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Abstract

Background: Improving the overall production of rice with high quality is a major target of breeders. Mining
potential yield-related loci have been geared towards developing efficient rice breeding strategies. In this study,
one single-locus genome-wide association studies (SL-GWAS) method (MLM) in conjunction with five multi-locus
genome-wide association studies (ML-GWAS) approaches (mrMLM, FASTmrMLM, pLARMEB, pKWmEB, and ISIS EM-
BLASSO) were conducted in a panel consisting of 529 rice core varieties with 607,201 SNPs.

Results: A total of 152, 106, 12, 111, and 64 SNPs were detected by the MLM model associated with the five yield-
related traits, namely grain length (GL), grain width (GW), grain thickness (GT), thousand-grain weight (TGW), and
yield per plant (YPP), respectively. Furthermore, 74 significant quantitative trait nucleotides (QTNs) were presented
across at least two ML-GWAS methods to be associated with the above five traits successively. Finally, 20 common
QTNs were simultaneously discovered by both SL-GWAS and ML-GWAS methods. Based on genome annotation,
gene expression analysis, and previous studies, two candidate key genes (LOC_0s09902830 and LOC_0s07g31450)
were characterized to affect GW and TGW, separately.

Conclusions: These outcomes will provide an indication for breeding high-yielding rice varieties in the immediate future.
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Background

Rice (Oryza sativa L.) is one of the three major food
crops supporting more than 50% of the whole population
worldwide [1]. In 2018, the total rice output accounted for
32.24% of the total grain production in China followed by
maize (http://www.stats.gov.cn/). While in the world, the
average production of rice from 1994 to 2019 is 654.78
million tonnes per year, accounting for 27.28% of total ce-
reals output (http://www.fao.org/faostat/en/#data/QC/
visualize). The growing global population and the deteri-
orating environment issue new challenges to the breeding
of high-yielding crops [2]. Rice yield is a complex quanti-
tative agronomic trait multiplicatively governed by three
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major components as the number of grains per panicle,
thousand-grain weight, and the number of panicles per
plant [3]. Besides, grain size (including grain length, width,
and thickness) are also closely related to rice productivity
[4]. A previous study reported that rice yield was a repre-
sentative quantitative trait regulated by several minor
genes, and a more efficient tool was needed to develop for
exploiting these minor QTLs [5]. Many genes have been
reported controlling grain size, grain number, and yield.
For example, the GS3 [6] is a major gene controlling rice
grain length (GL). A mutation in the second exon changes
a cysteine codon (TGC) to a termination codon (TGA) at
the protein level, resulting in a diversity of rice GL. The
GWS5 [7] is an IQ calmodulin-binding motif family pro-
tein, which regulates rice grain width and weight. Loss-of-
function gw5 showed wider grain compared to the wild
type. The WTG1/ OsOTUBI [8] encodes an otubain-like
protease with deubiquitination activity, which expresses in
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developing grains and panicles. The overexpression of
WTG1 showed narrow, thin, and long rice grains as a
result of slim cells. The OsSPLI3 is a SQUAMOSA
promoter-binding-like protein [9, 10], which was reported
controlling rice grain length, grain number, grain size, and
yield.

The genome-wide association study (GWAS) has be-
come a powerful tool for mining QTL associated with
complex traits [11, 12]. Single-locus GWAS (SL-GWAS)
methods such as mixed linear model (MLM) [13], efficient
mixed-model association eXpedited (EMMAX) [14], and
factored spectrally transformed linear mixed models
(FaST-LMM) [15] have been widely used to investigate
tremendous genetic variants for agronomic traits. How-
ever, these SL-GWAS methods are limited in detecting
marginal effects QTNs influenced by the polygenic back-
ground and stringent Bonferroni correction [16].

