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Abstract

Background: To understand the mechanism of glucosinolates (GSs) accumulation in the specific organs, combined
analysis of physiological change and transcriptome sequencing were applied in the current study. Taking Chinese
kale as material, seeds and silique walls were divided into different stages based on the development of the
embryo in seeds and then subjected to GS analysis and transcriptome sequencing.

Results: The main GS in seeds of Chinese kale were glucoiberin and gluconapin and their content changed with
the development of the seed. During the transition of the embryo from torpedo- to the early cotyledonary-embryo
stage, the accumulation of GS in the seed was accompanied by the salient decline of GS in the corresponding
silique wall. Thus, the seed and corresponding silique wall at these two stages were subjected to transcriptomic
sequencing analysis. 135 genes related to GS metabolism were identified, of which 24 genes were transcription
factors, 81 genes were related to biosynthetic pathway, 25 genes encoded catabolic enzymes, and 5 genes
matched with transporters. The expression of GS biosynthetic genes was detected both in seeds and silique walls.
The high expression of FMOGS-OX and AOP2, which is related to the production of gluconapin by side modification,
was noted in seeds at both stages. Interestingly, the expression of GS biosynthetic genes was higher in the silique
wall compared with that in the seed albeit lower content of GS existed in the silique wall than in the seed.
Combined with the higher expression of transporter genes GTRs in silique walls than in seeds, it was proposed that
the transportation of GS from the silique wall to the seed is an important source for seed GS accumulation. In
addition, genes related to GS degradation expressed abundantly in the seed at the early cotyledonary-embryo
stage indicating its potential role in balancing seed GS content.

Conclusions: Two stages including the torpedo-embryo and the early cotyledonary-embryo stage were identified as
crucial in GS accumulation during seed development. Moreover, we confirmed the transportation of GS from the silique
wall to the seed and proposed possible sidechain modification of GS biosynthesis may exist during seed formation.
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Background

Chinese kale (B. oleracea), a member of the Cruciferae,
is notable for its high content of glucosinolates (GS),
which show excellent health-promoting properties, as
well as rich contents of carotene and vitamin C [1].
Chinese kale is a vegetable crop that originated in south-
ern China and is a well-known specialty vegetable in
China, with a crisp, tender, and unique flavor [2-4].
Glucosinolates are a class of steroid glycosides synthe-
sized from glucose and amino acids. These compounds
widely occur as secondary metabolites in cruciferous
species, especially Arabidopsis and a large number of
economically valuable vegetables [5-7]. Based on the
amino acids from which the compounds are derived, GS
can be categorized into aliphatic GS, indolic GS, and
aromatic GS [8, 9].

In plants, GS localized within the vacuoles of specific
cells [10]. Upon herbivore damage, GS mix with the en-
zyme myrosinase (EC3.2.1) leading to the formation of
breakdown products [11]. The hydrolysis of indolic GS
leads to the formation of unstable isothiocyanates (ITCs)
and nitriles, whereas aliphatic and aromatic GS mostly
produce noxious ITCs [12]. Different GS groups endow
plants with different resistance against distinct attackers.
For example, indolic GSs act against phloem feeders and
pathogens [13], whereas aliphatic, indolic, and benzyl GS
may affect the performance of chewing insects [14].

The GS content and profiles of GS are exceedingly
diverse in different Chinese kale varieties [15]. GSs are
constitutively present in all tissues of brassicaceous
plants, but differentially distributed over different or-
gans, among which reproductive organs (e.g., seeds,
pods, and developing inflorescences) have the highest
GS content, followed by young leaves and roots [16].
The accumulation of GS is a complex process that may
be regulated by multiple mechanisms [17, 18]. The me-
diators that regulate GS accumulation are mainly related
to three aspects of the process, that is: i) GS biosyn-
thesis, ii) GS degradation, and iii) GS transportation. In
the model plant Arabidopsis, the majority of GS biosyn-
thetic and degradation genes have been identified [19-21].
The synthesis of GS in Arabidopsis involves three inde-
pendent processes: elongation of specific amino acids, for-
mation of the core structure, and secondary modification of
side chains [17, 22]. After comparison with the Arabidopsis
genes, GS biosynthetic homologous genes were identified
in Chinese kale sprouts in our previous study [3]. The deg-
radation of GS in plants may also exert an important influ-
ence on GS accumulation and is mediated by catabolic
enzymes [6]. Myrosinase, also known as p-thioglucosidase,
is a hydrolytic enzyme commonly present in cruciferous
plants that efficiently degrade GSs [11, 23, 24]. Six myrosin-
ase genes (THIOGLUCOSIDE GLUCOHYDROLASE 1-6;
TGG1-TGG6) have been identified in Arabidopsis [25—27].
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In addition, PENETRATION 2 (PEN2) and PYKIO are
capable of hydrolyzing indolic GS in Arabidopsis [28, 29].
Recently, more than half of the B-thioglucosidases in Arabi-
dopsis were shown to exhibit myrosinase activity (BGLU18-
BGLU39) [29, 30]. In addition, transport processes are im-
portant for the reallocation of defensive compounds to pro-
tect tissues of high value in plants. As demonstrated in
Arabidopsis, GSs are translocated to seeds at maturation by
NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER
(NRT1/PTR) family transporters [31-33]. The NRT1/PTR
family includes NPF2.10/GTRI, NPF2.11/GTR2, and
NPF2.9/GTR3. Among these transporters, GTR1 and
GTR2 are widely considered to show GS transport activity,
whereas GTR3 specifically transports the indolic GS 3-
ylmethyl glucosinolate [32, 34, 35].

