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Abstract

Background: C. sinensis is an important economic crop with fluoride over-accumulation in its leaves, which poses a
serious threat to human health due to its leaf consumption as tea. Recently, our study has indicated that cell wall
proteins (CWPs) probably play a vital role in fluoride accumulation/detoxification in C. sinensis. However, there has
been a lack in CWP identification and characterization up to now. This study is aimed to characterize cell wall
proteome of C. sinensis leaves and to develop more CWPs related to stress response. A strategy of combined cell
wall proteomics and N-glycoproteomics was employed to investigate CWPs. CWPs were extracted by sequential salt
buffers, while N-glycoproteins were enriched by hydrophilic interaction chromatography method using C. sinensis
leaves as a material. Afterwards all the proteins were subjected to UPLC-MS/MS analysis.

Results: A total of 501 CWPs and 195 CWPs were identified respectively by cell wall proteomics and N-glycoproteomics
profiling with 118 CWPs in common. Notably, N-glycoproteomics is a feasible method for CWP identification, and it can
enhance CWP coverage. Among identified CWPs, proteins acting on cell wall polysaccharides constitute the largest
functional class, most of which might be involved in cell wall structure remodeling. The second largest functional class
mainly encompass various proteases related to CWP turnover and maturation. Oxidoreductases represent the third largest
functional class, most of which (especially Class Ill peroxidases) participate in defense response. As expected, identified CWPs
are mainly related to plant cell wall formation and defense response.

Conclusion: This was the first large-scale investigation of CWPs in C. sinensis through cell wall proteomics and
N-glycoproteomics. Our results not only provide a database for further research on CWPs, but also an insight
into cell wall formation and defense response in C. sinensis.
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Background

Plant cell walls are a primary subcellular structure and are
located in the outside of the cells. They offer the skeletal
framework to tissues and play essential roles in protection,
cell-to-cell adhesion and communication. Cell walls are
mainly composed of complex polysaccharidic networks of
celluloses, hemicelluloses, and pectins with a small
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proportion of cell wall proteins (CWPs), lignins, and lipids
[1]. Among them, CWPs constitute around 10% of cell
wall dry weight [2—4], but play important roles in various
kinds of biological processes including cell wall metabol-
ism, cell wall composition and modification, cell enlarge-
ment, signal transduction, biotic and abiotic stress
response and other physiological processes [5-10].

In view of the importance of CWP function, the iden-
tification and characterization of CWPs have been
widely studied in some plant species such as Arabidopsis
[11-19], B. distachyon [20-22], flax [23, 24], sugarcane
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[10, 25, 26], rice [27-29], and others in recent decades
by cell wall proteomics strategy using destructive and
non-destructive extraction methods. These studies have
greatly contributed to a broader knowledge of CWPs.
However, to our knowledge, there is still a lack of under-
standing about CWPs due to difficult extraction and
high contamination of intracellular proteins. N-
Glycosylation is a common form of eukaryotic protein
post-translational modification, and most plant proteins
are N-glycosylated through the conventional endoplas-
mic reticulum (ER)-golgi apparatus (GA) secretory path-
way [30, 31]. Consequently, N-glycosylation of plant
CWPs is particularly prevalent and extensive. Con-
versely, large-scale and detailed characterization of N-
glycoproteins has a great potential to increase our un-
derstanding of CWPs, and therefore N-glycoproteomics
can be employed to investigate CWPs [32—36]. Based on
these findings, this study combined N-glycoproteomics
and cell wall proteomics to investigate CWPs.

C. sinensis is an important woody economic crop culti-
vated widely from tropical to temperate regions, its
leaves are usually used for making tea. It is reported that
the leaves of C. sinemsis can accumulate much higher
level of fluoride (F) than those of most other plants
without exhibiting any toxicity symptoms under normal
soil conditions [37-40], suggesting that there may be a
special mechanism responsible for F accumulation/de-
toxification. Previous research has shown that cell wall
immobilization and vacuolar compartmentation contrib-
ute to F accumulation/detoxification [40, 41], and re-
cently we have found the important roles of CWPs in F
accumulation/detoxification by a comparative proteo-
mics analysis [42]. However, CWP identification and
characterization have rarely been studied in C. sinensis
up to now.

Herein, to broaden the knowledge of CWPs and pro-
vide a base for revealing the molecular mechanisms
underlying F accumulation/detoxification-related CWPs,
cell wall proteomics and N-glycoproteomics profiling of
C. sinensis leaves was performed. In this study, CaCl,,
EGTA, and LiCl were used sequentially to extract
CWPs, and hydrophilic interaction chromatography
(HILIC) was also employed to enrich N-glycoproteins.
The peptides of obtained proteins were analyzed by ul-
trahigh performance liquid chromatography coupled
with tandem mass spectrometry (UPLC-MS/MS). After-
wards, all the identified proteins were subjected to mul-
tiple bioinformatics analysis. All in all, 578 CWPs were
identified by combining cell wall proteomics and N-
glycoproteomics. This study makes first attempt to in-
vestigate cell wall proteome and N-glycoproteome in C.
sinensis. Our results will expand the understanding of
CWPs and reveal the mechanism related to plant
growth, development, and defense response.
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Results

Identification of CWPs

To identify more CWPs, a combining strategy of cell
wall proteomics and glycoproteomics was employed in
this study as shown in Fig. 1. After UPLC-MS/MS ana-
lysis and database search, a total of 3618 target CWPs
(TCWPs) and 262 N-glycoproteins were identified from
C. sinensis leaves (Additional files 1, 2: Table S1, S2). To
pick out CWPs, all identified proteins (3880) were sub-
jected firstly to WallProtDB database retrieval. Among
them, 627 TCWPs and 187 N-glycoproteins were identi-
fied as potential CWPs.

