Pearson
pairwise correlation was calculated for all BLUP traits
using the “cor” function and the “PerformanceAnalytics”
package [63] in R.

Genotyping and SNP calling
For the genotyping assay, leaves were sampled from the
wheats before the booting stage in the Deokso field and
stored at − 80 °C until use. DNA was extracted from a
single plant of each germplasm, according to the USDA
instructor’s manual using the CTAB method [64]. DNA
was sent to the USDA-ARS Small Grain Genotyping
C e n t e r , F a r g o ( h t t p s : / / wh e a t . pw . u s d a . g o v /
GenotypingLabs/fargo) for use in the Illumina iSelect 90
K SNP Assay. SNP allele clustering and genotype calling
were performed with the GenomeStudio Module Poly-
ploid Genotyping 2.0 software (https://support.illumina.
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com/downloads/genomestudio-2-0.html). Markers with
minor allele frequencies < 0.05 and missing data > 10%
were removed, giving a total of 30,218 high-quality SNPs
for use in the population structure analyses and
genome-wide association (GWA) analysis.

Population structure and linkage disequilibrium
The model-based Bayesian cluster analysis program
STRUCTURE v2.3.4 [65] was used to infer the popula-
tion structure. A total of 10,000 burn-in periods followed
by 100,000 Markov chain Monte Carlo (MCMC) itera-
tions from K = 2 to K = 12 clusters were used to identify
the optimal cluster (K). Three independent runs were
generated for each K. An ad hoc quantity statistic, ΔK,
based on the rate of change in the log probability of data
between successive K values [66] was used to predict the
real number of subpopulations. Principal component
analyses (PCAs) were also conducted using the TASSEL
v5.2.57 [67].
The linkage disequilibrium (LD) between the pairs of

30,218 SNP marker was estimated using the TASSEL
v5.2.57 with a sliding window size cut off 100. The LD
decay was analyzed as per physical distance according to
[68]. Briefly, LD was estimated separately for unlinked
loci and for loci on the same chromosome (unlinked r2

and syntenic r2, respectively). Syntenic r2 was plotted
against physical distance on chromosomes and a smooth
line was drawn using the “ggplot2” package [69] in R.
Unlinked-r2 estimates were square root transformed and
then beyond the parametric 95th percentile of that dis-
tribution was likely to be caused by genetic linkage. The
intersection of the smooth line to syntenic r2 with this
baseline was considered as the estimate of the extent of
LD in the chromosome.

Genome-wide association analysis
The BLUP of each accession was used to fit a mixed lin-
ear model (MLM) by applying the residual maximum
likelihood (REML) algorithm, which was calculated to
analyze the phenotypic data and estimate the mean of
each individual over different environments. An associ-
ation test was performed using the GAPIT package v3
[70] in R, and the MLM model utilized trait data with
population structure and PCA to find marker-trait asso-
ciation. The analysis was performed twice for each trait
by either K +Q (kinship and population structure) or
K + P (kinship and principal component), which were
compared with each other. A threshold P-value of 0.001
(−log10(P) = 3) was used to declare significant SNPs for
GWAS results and the SNPs having P-value less than
0.001 were selected. Furthermore, the entire analysis was
conducted in each different environment to validate the
consistent performance of the marker-trait associations.

Quantile-quantile plots were drawn based on the ob-
served and expected log10(P) values.
To identify genes related to each agronomic trait, the

high-confidence annotated genes located ±250 kb prox-
imal to each identified MTA (marker-trait association)
were retrieved from Ensembl Plants (http://plants.
ensembl.org/index.html), and the annotation of each
gene followed the International Wheat Genome Se-
quence Consortium (IWGSC) Wheat RefSeq v1.0. Fur-
thermore, the gene expression of the retrieved genes was
observed using public RNA-seq data. For WSR-related
genes, the RNAseq of 2-week cold-treatment wheat
seedlings was available at the Wheat Expression Browser
(http://www.wheat-expression.com/) and those genes
with a more than 2-fold increase were retrieved. For the
genes concerning the rest of the agronomic traits, except
for LW and TKW, tissue-specific gene expression was
observed at the Wheat eFP Browser (http://bar.utoronto.
ca/efp_wheat/cgi-bin/efpWeb.cgi) and the genes with
TPM (Transcripts Per Million) < 5 were removed. The
heatmap of gene expression was created using the Heat-
mapper (http://www.heatmapper.ca/).
Furthermore, to verify allele effects on each agronomic

trait, the favorable and unfavorable alleles of the five
most significant MTAs in each trait were retrieved.
Then, the phenotypic data distribution of the lines pos-
sessing one to five of each favorable or unfavorable allele
was compared in different environments. The regression
analysis between the number of favorable/unfavorable
alleles and each phenotypic data was conducted using R,
and the boxplots were created using the “ggplot2” pack-
age in R.

Real-time PCR
Gene expression of the candidate genes was observed in
specific tissue or under cold temperature. RNA was ex-
tracted from specific tissues of wheat at heading stage,
which were the first leaf from the ground, stem, ped-
uncle, flag leaf, and spike. In order to observe the gene
expression under cold temperature, three-leaf stage
wheat seedlings grown at 25 °C were exposed to 4 °C.
The RNA extraction was conducted using TRIzol
(Thermo Fisher Scientific Co., USA) and cDNA was syn-
thesized using the PrimeScript™ 1st strand cDNA syn-
thesis kit (Takara Bio Inc., Japan) according to the
manufacturers’ manuals, respectively. Each gene specific
PCR primers was designed using the NCBI Primer-
BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-
blast/index.cgi? LINK_LOC=BlastHome) (Table S5).
Real-time PCR was performed using BrightGreen 2X
qPCR MasterMix (ABM, Canada) in a CFX-96 real-time
PCR machine (Bio-Rad, USA). The Ct values obtained
for each gene were normalized depending on the in-
ternal gene control, and relative gene expression levels
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were calculated using the 2−ΔΔCT method as previously
described [71]. Statistical analysis was performed in R
and differences in gene expression were evaluated with
Student’s t-test or one-way ANOVA (analysis of vari-
ance) followed by a Tukey post hoc test.
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