Vegetable crops harbor a greater number of homolo-
gous genes associated with GS biosynthesis than those
identified in Arabidopsis [36]. However, in Chinese kale,
the homologs that play a crucial role in a specific meta-
bolic process remain unknown, rendering it impossible
to utilize gene editing for the improvement of vegetable
quality. Transcriptome sequencing (RNA sequencing) is
an efficient and widely used technique for acquiring
deep transcriptome information and achieving a thor-
ough understanding of biological transcripts, especially
those involved in a metabolic pathway in a specific tis-
sue. Simultaneously, RNA sequencing analysis is used to
quantify transcript levels and also enables the identifica-
tion of novel transcripts to improve the annotation of a
genome [37]. In a previous study, we have identified
genes related to GS metabolism in Chinese kale sprouts
[3]. However, with the aim to improve the GS content in
Chinese kale sprouts, we observed that the GS content
in sprouts is the result of seed release, biosynthesis, deg-
radation, and transport, among which seed release is a
dominant factor affecting GS accumulation in sprouts
[3]. Therefore, an increase in the seed GS is crucial to
regulate the GS content of Chinese kale sprouts.

The distribution of GS over different parts follows op-
timal defense theory which allows plants to allocate
defense compounds preferentially to the valuable plant
parts which are also attractive to potential attackers [38].
After domestication, varieties with high-value edible
parts are selected, complicating the composition of GS
in seeds. The in silico analysis of GS biosynthetic gene
expression in Arabidopsis indicated the important role
of GS allocation from silique walls to seeds [17, 24].
However, in Chinese kale, which contains different GS
profiles compared with Arabidopsis, knowledge of
sources for GS accumulation accompanying seed devel-
opment is still limited. In the present study, we observed
the decline of GS content in the silique wall and the
increasing accumulation of GS in the seed during the
development of the embryo in Chinse kale. Thus, we
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proposed that the accumulation of GS in the seed may
be related to the transportation of GS from silique walls.
By physiological analysis of GS accumulation with devel-
opment of the seed and corresponding silique wall, we
have identified the crucial stages for GS transition, that
was torpedo- and cotyledonary-embryo, and these two
stages were subjected to the transcriptome analysis after
RNA sequencing. Finally, we concluded possible side-
chain modification of GS may occur during seed forma-
tion in Chinese kale.

Results

Embryo development during Chinese kale seed formation
and accumulation of GS in the seed and corresponding
silique wall

After the emergence of the flower bud, the entire
process of floral and fruit development was tracked
(Fig. 1A). Ten days after bud emergence, the flower was
fully open and the silique was 10 mm in length (day 0).
The silique grew quickly to a length of 35 mm at 9 days
after flowering (DAF) and contained an embryo at the
globular stage. A heart-shaped embryo had developed at
15 DAF in siliques 40-55mm in length. A torpedo-
shaped embryo was observed in siliques 55-65 mm in
length at 31 DAF. The silique became green 10 days later
by which time the embryo had entered the cotyledon
stage. The cotyledonary-embryo stage lasted for 13 days
until the silique became brown (Fig. 1A & B). The em-
bryo diameter and seed size were measured from the
globular to the cotyledonary stages (Fig. 1C). When
the seed coat changed color from white to green, the
embryo transited from the torpedo- to the early
cotyledonary stage and a sharp increase in embryo
diameter was detected without distinct change in seed
size (Fig. 1A & C).

The GS content of the seed and corresponding silique
walls was measured at different developmental stages
(Fig. 2). Eight kinds of GSs were identified including four
kinds of aliphatic GSs (glucoiberin, progoitrin, gluconapin,
and glucoerucin) and four kinds of indolic GSs (gluco-
brassicin, 4-hydroxybrassicin, 4-methoxyglucobrassicin,
and neoglucobrassicin) (Supplemental Table 1). Two ali-
phatic GSs, namely the 3-carbon glucoiberin (GIB) and 4-
carbon gluconapin (GNA) predominated in the seed and
silique wall (Supplemental Table 1). Accumulation of GIB
and GNA in the seeds followed a similar pattern; contents
were relatively low before the torpedo-embryo stage, in-
creased when the embryo entered the cotyledonary stage,
and thereafter high contents were maintained until the
embryo matured (Fig. 2A). The change in GS content in
the corresponding silique walls exhibited the opposite
trend, i.e., GS content was high when the silique grew
from 10 to 65 mm long, and low after the seed coat be-
came green (Fig. 2B). It is worth noting that the salient
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change in GS content was observed from the torpedo-
embryo stage to the early cotyledonary-embryo stage, and
opposite trends for GS accumulation in the seed and cor-
responding silique wall were observed, indicating that GS
may be transferred from the silique wall to the seed during
embryo maturation.