According to previous reports, only those proteins (i)
having a predicted signal peptide (SP), (ii) lacking ER re-
tention signal (KDEL or HDEL) and (iii) no more than
one transmembrane domain (TMD) were defined as
CWPs [11, 12, 25]. To obtain CWPs as many as possible
and enhance CWP coverage, all identified proteins were
subjected to multiple bioinformatics analyses including
SP, TMD, ER retention signal, and subcellular localization.
Based on the above-mentioned definition of CWPs and
the report by Day et al. [24], a total of 501 TCWPs and
195 N-glycoproteins were identified as CWPs. Among
them, 484 TCWPs and 187 N-glycoproteins were also re-
trieved in WallProtDB database, whereas 17 TCWPs and
8 N-glycoproteins were absent and thus determined firstly
as CWPs (Table 1; Additional file 3: Table S3). As for the
remaining proteins, 38 TCWPs were designated as plasma
membrane proteins (Additional file 4: Table S4), others
including 3079 TCWPs and 67 N-glycoproteins was de-
fined as intracellular proteins. Taken together, 501 CWPs
were identified by cell wall proteomics and 195 CWPs
were identified by N-glycoproteomics, respectively, 118
CWPs were in common through both approaches (Table
1; Fig. 2A; Additional file 3: Table S3).

Functional classification of CWPs

To better understand the biological functions of CWPs,
CWPs were categorized on the basis of their functional do-
mains proposed by Jamet et al. [6]. A total of 578 CWPs
(501 +195-118) were divided into nine groups (Fig. 2B).
Among them, proteins acting on polysaccharides (PACs;
147) were the largest functional class, occupying 25.4% of
total CWPs. Proteases (Ps; 94) were the second largest class,
accounting for 16.3% of total CWPs. Oxido-reductases (ORs;
62) were the third largest class, occupying 10.7% of identified
CWPs, followed by proteins involved in signaling (PSs; 56),
proteins related to lipid metabolism (PLMs; 43), and proteins
with interaction domains (PIDs;34), accounting for 9.7, 7.4
and 5.9% of the identified CWPs, respectively. Structural pro-
teins (SPs; 5, 0.9%) had lowest abundance, only containing 5
members. The remaining CWPs related to various functions
were categorized as miscellaneous proteins (MPs; 75, 13.0%),
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and CWPs with previously uncharacterized domains were re-
ferred to as proteins of unknown function (PUFs; 62, 10.7%).

CWP comparison between C. sinensis and other two
species

As expected, the functional distribution of CWPs identi-
fied from C. sinensis leaves was in good concordance
with that from A. thaliana rosettes and B. distachyon
leaves (Additional file 5: Fig.S1) with PACs, Ps, and ORs
representing top three functional classes. Notably, the
percentage of PSs in C. sinensis (9.7%) leaves was obvi-
ously higher than that in A. thaliana rosettes (3.7%) and
B. distachyon (4.0%) leaves, respectively [12, 20]. Such a
difference may be attributed to the longer lifecycle of the
woody evergreen leaf in C. sinensis.

Main representative of functional classes

In PAC class, GHs are the major representative (Table 1).
In this study, a total of 110 GHs were identified account-
ing for 74.8% in PAC class, which fell into 23 families in-
cluding GH1, GH3, GH5, GH9, GH10, GH13, GH16,
GH17, GH18, GH19, GH20, GH27, GH28, GH29, GH31,
GH32, GH35, GH37, GH38, GH51, GH65, GH79, and
GH127 according to CAZy nomenclature based on se-
quence homology (Fig. 3). As expected, the most repre-
sentative families were GH3 and GH17, as previously
documented [12, 20, 26]. Moreover, GH1, GH5, GH16,
GH18, GH19, GH27, GH28, GH31, GH35, and GH38
were also well representative families with at least 5 mem-
bers in each family (Fig. 3). In addition, less representative
CWPs acting on polysaccharides were also identified, in-
cluding carbohydrate esterase [11 pectinesterases (known
as pectin methylesterases (PMEs)) and 3 pectinesterase in-
hibitors (PMEIs)], 4 glycosyl transferases (GTs, including
GT2, GT31, GT48, and GT68), 6 expansins, 4 PNGase A,

3 pectin acetylesterases (PAEs), 2 pectate lyases (PLs), and
4 carbohydrate acylation (trichome birefringence-like
proteins).

In Ps class, Asp proteases (28), Ser carboxypeptidases
(28), Ser proteases (19), and Cys proteases (14) are main
families, occupying 94.7% of Ps. ORs functional class
mainly comprised of class III peroxidase (PODs, 29),
multicopper oxidases (13), BBE (berberine bridge en-
zyme) (S)-reticulin (6), and laccases (5). Other CWPs re-
lated to redox processes were identified including
monocopper oxidase-like proteins (SKU5 and SKS1),
blue copper proteins, and ascorbate oxidases.

PSs class mainly contained fasciclin-like arabinogalactan
proteins (FLAs, 9) and receptor-like protein kinases
(RLKs) superfamily proteins (38). Among them, RLKs
comprised 21 LRR-RLKs, 6 cysteine-rich recetor-like pro-
tein kinases, 3 S-locus receptor kinase subfamily proteins,
2 wall-associated receptor kinases, and 6 lectin receptor
kinase subfamily proteins. PLMs class mainly consisted of
lipid-transfer proteins (LTPs, 10) and GDSL esterase/li-
pases (GDSLs, 16). As for SPs class, only five CWPs were
identified in this study including 3 leucine-rich repeat
extensin-like proteins (LRR-EXTSs), 1 non-classical arabi-
nogalactan protein 31-like (AGP), and 1 hydroxyproline-
rich glycoprotein (HPRG). Identified MPs mainly encom-
passes purple acid phosphatases (PAPs, 17), blue copper
binding proteins (BCPs, 9), dirigent proteins (DIRs, 8),
germin-like proteins (GLPs, 5), thaumatins (7), and pro-
teins with a cupin domain (5).

Discussion

Identification and functional classification of identified
CWPs

Totally, 3618 TCWPs were identified in C. sinensis
leaves by sequential salt extractions and UPLC-MS/MS.



Liu et al. BMC Plant Biology (2021) 21:384

Table 1 578 CWPs identified from C. sinensis leaves
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Cell wall proteome  Glycoproteome  In common
Number of identified CWPs 501 195 118
Proteins acting on cell wall polysaccharides 132 43 28
Glycoside hydrolases (GHs) 97 36 23
Carbohydrate esterase family 8 (CE8) 14 2 2
Glycosyl transferases (GTs) 4 0 0
Expansins 6 0 0
PNGase A 2 3 1
Pectin acetylesterases (PAEs) 3 1 1
Pectate lyases (PLs) 2 0 0
homologous to A. thaliana PMR5 (Powdery Mildew Resistant) (carbohydrate acylation) 4 1 1
Proteins involved in signaling 41 30 15
Leucine-rich repeat receptor-like protein kinases (LRR-RLKSs) 14 10 3
Receptor-kinases (RLKs, Gnk-2 homologous domain) 5 4 3
S-locus receptor kinases (SD-1) 2 1 0
Lectin receptor kinases (malectin domain) 2 5 1
Wall-associated receptor kinases (WAKLs) 2 2 1
Fasciclin-like arabinogalactan proteins (FLAs) 8 6 5
Expressed protein (LRR domains) 4 0 0
Expressed protein 2 2 2
Homologous to rapid alkalinization factor (RALF) 2 0 0
Proteases 85 34 25
Serine carboxypeptidase S10 22 8 7
Serine carboxypeptidase S28 5 2 2
Asp protease(Peptidase family A1) 23 10 5
Cys proteases(Peptidase family C1) (Papain family) 13 4 3
Ser protease (Peptidase family S8)(Subtilisin) 18 7 6
Subfamily M20A unassigned peptidases 1 2 1
Peptidase M28 1 1 1
Peptidase C13 (legumain family) 1 0 0
DUF239 1 0 0
Proteins with interaction domains (with proteins or polysaccharides) 31 7 4
Plant invertase/pectin methylesterase inhibitors (PMEI) 3 1 0
Proteinase inhibitor family 125 (cystatin family) 5 0 0
Expressed proteins (X8 domain) 3 1 1
PGIPs 2 0 0
Kunitz-P family 3 0 0
Expressed proteins (LRR domain) 5 1 1
Lectin receptor kinases (legume lectin domain) 2 2 1
Serpin (Serine protease inhibitor) 1 0 0
Trypsin and protease inhibitor 1 0 0
lysM domain 1 1 0
Ribosome inactivating protein 5 1 1
Oxido-reductases 58 23 19
Class lll peroxidase subfamily 26 9 6
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Table 1 578 CWPs identified from C. sinensis leaves (Continued)
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Cell wall proteome

Glycoproteome

In common

Laccases

BBE (S)-reticulins

Multicopper oxidases

Copper amine oxidases

Thiol reductase (GILT family)

Expressed protein (glyoxal oxidase domain/DUF1929)

Expressed protein (thioredoxin fold)

Expressed proteins (GMC oxido-reductase domain)

Expressed protein (DUF568)

Cytochrome b5-like Heme/Steroid binding domain
Proteins related to lipid metabolism

lipid-transfer proteins (LTPs)

GDSLs

GDPDs

MD-2-related lipid-recognition (ML) domain

Phosphoesterases

Expressed protein (lipase/lipooxygenase domain, PLAT/LH2)

Phospholipase C
Phosphodiesterase/phosphate transferase
Lecithin
Ceramidase
BPI/LBPs

Miscellaneous proteins
Thaumatins (PR5)
Germins
Metallophosphoesterases (PAPs)
Blue copper binding proteins
Dirigent proteins
Phosphate-induced (phi) proteins
SCP-like extracellular proteins (PR-1)
Phosphorylases
Strictosidine synthases
Gibberellic acid-stimulated Arabidopsis (AtGASAT1) proteins
Homologous to dienelactone hydrolase
Aldose-1-epimerases
Homologous to phosphatidylinositol transfer protein
Hexokinase
Glucose/sorbosone dehydrogenaes
Carbonic anhydrases
Expressed proteins (cupin domain)
Expressed proteins

Unknown function

Expressed proteins (Gnk2-homologous domain, antifungal protein of Ginkgo seeds)

Expressed proteins (DPBB domain)
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Table 1 578 CWPs identified from C. sinensis leaves (Continued)
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Cell wall proteome  Glycoproteome  In common

Expressed proteins (DUF642)

Plant basic secretory protein (BSP) family proteins
Expressed protein (alpha/beta hydrolase fold)
Expressed proteins (WD40-like beta propeller domain)
NADPH-dependent FMN reductases