Analysis of transcriptome in seeds and silique walls at
torpedo- and cotyledonary-embryo stages

To clarify the underlying mechanism of GS accumula-
tion during seed formation, seeds and silique walls at the
torpedo-embryo and the early cotyledonary-embryo
stages were subjected to transcriptome sequencing.
Twelve transcriptome databases, comprising seeds and
silique walls at the torpedo-embryo stage (SC and PC,
respectively) as well as seeds and silique walls at the
early cotyledonary-embryo stage (SD and PD, respect-
ively) with three replications of each group, were
constructed.

A total of 58.15 million raw reads was obtained with
an average of 6.47 Gb data for each sample. After filter-
ing, 43.12 million clean reads were mapped to the B.
oleracea genome. The mapped percentage ranged from
80.66 to 84.51%. The average Q30 of the clean reads was
about 93% and ensured the high quality of sequence data
and subsequent analysis (Table 1). We identified 49,281
genes, of which 43,580 were known genes and 5701 were
novel genes. Among the 47,212 new transcripts detected,
22,070 were long-chain non-coding RNA, 19,321 were
new alternative splicing isoforms of known protein-
coding genes, and 5821 were transcripts of new protein-
coding genes.

Next, we analyzed the correlation of sequenced sam-
ples and the distribution of gene expression (Fig. 3).
Principal component analysis (PCA) analysis was per-
formed to evaluate the similarity of the 12 ¢cDNA data-
bases. The three replications of each of the four groups
(SC, PC, SD, and PD) clustered together and gene
expression was strongly correlated within each group
(Fig. 3A). The differentially expressed genes (DEGs) in
the four groups were counted in Fig. 3B. At the torpedo-
embryo stage, 17,363 DEGs between SC and PC were
detected, of which 7363 genes were up-regulated and
10,000 genes was down-regulated. At the cotyledonary-
embryo stage, 23,975 DEGs between SD and PD were
identified, of which 10,177 genes were up-regulated and
13,798 genes were down-regulated (Fig. 3B). During the
transition in embryo development from the torpedo- to
the cotyledonary-embryo stages, 12,507 and 18,628
genes were differentially expressed in the silique walls
and seeds, respectively, among which 4882/6809 genes
were up regulated and 7625/11,819 genes were down
regulated (Fig. 3B). A total of 2941 DEGs common to
the four groups were identified (Fig. 3C).
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Fig. 1 Development of the seed and corresponding silique as well as the morphogenesis of embryo during seed formation in Chinese kale. A
Development of the seed and corresponding silique in Chinese kale. (a) Small flower bud (7 DBF), (b) Big flower bud (1 DBF), (c) 10 mm silique
with seeds (up) and flower (down) (day 0), (d) 20 mm silique with seeds (3 DAF), (e) 35 mm silique with seeds (9 DAF), (f) 40-50 mm silique with
seeds (15 DAF), (g) 55-65 mm silique with seeds (31 DAF), (h) Green silique with seeds (41 DAF), (i) Semi-brown silique with seeds (48 DAF), (j)
Full brown silique with seeds (53 DAF). DAF stands for day before flower and DAF stands for day after flower. B Morphogenesis of embryo during
the formation of seed in Fig. 1A. (a) Globular embryo, (b) Heart-shaped embryo, (c) Torpedo-shaped embryo, (d1) Early cotyledonary embryo and
seed coat, (d2) Medium cotyledonary embryo and seed coat, (d3) Late cotyledonary embryo and seed coat. C Change of embryo diameter and
seed size during seed formation. Three biological replicates were used for the measurements

Analysis of differentially expressed genes during seed Ontology (GO) database (Fig. 4, Supplemental Fig. 1). In
formation total, 24,854 genes were assigned to the biological
To identify the function of the DEGs, functional classifi-  process (BP), cellular component (CC), and molecular
cation was performed based on annotations in the Gene function (MF) categories, which were enriched in 15, 23,
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Fig. 2 The content of predominant GS (GIB and GNA) in the seed (A) and corresponding silique wall (B) during the formation of Chinese kale
seeds. The X axis represents the different profiles of GSs, GIB (Glucoiberin) and GNA (Gluconapin). The Y axis is the content of GSs. Error bars
indicate + SE

Table 1 Summary of RNA-Seq data sets
Sample Total Raw Reads (M) Total Clean Reads (M) Mapped to genome (%) Clean Reads Q30 (%) Clean Reads Ratio (%)

PC1 57.15 4294 82.77 93.14 75.13
PC2 58.78 43.10 82.77 92.89 73.33
PC3 57.15 43.14 81.18 93.27 75.49
PD1 58.31 42.65 81.21 92.76 73.15
PD2 5878 4353 82.17 92.83 74.05
PD3 57.98 4345 81.11 92.86 74.94
SC1 59.62 43.36 81.08 92.89 72.72
SC2 59.72 4345 81.25 92.86 72.75
SC3 59.60 43.39 80.66 9291 72.79
SD1 59.62 43.09 82.70 92.53 72.27
SD2 5552 42.78 83.59 93.58 77.06