Homolog TC173720

Expressed proteins (PA domain)

Expressed proteins (glyoxal oxidase domain/DUF1929)
Expressed proteins (saposin domains)

Expressed proteins (Ole el allergen domain)
Expressed protein (cyclase domain)

Expressed protein (BURP domain)

Expressed protein (Xylose isomerase-like TIM barrel)

(
(
(
Expressed protein (human brain CREG protein domain)
Expressed protein (ferritin-like domain)
Expressed protein (DUF303)
Expressed protein (DUF538)

Expressed protein
Structural proteins

LRR-extensins

homologous to AGP/proline-rich protein

hydroxyproline-rich glycoprotein

2 0 0
2 0 0
1 0 0
3 1 1
2 0 0
2 0 0
3 1 1
2 0 0
2 1 1
2 0 0
1 2 1
1 0 0
1 1 1
1 0 0
1 0 0
1 0 0
1 0 0
15 1 2
4 2 1

1 1
1 0 0
0 1 0

Among them, 627 TCWPs were homologs of the CWPs
in WallProtDB database, whereas 501 TCWPs were in
good accordance with the CWPs defined by multiple
bioinformatics analyses. In except for firstly defined
CWPs, there is an identification difference between

WallProtDB database and bioinformatics analyses, which
might ascribe to a low homology of CWPs between C.
sinensis and other plant species indexed in WallProtDB.
Finally, 501 TCWPs and 3079 TCWPs were designated
as CWPs and intracellular proteins, indicating that
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Fig. 2 Identification (A) and functional classification (B) of CWPs identified from C. sinensis leaves
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Fig. 3 Glycoside hydrolases identified from C. sinensis leaves
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TCWPs were subjected to the contamination during
TCWPs preparation. Similar high contamination of
intracellular proteins was also detected in sugarcane [25]
and rice [29], accounting for 81.6 and 80.5%, respect-
ively. So far there have been rare cell wall proteomics
studies, therefore CWP extraction remains to be im-
proved. In spite of the high contamination of intracellu-
lar proteins, this study adopted cell wall proteomics to
enhance the CWP coverage in C. sinensis.

At the same time, most identified N-glycoproteins
(195, 74.4%) were targeted into the cell wall/extracellu-
lar/plasma membrane in C. sinensis, and thus they were
designated as CWPs. Our results agreed well with those
of the studies of tomato fruit [35] and B. distachyon leaf
[43], in which 65 and 60% of N-glycoproteins were
found to be located in the apoplast/cell wall/plasma
membrane, respectively, demonstrating that N-
glycoproteomics is a feasible method to identify and
characterize CWPs.

It should be noted that 25 CWPs were newly identified
ones in this study (Additional file 3: Table S3), and that
more CWPs were identified through cell wall proteomics
(501 CWPs) than N-glycoproteomics (195CWPs), indi-
cating cell wall proteomics was more effective than N-
glycoproteomics for CWP identification. However, the
use of N-glycoproteomics as supplementation can fur-
ther enhance CWP identification effect. Considering
this, we propose that combined cell wall proteomics and
N-glycoproteomics during CWP identification and
characterization.

Possible functions of identified CWPs
Identified CWPs acting on cell wall polysaccharides

Glycoside hydrolases (GHs) GHs are the overwhelming
majority of identified CWPs with 19.0%. Possible sub-
strates of most GH families are hemicelluloses

(xyloglucan, xylans, glucomannans) and pectin (galac-
tans, homogalacturonan). Of GHs identified in this
study, GH16, GH29, GH31, and GH65 potentially act on
xyloglucans; GH10 and GH51 show a possible action on
xylans; and GH28 and GH35 can hydrolyze homogalac-
turonan and galactans, respectively [23, 44, 45] (Add-
itional file 6: Table S5). Moreover, GH1, GH3, and GH5
possess broad substrates range, and their enzymes are
reported to be involved in the modification and/or
breakdown of cell wall hemicelluloses and pectins [46,
47], and to participate in lignification and secondary me-
tabolism [48]. Identification of these GH families
suggested that hemicelluloses and pectins might undergo
important structural changes in the leaves of C. sinensis.
Furthermore, GH127 (also known as DUF1680 domain
protein), recently characterized as a novel f-L-
arabinofuranosidase, might be involved in the degrad-
ation of cell wall polysaccharides and hydroxyproline-
rich glycoproteins [49], and GH9 was known to catalyze
the endohydrolysis of cellulose.

Some identified GHs might participate in defense
against pathogens and various stresses. Chitin and -1,3-
or B-1,6-glucan are main components of cell walls of
various fungi. GH17 acts as p-1,3-glucanase; GH18 and
GH19 act as chitinases; and GH20 functions as key hy-
drolyzation enzyme of chitin, and these four GHs pos-
sess antifungal activity to degrade fungus cell walls and
participate in defense against pathogens [45, 50]. Chiti-
nase has been reported to respond to abiotic stress [42,
51]. GH37, a non-reducing sugar, was identified as a
new CWP in this study and it has been found to be a
universal stabiliser of protein conformation and probably
contribute to various stress defense [52].

Several identified GHs including GH13, GH27, and
GH32 might be implicated in the mobilization, allocation,
and partitioning of storage reserves. GH13 is involved in
the hydrolysis of starch and glycogen to yield glucose and
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maltose [53]. GH27 is one of three hydrolyzing enzymes
of galactomannans (cell wall storage polysaccharide) [54],
and GH32, as an invertase, is involved in long-distance
nutrient allocation and carbohydrate partitioning [55, 56].
Additionally, a couple of GH enzymes including GH3,
GH18, GH19, GH35, GH38, and GH79 are involved in
post-translational modifications (PTMs) of glycoproteins
[32, 45]. In this study, GH3, GH35, GH38, and GH79 were
verified as N-glycoproteins.

Collectively, a large number of GHs associated with
cell wall metabolism and defense were identified in this
work, which is consistent with previous reports of sugar-
cane stems and leaves [26], B. distachyon grains [21], S.
officinarum cell suspension [25]. Our data reveal the po-
tential functions of identified GHs such as complex cell
wall carbohydrate remodeling, pathogen and stress re-
sponse, mobilization and allocation of storage reserves,
and glycoprotein PTMs. Our results might be attributed
to sustainable remodeling during plant growth and de-
velopment and terrestrial habit of plants.

Other CWPs acting on polysaccharides PMEs, PAEs,
and PLs are pectin-modifying enzymes. PMEs catalyse
the demethyl-esterification of homogalacturonan domain
of pectin [57]. The degree of pectin methylation/de-
methylation affects cell wall stiffening and access to en-
zymes [58]. Demethyl-esterificated pectin favors the
cleavage of the acidic polygalacturonic chains by GH28
and PLs. Likewise, PAEs can regulate pectin deacetylta-
tion by cleaving the acetylester bond from pectin [59].
Overall, these enzymes play a major role in controlling
cell wall plasticity/rheology by affecting pectin metabol-
ism [60].

Trichome birefringence-like proteins and PNGase A
are also two modification enzyme families in cell wall.
The former is characterized as xylan acetyltransferases,
and it is associated with the xylan O-acetylation medi-
ation, secondary wall deposition, and pathogen resist-
ance [61]. The latter is one of deglycosylation enzyme,
and it is involved in the release of N-glycans from glyco-
peptides generated by the proteolysis of denatured glyco-
proteins [62].

Expansin, known as non-enzymatic protein and the
most important structural protein, plays a central role in
cell wall extension via their action on the cellulose-
hemicellulose network, suggesting that expansin is es-
sential for primary cell wall structure during plant
growth- and development-related processes [63]. In
addition, 4 cell wall GT families might be associated
with the biosynthesis of cell wall polymers.

Identified CWPs functioning as proteases
Proteases are necessary for protein turnover, maturation
of enzymes, and defense against pathogens [45, 64].
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Consequently, plant proteases localized in the cell wall
might be responsible for CWP degradation or matur-
ation, and further they might play crucial roles in a strik-
ing variety of biological processes such as plant growth
and branching, flower time regulation, and in defense
responses.

Identified CWPs involved in redox

Class III PODs, a large multigene families, accounted for
one half of OR functional class. Class III PODs are in-
volved in lignin metabolism by catalyzing the oxidative
polymerization of monolignols [65], stress responses,
and signaling transduction via consuming hydrogen per-
oxide and generating reactive oxygen species [66]. Class
III PODs can mediate cross-linking of cell wall com-
pounds such as structural proteins, monolignols, and
aromatic amino acids containing polysaccharides [67—
69]. Like class III PODs, laccases are candidates for poly-
merizing monolignol unit into lignin, suggesting that
laccases are essential for cell wall lignification [70, 71].
BBE-like proteins, as monolignol oxidoreductases, may
participate in the mobilization and oxidation of mono-
lignols required for polymerization processes [72]. Over-
all, three highly representative enzyme families in the
redox class were considered to be involved in ligin pro-
duction and subsequent the reinforcement of cell wall
strength and rigidity, which supported plant defense
against adverse environmental factors.

In addition, monocopper oxidase-like proteins (SKU5
and SKS1), blue copper proteins, and ascorbate oxidases
were found, they might play a role in both cell wall loos-
ening, expansion, and reticulation processes [24, 73].

Identified CWPs involved in signaling transduction

In this study, identified signaling transduction-related
CWPs mainly consisted of FLAs and RLKs superfamily
proteins. FLAs, heavily O-glycosylated CWPs, have been
found to be correlated with cell wall formation [74], cell-
to-cell adhesion and communication [75], and abiotic
stress response [76]. RLKs, as primary cell wall “sensors”,
are responsible for controlling diverse signaling events
[77]. RLKs possess important functions in a wide variety
of development- and defense-related processes, for ex-
ample, they can recognize extracellular ligand to activate
the intracellular kinase domain, resulting in downstream
signaling transduction [78].

Identified CWPs related to lipid metabolism

CWPs in the functional class have been reported to be
related to lipid metabolism [79-83]. LTPs are required
for lipid export to the cell surface, and they are closely
associated with cutin and wax formation [79]. One LTP
has been found to be involved in cell wall extension by
interacting with the cellulose/xyloglucan network [80].
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GDSLs, a recently discovered subclass of lipolytic en-
zymes, possess multifunctional properties, and play im-
portant roles not only in the formation of surface cutin
and epi-cuticular wax [81], but also in the tolerance to
biotic and abiotic stresses [82, 83]. In summary, numer-
ous LTPs and GDSLs might play important roles in cu-
ticle assembly during the growth and development of C.
sinensis leaf. The identification of CWPs related to PLMs
is conducive to our understanding of leathery leaf of C.
sinensis.