SD3 55.52 42.50 84.51 93.48 76.56
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and 11 terms, respectively (Supplemental Fig. 1). In SC
vs SD, SC vs PC, PC vs PD, and SD vs PD comparisons,
the DEGs exhibited a similar GO classification. The
three most highly enriched subcategories of BP for all
four groups were biosynthetic process, cellular biosyn-
thetic process, and organic substance biosynthetic
process. The most highly enriched CC subcategories
were integral component of membrane, intrinsic compo-
nent of membrane, and membrane part. The MF terms
showing the highest enrichment were DNA binding, kin-
ase activity, and phosphotransferase activity. In the BP,
CC, and MF categories, abundant genes were classified
into transcription regulation related processes (Fig. 4).
To explore the biological pathways in which the DEGs
are involved, the Kyoto Gene and Genome Encyclopedia
(KEGG) database was used for DEG classification [39,
40]. A total of 9637 DEGs were assigned to five branches
with 19 subbranches (Supplemental Fig. 2). After enrich-
ment analysis, the 10 top-ranked pathways with the
highest gene numbers and a low Q value were screened
and listed in Fig. 5. In PC vs PD, PC vs SC, SC vs SD,
and PD vs SD comparisons, the pathway with the high-
est number of enriched DEGs was plant hormone signal
transduction, followed by the MAPK signaling pathway.

Expression pattern of GS biosynthesis and degradation
associated genes during seed formation

The biosynthesis of GS involves three independent
stages: elongation of aliphatic GS precursors, formation
of the core structure and modification of side chains
(Fig. 6A, Supplemental Table 2).

Seventeen genes associated with elongation of aliphatic
GS precursors were identified in the transcriptome of
the seed and corresponding silique wall of Chinese kale.
These genes consisted of two branched chain amino-
transferase 4 (BCAT4), two bile acid transporter 5
(BATS5) genes, four methylthioalkyl malate synthase 1
(MAMI) genes, one methylsulfidealkenyl malate syn-
thase 3 (MAM3), one isopropylmalate isomerase (IPMI),
five isopropylmalate dehydrogenases (IPMDH) genes
and two branched chain aminotransferase 3 (BCAT3)
genes. At the torpedo- and cotyledonary-embryo stages,
the expression of BCAT4-1, BAT5-1, MAMI-3, and
MAMI1-4 was lower in the seed than in the correspond-
ing silique wall. In comparisons of the seed and silique
wall, at the torpedo-embryo stage higher transcript levels
for two BCAT4 genes, two BATS5s genes, MAMI-3,
IPMI, IPMDHI1-1, and BCAT3-2 were detected in the
seed, whereas fewer transcripts of MAMI-I1 and
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BCAT3-1 were detected in the silique wall at the
cotyledonary-embryo stage (Fig. 6A).

With regards to formation of the core structure, 12 genes
comprising 39 members were mapped from the databases.
These genes consisted of the cytochrome P450 homologs
CYP79A2, CYP79B2, CYP79B3, CYP79F1, CYP83A1, and
CYP83B1, carbon-sulfur lyase (SURI), y-glutamyl polypep-
tide synthetase (GGPI), glucosyltransferase (LUGT74BI),
and desulfurized GS transferase genes SOT'16, SOT17, and
SOT1I8. In the synthesis of core structure of aliphatic GS,
one CYP79FI, two CYP83A1, four SURI, one GGP1, one
UGT?74B1, four SOT17, and eight SOT18 genes were iden-
tified. In the seed, the expression of CYP79F1, CYP83AI-
1, CYP83A1-2, UGT74B1, SOT17-2, SOT17-4, SOT18-1,
SOT18-4, and SOT18-5 was down regulated compared
with that in the corresponding silique wall. Among genes
with multiple members, such as SOT17 and SOT18, some
members (SOT18-6 and SOT18-7) showed an increased
expression level in the seed compared with that in the si-
lique wall, whereas other members (SOT17-3 and SOT18-
8) showed the opposite trend in SC vs PC and SD vs PD
comparisons. In the comparison SD vs SC, the expression
of CYP83A1-1, SOT18-4, SOT18-6, and SOT18-8 was
higher in SD, whereas expression of CYP83A1-2 and
SOT18-5 was lower in SD, compared with that in SC
(Fig. 6A). For genes related to the synthesis of indolic
and aromatic GS core structure, nine CYP79A2, three
CYP79B2, one CYP79B3, one CYP83B1, and four
SOT1I16 genes were identified. The expression of these

genes is highlighted in Fig. 6A in blue and green,
respectively.