Structure proteins

Due to be still resistant to salt-extraction, structure pro-
teins were eluted difficultly so far. In this study, five
structure proteins were identified. LRR-EXTs have been
reported to influence mechanical properties of cell wall
by forming insolubilized, covalently crosslink with cell
wall components [84], and they can perceive extracellu-
lar signals and indirectly relay them into the cytoplasm
to regulate plant growth and salt tolerance, and conse-
quent they are important for cell wall development,
plant growth, and stress tolerance [85]. Non-classical
AGPs have both proline-rich domain and non-proline-
rich domain, may function in metal ion-binding, defense
response, and they can interact with pectin [86, 87].
HPRG is an important structural components of plant
cell walls, and are related to structural integrity, cell-cell
interaction, and intercellular communication [88].

Identified CWPs related to other functions

Regarding several MPs-related CWPs, PAPs might be as-
sociated with the degradation of xyloglucan and oligo-
saccharides via dephosphorylating CWPs such as alpha
xylosidase and P glucosidase [89]. DIRs are related to lig-
nin polymerization [90, 91], and they play important
roles in various stress responses and cell wall modifica-
tion/reinforcement during cell wall integrity mainten-
ance [92]. BCPs, GLPs, cupins, and Thaumatins have
been previously reported to be associated with stress re-
sponses in plants [93-96].

Several enzymes of CWP inhibitor were also detected
in this study, including PMEIs, PGIPs (polygalacturonase
inhibitor-like), and Cys proteinase inhibitor. PMEIs par-
tially inhibit the activity of PMEs and adjust the degree
of pectin methyl-esterification. PGIPs specifically bind
with polygalacturonases (GH28), thereby inhibiting the
hydrolyzation of pectin and regulating pectin degrad-
ation, eventually triggering defense response against mi-
crobes and insects [97]. In summary, two couples
(PMEIs and PME, PGIPs and PG) occurred coinciden-
tally, and they modulate precisely pectin metabolism.
Cys proteinase inhibitor exhibit inhibitory activities
against specific Cys proteases, thus might function in
preventing insect predation [98].
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Roles of various CWPs in plant cell wall formation and
defense response

Under dynamic environmental conditions, plants grow
and develop continuously, and they always encounter
various stresses and deleterious attack from insects and
microbes. Plant cell walls, as the first barrier, change
constantly to be adapted to environmental stresses.
Doubtlessly, CWPs play central roles in altering cell wall
properties. On basis of our results, a work model of
identified CWPs mainly related to plant cell wall forma-
tion and defense response was proposed (Fig. 4).

To satisfy the requirement of normal growth and de-
velopment, a large number of CWPs are activated to ad-
just cell wall structure. In this study, numerous CWPs
related to PACs were identified, mainly including GH1,
GH3, GH5, GH9, GH10, GH16, GH28, GH29, GH3],
GH35, GH51, and GH65, and they might contribute to
the rearrangement of cell wall structure, while expansin
probably give rise to cell wall extension. Several CWPs
associated with the formation and metabolism of sec-
ondary cell wall, such as class III PODs, BBEs, laccases,
LTPs, GDSLs, and DIRs, may favor the reinforcement/
modification of cell wall (Fig. 4).

Confronted with adverse environment, C. sinensis, a
terrestrial plant, has no ability to escape. Therefore, it
has evolved some mechanisms of defense responses such
as altering cell wall properties. Many CWPs identified in
this study are potentially involved in various defense.
GH17, GH18, GH19, and GH20 have been reported to
be involved mainly in response to pathogen stress as well
as abiotic stress by hydrolyzing chitin. Class III PODs,
monocopper oxidase-like proteins, blue copper proteins,
and ascorbate oxidases are involved in response to vari-
ous biotic and abiotic stresses by redox reaction. LTPs,
GDSLs, and DIRs are also associated with defense re-
sponse through the regulation of secondary cell wall.
PGIPs and Cys proteinase inhibitor might function in
improving protection against insects and pathogens [99]
via inhibiting the activity of degradation enzymes of in-
vaders. Likewise, BCPs, GLPs, cupins, and thaumatins
also function in defense response (Fig. 4).

To sense dynamic environment and changing complex
cell wall structures, plants have developed cell wall
integrity-sensing pathway to transduce signals into cyto-
plasm. A number of sensors on the plasma membrane
including RLKs and FLAs were identified in present
study, which can mediate cross-talk between the cell
wall and the cytoplasm in C. sinensis (Fig. 4).

Conclusions

This study combined cell wall proteomics and N-
glycoproteomics to identify CWPs in C. sinensis. A total of
3880 proteins were identified by sequential salt extraction
and UPLC-MS/MS. Meanwhile, 262 N-glycoproteins were
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C. sinensis Identified CWPs
"4 \
Most GHs Expansins GH17, GH18, LTPs, GDSLs, DIRs, BCPs,
cell wall structure cell wall GH19, GH20 GLPs, cupins, thaumatins
rearrangement extension pathogens defense
Class III PODs, BBEs, laccases, ORs PGIPs and Cys proteinase
LTPs, GDSLs, DIRs biotic and abiotic inhibitor
cell wall reinforcement/modification stresses insects and pathogens
| !
normal growth
OrmaL TRt RLKs and FLAs | __, defense responses
and development transduce signals
Fig. 4 A work model of CWPs identified from C. sinensis leaves. The figure is under copyright, each researcher can use and adapt it by citing
our paper

identified by HILIC enrichment coupled with UPLC-MS/
MS. Subsequently, 501 out of 3880 proteins and 195 out
of 262 N-glycoproteins were designated as CWPs by mul-
tiple bioinformatics analysis. Of these designated CWPs,
118 were in common. In total, 578 CWPs were identified
from C. sinensis leaves, 25 of which were determined as
newly identified CWPs. This study was the first attempt of
large-scale investigation of CWPs by cell wall proteomics
and N-glycoproteomics in C. sinensis. It provides a refer-
ence for using a combined strategy of cell wall proteomics
and N-glycoproteomics to improve CWP identification
and characterization. Our findings promote the under-
standing of cell wall formation and defense response in C.
sinensis.