At the last step of secondary modification, six genes
associated with aliphatic GS biosynthesis were identified
including three monooxygenases (FMOGS) comprising
one FMOGS-OX1, two FMOGS-OXS5 genes, and three 2-
oxoglutarate-dependent dioxygenases (AOP2) genes.
Similar to the afore mentioned expression patterns of
multigene families, FMMOGS gene members also showed
differential expression patterns. The expression level of
FMOGS-OX1 was decreased, whereas the expression of
FMOGS-OX5-1 was increased in the comparison of PC
vs SC and PD vs SD. The expression of FMOGS-OX5-2
was higher in PC, PD, and SC, whereas lower in SD
(Fig. 6A). Genes involved in modification of indolic
GS were also detected, including 14 CYP84F and five
IGMT genes. The proteins encoded by these genes
were predicted to be localized in mitochondria and their
expression level varied in different samples (Fig. 6A).

With regards to degradation of GS, six typical myrosi-
nases (TGGI) were identified in the sequence database
(Fig. 6B, Supplemental Table 2). The expression of
TGGI genes was relatively consistent in the developing
seeds and silique walls. At the torpedo-embryo stage,
transcript levels for TGGI1-2, TGGI-3, and TGGI-6
genes were lower in SC compared with PC, whereas
those of TGGI-1, TGGI-4, and TGGI-5 showed no
obvious difference between SC and PC. At the early
cotyledonary-embryo stage, abundant transcripts of
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of related genes in PC, PD, SC, and SD. The yellow part means cytoplasmic part in a cell, the green part represents chloroplast, the grey part
represents endoplasmic reticulum, and the red part represents mitochondria. B Expression comparison of myrosinase encoding genes in PC, PD,
SC, and SD. C Expression comparison of GS transporter genes GTRs in PC, PD, SC, and SD. D Expression comparison of six transcriptional factors
including MYB28, MYB29, MYB76, MYB34, MYB51, and MYB122 in PC, PD, SC, and SD. The heatmap from left to right is the comparison between PD
and PC, SD and SC, SC and PC, as well as SD and PD, respectively

TGGI genes in the seed were detected and the expres-
sion of all TGG genes was significantly up regulated in
the seed compared with the corresponding silique wall,
and transcript levels were markedly higher than in the

seed at the torpedo-embryo stages. Thus, it is proposed
that during the transition of the embryo from the tor-
pedo- to the early cotyledonary stage, myrosinases
encoded by typical TGGI genes accumulated massively
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in the seeds. With regards to specific degradation of in-
dolic GS, expression of PEN2 was lower in the seed
compared with the silique wall and remained stable with
embryo development (Fig. 6B). Other B-thioglucosidases
that showed myrosinase activity were identified and the
differential expression of these genes was also summa-
rized in Fig. 6B.

Five GTR genes including two GTRI genes, one GTR2,
and two GTR3 genes, were annotated in the transcrip-
tome (Fig. 6C, Supplemental Table 3). Higher expression
of GTR2 was detected in PC (vs SC) and PD (vs SD),
which indicated that aliphatic GS may be transferred
from the silique wall to the seed. Compared with the
seed at the torpedo-embryo stage, GS transportation to
the seed may be enhanced at the early cotyledonary-
embryo stage because GTR2 transcript level was signifi-
cantly enhanced in SD compared with that of SC. The
transcript level of GTRI-2 was increased in PD (vs SD),
but not in PC (vs SC). This difference may be related to
the enhancement of GTRI-2 in the silique wall at the
early cotyledonary-embryo stage as higher abundance of
GTRI-2 transcripts was detected in PD than in PC. The
gene GTRI-1 showed no obvious difference in transcript
abundance among all four groups. The two GTR3 mem-
bers showed opposite expression patterns. In SC vs PC
and SD vs PD comparisons, expression of GTR3—1 was
decreased, whereas expression of GTR3-2 was increased,
respectively.

Identification of transcriptional factors regulating GS
biosynthesis

Positive transcription regulators of the MYB family were
annotated in the transcriptome (Fig. 6D, Supplemental
Table 4). In Arabidopsis, MYB28, MYB29, and MYB76
are transcriptional factors regulating aliphatic GS
biosynthesis, and MYB34, MYBI122, and MYBSI are
involved in the regulation of the synthesis of indolic GS
[41]. In the present study, with regards to regulation of
aliphatic GS, four MYB28s, two MYB29s, and one
MYB76 gene were identified. At the torpedo- and
cotyledonary-embryo stages, expression of MYB28-1I,
MYB28-3, and MYB28-4 was down regulated, whereas
MYB28-2 was up-regulated in the seed compared with
the corresponding silique wall. Expression of MYB76 dif-
fered in all four groups. In SC vs PC at the torpedo-
embryo stage, fewer MYB76 transcripts were detected in
the seed. At the early cotyledonary-embryo stage, the
MTB76 transcript level was significantly increased in the
seed but decreased in the silique wall compared with
those at the torpedo-embryo stage, and resulted in
greater abundance of MYB76 transcripts in SD com-
pared with that of PD. The expression of MYB29 was
high in the silique wall at the cotyledonary-embryo stage
and higher than that detected in the corresponding seed

Page 10 of 15

and in the silique wall at the torpedo-embryo stage.
With respect to the regulation of indolic GS, the largest
gene family was MYB34, which comprised 11 members.
Besides, three MYB51 and three MYBI22 genes were
identified, of which the majority were more highly
expressed in the silique wall than in the seed (Fig. 6D).
To explore the regulation of GS metabolism, the pos-
sible interaction of GS metabolism-related genes was
tested by means of protein-protein interaction assays.
Only some transcription factor gene members were
involved in protein-protein interaction (Fig. 7, Supple-
mental Table 4). Among 24 identified MYBs, six MYBs
including MYB28-3, MYB29-1, MYB29-2, MYB34-4,
MYB34-8, and MYB51-1 were predicted to regulate the
synthetic protein. In the regulation of aliphatic GS,
MYB28-3 showed close affinity for AOP2-3 and
SOT18-5. Surprisingly, aliphatic GS-related MYB28-3
interacted with the indolic GS synthetic protein SOT16—
4 and CYP83B1, which also could be regulated by
MYB34, indicating a possible transcription factor-
mediated crosstalk between indolic and aliphatic GSs.

Discussion

To understand the mechanism of GS accumulation in
Chinese kale seeds, we first analyzed the accumulation
pattern of GS in the seed and corresponding silique walls
during embryo development. Two crucial consecutive
stages (torpedo-embryo and early cotyledonary-embryo
stages) were selected based on their differential GS con-
tent, and genes related to GS metabolism were mapped to
the genome. In total, 135 genes were identified, of which
24 genes were transcription factors, 81 genes were

MAM1-2

UTG4Cl-1

MYB29-2

MYB51-1

UTG74C1-3

CYP83B1

CYP79A2-2

Fig. 7 Protein interaction network of GS regulatory factors and its
biosynthetic genes. Each point in the figure represents a protein and
the line indicates that an interaction between the two proteins
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associated with biosynthetic pathways, 25 genes encoded
catabolic enzymes, and five genes matched with trans-
porters. The expression of these genes in the two selected
stages were analyzed. Significant change in GS accumula-
tion in the seed occurred in the transition from the
torpedo-embryo stage to the early cotyledonary-embryo
stage. Gene analysis confirmed the transportation of GSs
from silique walls to seeds during the transition from tor-
pedo- to early cotyledonary-embryo stage. Moreover, the
high expression of sidechain modification related genes
FMOGS and AOP2 indicates possible modification of
glucosinolate exist in seeds.

Accumulation of GS in Chinese kale seeds

In Arabidopsis, the silique wall is considered to be the
predominant source of GS in the seed [42]. In Chinese
kale, GS in the silique wall also plays an important role
in GS accumulation in the seed. Although greater quan-
tities of GS accumulated in the seed than in the silique
wall (Fig. 2), the expression level for the majority GS
biosynthetic genes was lower in the seed than in the
corresponding silique wall (Fig. 6A). This discrepancy
between gene expression and GS accumulation may be
attributed to the large amounts of GTR genes expressed
in the silique wall compared with those in the seed. It
has been proven that GTRs are responsible for transpor-
tation of GS from the silique wall to seed [32]. In the
present study, with development of the embryo, the ex-
pression levels of GTRs were enhanced, which indicated
that an increasing quantity of GS needed to be trans-
ported from the sillique to the seed.

Transportation and synthesis of GS are important
sources for the accumulation of GS. Previous studies
have investigated factors underlying the abundance of
GS in the seed, especially whether the seed is capable of
synthesizing GS [31, 43]. The findings that support an
absence of GS synthesis in the seed are i) maternal con-
trol of seed GS content, as the F1 progeny always exhibit
similar GS profile to that of the female parent in recipro-
cal crosses [44]. ii) in silico microarray expression of the
key GS chain elongation gene MAMI and the core
structure gene CYP79F1 is too low to affect GS accumu-
lation in the seed [31]. Recently, the mutation of trans-
porter genes GTR in Arabidopsis confirmed no GS
biosynthesis in seeds since the gfr double mutant
showed no GS accumulation in seeds [32].