Methods

Plant materials

From the tree top, the first to fifth leaves were collected
from 20 uniform 2-year-old cutting seedlings of the Echa
1 variety (C. sinensis cv. ‘Echa 1’) in tea germplasm bank
located in Wuhan city of Hubei province (China). The col-
lected leaves were washed three times with Milli-Q water,
and ground into fine power in liquid nitrogen immedi-
ately, and finally stored at — 80 °C for subsequent use.

Cell wall enrichment

Cell wall fractions were obtained from the leaves of C.
sinensis using sequential washes as described by Printz
et al. [100] with slight modification. Briefly, 5g fine
power of the leaves were homogenized with 3-fold vol-
umes of 0.4 M sucrose buffer for 10 min, vortexed for 2
min, shaken overnight at 250 rpm at 4 °C, and then cen-
trifuged. Subsequently, 0.6 M sucrose buffer was added
into the precipitations, shaken for 30 min at 250 rpm at
4°C and centrifuged. Afterwards, 1 M sucrose buffer was
added into the precipitations again, suspended, and cen-
trifuged. Finally, the precipitations were washed twice
using 5 mM sodium acetate buffer. The final precipita-
tions were cell wall fractions (pellet). Sucrose buffer con-
tained 5mM sodium acetate and 1% protease inhibitor
cocktail (ApexBio). All the buffers (pH4.6) were pre-
cooled at 4°C, and the centrifugation was performed at
1000 rpm for 15 min at 4 °C.

Cell wall protein extraction

CWPs were extracted successively using CaCl,, EGTA,
and LiCl according to the method reported by Printz
et al. [100]. Briefly, 0.2 M CaCl, buffer was firstly added
into cell wall pellet, shaken for 30 min at 200 rpm at
4°C, followed by centrifugation. Then the supernatants
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were collected. This process was repeated once, and the
supernatants were pooled as CaCl, fractions. Afterwards,
cell wall pellets were mixed with 50 mM EGTA buffer,
followed by shaking for 1 h at 300 rpm at 37 °C, centrifu-
gation and supernatant collection. This procedure was
repeated twice, and all the supernatants were collected
as EGTA fractions. Cell wall pellets were finally re-
suspended in 3 M LiCl buffer, homogenized overnight at
250 rpm, 4°C. After centrifugation, the supernatants
were collected once again. The CWPs were once again
extracted from the cell wall pellets with 3 M LiCl buffer
by shaking for 6 h at 250 rpm, 4 °C. The obtained super-
natants were pooled and stored as LiCl fractions. Finally,
CaCl,, EGTA, and LiCl fractions were combined as tar-
get CWPs (TCWPs) fractions. All extraction buffers
were precooled at 4°C, and the centrifugation was per-
formed for 15 min at 10000 rpm at 4 °C.

Whole protein extraction

Whole proteins (WPs) were extracted from C. sinensis
leaves according to several previous reports [42, 101,
102]. Briefly, about 0.5 g fine powder was firstly homoge-
nized with 5 ml pre-cooled homogenization buffer [con-
taining 20 mM Tris-HCl (pH 7.5), 250 mM sucrose, 10
mM EGTA, 1 mM PMSF, 1 mM DTT, and 1% (v/v) Tri-
ton], and then centrifuged at 12000 g for 20 min at 4 °C.
The obtained supernatants were pooled and stored as
whole protein fractions.

Protein precipitation and cleaning

According to our previous study [42], WP fractions and
TCWP fractions were precipitated severally by Tris-
phenol (pH =8.0) and ammonium acetate. In brief, the
fractions were mixed with equal volume of Tris-phenol,
and vortexed, followed by centrifugation at 12000 g for
20 min at 4 °C. Afterwards, the phenol phase was trans-
ferred carefully into other tubes, mixed thoroughly with
5 volumes of 0.1 M ammonium acetate in 100% metha-
nol, and incubated at - 80 °C overnight. The precipitated
proteins were washed twice with 0.1 M ammonium acet-
ate and acetone, separately. The protein pellets were ly-
ophilized and then dissolved into lysis buffers
[containing 7M urea, 2M thiourea, 4% CHAPS, 250
mM DTT, and 0.2% (v/v) Bio-Lyte]. Protein concentra-
tion was determined with BCA kit according to the
manufacturer’s instructions.

Protein digestion

Before trypsin digestion, WPs and TCWPs were reduced
with 5 mM dithiothreitol for 30 min at 56 °C, and alky-
lated with 11 mM iodoacetamide for 15min at room
temperature in darkness, followed by urea dilution to
concentration <2 M through the addition of 100 mM
triethylammonium bicarbonate. Afterwards, WPs and
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TCWPs were digested firstly by trypsin (1:50 trypsin/
protein) overnight at 37 °C, and then by trypsin (1:100
trypsin/protein) for 4h. Finally, tryptic peptides were
desalted by Strata X C18 SPE column (Phenomenex,
USA) and concentrated by centrifugal concentrator.