In the present study, almost all homologous genes of
GS biosynthetic genes were identified in Chinese kale
seeds and silique walls. CYP79F1 and MAMI were two
of these genes and both showed much higher transcript
levels in the silique wall than in the seed at the torpedo-
and cotyledonary embryo stages. Moreover, the high ex-
pression of sidechain modification of GS related genes
was noted in seeds at the torpedo-embryo stage,
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especially FMO and AOP2 genes. In the biosynthesis of
glucosinolate, Chinese kale ‘Huanghua’ in the present
study characterized the production of alkenylated GS,
GNA, which is dependent on the proper expression of
side chain modification related gene AOP2. With GNA
as the main GS in plant, it is Arabidopsis Cvi ecotype.
However, research taking Cvi as material in GS accumu-
lation is limited and mostly used one is Col-0, which
cannot produce alkenyl GS because of 5-bp loss in
AOP2 gene [45-47]. Similar to the GS change in varied
Arabidopsis ecotypes, the Brassica vegetables also accu-
mulate different kinds of glucosinolates depending on
the differential expression of AOP2. Three alleles of
AOP2 were identified in B. oleracea, two of which have
no function due to the generation of premature stop co-
dons [48]. In kale (B. oleracea var. viridis), the expres-
sion of BoAOP2 could catalyze the formation of alkenyl
GSs from methylsulfinyl butyl GS (glucoraphanin, GRA)
[49]. In broccoli (B. oleracea var. italica), there is 2 bp
deletion in the exon of AOP2 gene, which results in the
malfunction of AOP2 and the broccoli mainly accumu-
lates GRA [50]. In cauliflower (B. oleracea var. botrytis)
and cabbage (B. oleracea var. capitata), the main GSs
are sinigrin (2-propenyl GS) and/or PRO depending on
different varieties used [51]. In B. rapa, three AOP2
homologs were aligned to the AtAOP2. The dominant
glucosinolates in B. rapa is GNA, glucobrassicanapin (4-
Pentenyl GS), and PRO [52]. Thus, we proposed that the
secondary modification of aliphatic GS by expression of
AOP2 might be related to the accumulation of GNA in
Chinese kale during the formation of seeds. Also, we
cannot exclude the possibility that the amount of GNA
in the silique wall or other sources is enough for the
seed accumulation of GNA. Further experiments are still
needed to verify the function of AOP2 in GS accumula-
tion during seed formation.

Regulation of GS accumulation in Chinese kale

In contrast to Arabidopsis, multiple members (ranging
from 1 to 9) of GS metabolism-related genes were iden-
tified in Chinese kale. Gene redundancy causes difficul-
ties for the management of GS content and profiles by
gene editing, which requires precise gene targets [53,
54]. Transcriptome analysis reveals the expression of all
gene members in one family, and genes that are not
expressed can be excluded. For example, AOP2 is critical
for alkenylation of its substrates and the product GNA is
the predominant GS accumulated in Chinese kale. To
regulate the GNA content in Chinese kale seeds, AOP2
with a high expression level may be the target. However,
three AOP2 gene members were detected in Chinese
kale, which complicates selection of the correct AOP2 to
target. From the present analysis, the priority should be
given to AOP2-2 as other members showed no distinct
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changes at the transcriptional level. Protein-protein
interaction assays are also needed to examine the pos-
sible relationships among proteins, which can help to re-
duce the complexity caused by multiple gene members.
For example, the aliphatic GS transcription factor
MYB28 consisted of four members in Chinese kale but
only MYB28-3 was predicted to interact with SOT18-5
and AOP2-3.

Accompanying GS accumulation during seed formation,
abundant TGG transcripts were detected in the seed (Fig.
6B). Interestingly, the enhancement of TGG transcript
level in the seed occurred during the transition from the
torpedo-embryo stage to the early cotyledonary-embryo
stage. At this transition, expression of the most typical
TGG member, TGGI, decreased in SC (vs PC) and in-
creased in SD (vs PD), which indicated that TGGI may
play an important role in GS accumulation. The turnover
of GS provides building blocks (e.g., glucose, sulfate, sul-
fur, ammonia, and carboxylic acid) for primary metabol-
ism, especially during germination [10, 55]. Recently, an
increasing number of atypical TGGs have been observed
to be involved in GS degradation [30]. Different degrada-
tive enzymes are indicated to be required for different
biological processes. Meier et al. (2019) revealed that func-
tional nitrile-specifier proteins (NSP) are necessary for GS
degradation during germination from days 4 to 10 by ana-
lysis of the change in GS content in #sp mutant lines [55].
During Chinese kale seed development, the high expres-
sion level of BGLU29 in the seed at the early cotyledonary
stage was also noted. Accumulation of myrosinase during
seed development not only provides a physical protective
barrier for seed formation, but may also play a role as a
potential sulfur provider during germination. However,
the specific function of 7GG in seeds remains elusive. Dir-
ect participation of typical and atypical TGG in GS deg-
radation at different stages of seed development requires
further investigation.

Conclusions

The torpedo-embryo stage and the early cotyledonary-
embryo stage were identified as critical in GS accumulation
during Chinese kale seed development. The expression of
genes related to GS metabolism in these two stages was an-
alyzed and the transportation of GS from the silique wall to
the seed was confirmed in the transition of seeds from
torpedo-embryo stage and the early cotyledonary-embryo
stage. In addition, the high expression of AOP2 in seeds at
the early cotyledonary-embryo stage indicate possible side-
chain modification would happen during seed formation.

Methods

Plant materials

Chinese kale (B. oleracea cv HuangHua) seeds were pur-
chased from Gaoda seed shop (Fuzhou, China) and used
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for the field experiments (Fujian Agriculture and For-
estry University). The seeds were sprinkled evenly in a
petri dish (diameter =15cm) with moist perlite, and
placed in a 28°C chamber (16 h light/8 h dark photo-
period) until the cotyledons were fully expanded. Then
the seedlings were transferred to a culture medium con-
taining peat soil: vermiculite: perlite at 3:1:1 and placed
in an artificial climate chamber (MGC-450HP-2, Shang-
hai Yiheng Technology Co., Ltd.) at 28°C with 16h
light/8 h dark photoperiod. After 1 month of cultivation,
the kale seedlings were planted in the field, the row distance
x row spacing was 25 cm x 30 cm, and the protective rows
were set around the field. The field trials were conducted in
three consecutive years (201609-201704, 201709-201804,
and 201809-201904) with three repetitions which contain
at least 24 plants each time. The soil was deeply ploughed
and tilled to ensure that the soil conditions and other field
management procedures were equal for all the accessions
evaluated in this trial. Field management such as daily
watering and fertilization was performed regularly until the
plants enter the reproductive stage.

After the flower buds emerged, the branches were la-
belled and development of the seeds was recorded.
When the flowers were fully expanded, the stage of em-
bryo in seeds was observed under a microscope (Olym-
pus IX73, Japan). The embryo developed from the
globular stage to the cotyledonary stage. The seeds were
divided into different stages based on the development
of embryo in seeds. The seeds and corresponding silique
walls were harvested and classified. Then samples were
quickly frozen in the liquid nitrogen and stored in a -
80 °C refrigerator for the following measurements.

Measurement of GS content during the formation of
seeds

The determination and analysis of GS were carried out
with reference to the test method of Guo et al. (2016)
and optimized [3]. 200 mg sample was added to 2 mL of
boiled ddH,O at 100 °C for 10 min, the supernatant was
then collected and the above operation was repeated.
The supernatant combined twice were used as crude ex-
tract, and then added 30mg of activated DEAE-
Sephadex to the purification column. Washed with 0.02
mol/L pyridine acetate, ddH,O, then added 1mL of
crude extracts to the column. Then washed again with
pyridine acetate and ddH,O. 100 uL of 0.1% Sulfatase
was added for 14-h, and then eluted with water to obtain
desulfurized GS. The analysis of GS was performed by
ultra-high-phase liquid chromatography (UPLC), using
Water’'s TUV detector (Waters, Milford, USA). An
UPLC BEH C18 (1.7 um particle size, 2.1 mm x 50 mm,
Waters, Milford, USA) was used with a mobile phase of
acetonitrile and water. The analytical conditions were:
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flow rate at 0.4 mL/min, detection wavelength at 226
nm, injection volume 10 pL.

Total RNA extraction and library construction

The RNA of seeds and silique walls were extracted using
Trizol reagent (Invitrogen, Carlsbad, CA, USA) from
Chinese kale in two stages and repeated three times, re-
spectively. The purity of the samples was measured
using a NanoDrop 1000 spectrophotometer (Thermo
Fisher Scientific, Wilmington, DE, USA) and the concen-
tration of the RNA samples was measured using a
Qubit® 2.0 fluorometer (Life Technologies, CA, USA).
Twelve independent transcriptome databases were ana-
lyzed using RNA sequencing, with an average insertion
length of 200bp for each of the twelve transcriptome
databases, and data was synthesized using a genomic
sample kit (Illumina, San Diego, CA). The concentration
and size of the database were measured on a bioanalyzer
using Agilent 2100 kit (Agilent, Palo Alto, CA). High-
throughput sequencing was performed via an Illumina
HiSeq 2500 instrument (MGI Tech Co., Ltd., China)
with a read length of PE125.

Sequencing data processing and analysis

Based on Sequencing by Synthesis technology, the qualified
databases were sequenced by Illumina high-throughput se-
quencing platform (BGI sequencing, Shenzhen, China).
The raw data was filtered to remove low-quality reads,
linker contamination and high levels of unknown base N
content. This project used SOAPnuke for statistics [56] and
trimmomatic for filtering [57]. Bowtie2 was then used to
compare clean reads to the reference genome (http://
plants.ensembl.org/Brassica_oleracea/Info/Index) [58], and
then RSEM was used to calculate the transcript expression
level of genes [59]. All the sequences were aligned with NR,
GO, KEGG databases to identify their function [39, 60-62].

Identification of differentially expressed genes in the seed
and corresponding silique wall at different stages
DEGseq was used for differential expression analysis be-
tween sample groups [63], and FPKM was used to
analyze the expression level of differential genes, and the
Benjamini-Hochberg method was used to correct the
significant P values. Finally, the corrected P value, that
is, Q value <0.001, |log2(fold change) | > 2 as a screening
criterion for the significance of differentially expressed
genes, and Q value <0.001, |log2(fold change) |>4 as a
screening criterion for the extremely significant differ-
ence of differentially expressed genes.

Statistics analysis

PCA in Fig. 3A was analyzed by using the princomp
function in R software and drawn by using the ggplot2
package in R software [64]. Heatmap in Fig. 6 was
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obtained by using TBTools [65]. DIAMOND (https://
github.com/bbuchfink/diamond) was used to compare
genes to the STRING database [66] for analysis of inter-
action among proteins in Fig. 7.
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