HPLC fractionation

After tryptic digestion, the peptides from WPs and
TCWPs were fractionated severally by the use of high
pH reversed-phase HPLC (high-performance liquid
chromatography) with Agilent 300 Extend C18 column
(5 um particles, 4.6 mm inner diameter, and 250 mm
length). Briefly, the digested peptides were first separated
into 60 fractions with a gradient of 8 to 32% acetonitrile
(pH 9.0) for more than 60 min. Subsequently, the pep-
tides were pooled into 4 fractions and dried by vacuum
centrifugation for further use.

Affinity enrichment of N-glycopeptides

To enrich N-glycosylation peptides, the dried peptides
from WPs were firstly dissolved in 40 pL enrichment
buffer (containing 80% acetonitrile and 1% trifluoroace-
tic acid), and then loaded into HILIC micro-column to
separate glycopeptides from non-glycopeptides by cen-
trifugation for 15min at 4000g. To remove non-
specifically adsorbed peptides, HILIC micro-column was
washed three times with enrichment buffers. Subse-
quently, the bound peptides were eluted from the micro-
column with 10% acetonitrile, and then vacuum-dried.
The lyophilized N-glycopeptides were reconstituted in
50 L NH4CO3 buffer (50 mM) in heavy oxygen water
and incubated with 2 uL. PNGase F at 37 °C overnight.
Finally, the resultant N-glycopeptides were desalted with
C18 ZipTips (Millipore) according to the manufacturer’s
instructions and lyophilized for LC-MS/MS analysis.

UPLC-MS/MS analysis

For LC-MS/MS analysis, the peptides were firstly dis-
solved in solvent A (containing 0.1% (v/v) formic acid
and 2% acetonitrile), and then gradient-eluted in EASY-
nLC 1000 UPLC system. Peptide separation was con-
ducted with home-made reversed phase column (25 cm
length, 100 pm ID). TCWP peptides were gradient
eluted as follows: 450 nL/min constant flow; starting
with 7% ~ 25% solvent B (containing 0.1% formic acid in
90% acetonitrile) for 0—40 min, followed by 25% ~ 35%
solvent B for 40—52 min, 35% ~ 80% solvent B for 52-56
min, and 80% solvent B for 56—60 min. Deglycosylated
peptides were gradient eluted with following procedures:
500 nL/min constant flow, starting with 4 to 20% solvent
B for 0-24 min, 20 to 32% solvent B for 24—32 min, 32
to 80% solvent B for 32—36 min, and finally maintaining
in 80% solvent B for 36—40 min.
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Subsequently, the separated TCWP peptides and de-
glycosylated peptides were respectively injected into a
nanoelectrospray ion source, followed by MS/MS ana-
lysis in Q Exactive™ and Orbitrap Fusion mass spectrom-
eter (Thermo Fisher scientific). Briefly, the applied
electrospray voltage was 2.0kV, and the intact peptides
and their secondary fragments were detected and ana-
lyzed by Orbitrap with a data-dependent acquisition
mode automatically switching between MS scan and
MS/MS scan.

TCWP peptides were fully scanned at a resolution of
70,000 with m/s scan range of 350-1800. Afterwards,
the top 10 most intense parent ions per scan were se-
lected for higher-energy collisional dissociation fragmen-
tation (HCD) at 28% collision energy. The generated
fragments were further analyzed at a resolution of
17,500 with a fixed first mass of 100 m/z. To increase
the effective utilization rate of mass spectrometry, the
related parameters were set as follows: automatic gain
control of 5E4, 30s dynamic exclusion, 100 ms max-
imum inject, and signal threshold of 20,000 ions/s. Like-
wise, deglycosylated peptides were fully scanned at a
resolution of 60,000 with m/s scan range of 350—1550.
The top 20 most intense parent ions per scan were se-
lected for HCD at 35% collision energy, and then the re-
sultant fragments were analyzed at a resolution of
15,000 with a fixed first mass of 100 m/z. Similarly, the
related MS parameters were set as follows: automatic
gain control of 5E4, 15s dynamic exclusion, 200 ms
maximum inject and signal threshold of 5000 ions/s
were used.

Database search

The resultant raw MS/MS data were processed using
MaxQuant search engine (v.1.5.2.8) with the following
query parameters: (i) tea tree genome database (Camellia_
sinensis_4442 with 53,512 sequences [103];) concatenated
with reverse decoy database and mass spectrometry con-
taminants database for MS/MS search; (ii) Trypsin/P for
enzyme cleavage and 2 missing cleavages; (iii) mass toler-
ance of 20 ppm and 5 ppm for peptide ions in first search
and main research, respectively, and 0.02 Da for fragment
ions; (iv) length of 7 amino acid residues as minimum
peptide length, and 5 as maximum modification number
in a peptide; (v) Cysteine alkylation as fixed modification;
(vi) Variable modification: methionine oxidation and N-
terminal acetylation for TCWPs, and methionine oxida-
tion and deamidation (NQ), asparagine deamidation
(**0)for N-glycoproteins; (vii) FDR < 1% for protein iden-
tification and peptide-spectrum match identification.

Multiple bioinformatics analyses
CWPs were predicted and functionally categorized using
WallProtDB database [104]. Glycoside hydrolases and
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carbohydrate esterase were grouped according to CAZy
database [105]. N-terminal signal peptide of identified
proteins was predicted using SignalP [106]. Transmem-
brane domain was evaluated by TMHMM server [107].
Subcellular localization predication was performed using
TargetP [108], WoLF PSORT [109], Loctree 3 [110], and
Plant-mPLoc [111]. ER retention signal was checked
using Prosite [112].
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