To address the shortcomings of SL-GWAS, multi-locus
GWAS (ML-GWAS) has been developed as a multi-
dimensional genome scan method in which the effects of
all markers are estimated at the same time [17]. In particu-
lar, to solve the problem associated with co-factor selection
in the ML-GWAS model when there are many markers,
the mrMLM package was proposed, which containing the
following six ML-GWAS methodologies: mrMLM (multi-
locus random-SNP-effect MLM) [16], FASTmrMLM (fast
mrMLM) [18], ISIS EM-BLASSO (iterative modified-sure
independence screening expectation-maximization-
Bayesian least absolute shrinkage and selection operator)
[19], pPKWmEB (integration of Kruskal-Wallis test with
empirical Bayes) [20], FASTmrEMMA (fast multi-locus
random-SNP-effect efficient mixed model analysis) [21],
and pLARmEB (polygenic-background-control-based least
angle regression plus empirical Bayes) [22]. ML-GWAS also
has a lower false-positive rate and has been applied success-
fully to identify significant QTNs with subtle contributions
for several agronomic [23-26]. But no studies have focused
on ML-GWAS for yield-related traits in rice as yet. In gen-
eral, the QTL (Quantitative Trait Loci) refers to the signal
identified by single-locus methods, such as GLM, MLM,
etc. In such QTL, it mostly contained numerous associated
SNPs (Single nucleotide polymorphisms). While in multi-
locus GWAS methods, when all the potentially associated
markers were identified in the first step. These markers
were submitted into a model in further analysis and true
QTNs (Quantitative Trait Nucleotides) were further
confirmed by the likelihood ratio test [16].

In the current study, a large-scale natural population
of 529 rice accessions with five yield-related traits and
607,201 SNPs was conducted by a hybrid method of one
SL-GWAS (MLM) algorithm and five ML-GWAS
(mrMLM, FASTmrEMMA, pLARmEB, pKWmEB, and
ISIS EM-BLASSO) models. We aim to investigate com-
mon QTNs via multiple methodologies and then deduce
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potential candidate genes to accelerate molecular
marker-assisted breeding and boost rice production.

Results

Phenotypic variation

Five yield-related traits (including GL, GW, GT, TGW,
and YPP) were selected to examine whether significant
phenotypic variances exist in the yield among the 529
rice varieties. The results manifested that the parameters
were varied for accessions to their corresponding traits
(Table S1). For instance, the GL ranged from 6.13 to
10.97 mm, with a mean of 8.57 mm. The YPP had a great
variation ranging from 4.41 to 92.66 g, whereas the GT
possessed the smallest range from 1.61 to 2.45 mm with
a CV of 6.86%. The CV of GL, GW, TGW, and YPP
were 10.25, 12.36, 16.09, and 44.90%, respectively. Also,
the frequency distributions of all five traits obeyed ap-
proximately the normal distributions.

Furthermore, the Pearson correlation coefficients
(PCC) among the five traits were also estimated (Fig. 1).
All paired traits showed statistically significant differ-
ences at the p-value<0.001 except the relationship be-
tween TGW and YPP (p-value< 0.05). GL and GW had a
negative relation with PPC =-0.40, which was corre-
sponding with a previous study [27]. GL was also associ-
ated negatively with GT (PCC=-0.21) while positively
with TGW (PCC =0.41) and YPP (PCC =0.17), respect-
ively. In addition, TGW was observed to positively cor-
relate to GT (PCC=0.54), GL (PCC=0.41), and GW
(PCC =0.36), indicating grain size might make a major
contribution to grain weight. These results exhibited that
there was a close relationship among the five rice traits,
which played an important role in regulating the rice
grain shape and productivity.

Population structure and linkage disequilibrium analysis
To understand the population structure of the panel,
PCA analysis was performed using 607,201 SNPs, which
was mentioned in the Methods section. Five conceivable
subpopulations were respectively distinguished via PC1,
PC2, and PC3 (Fig. 2a and b). Next, a maximum likeli-
hood phylogenetic tree was analysed by their genetic
distances, which was derived from the SNP differences
in these genotypes. The population could be divided into
six distinct subgroups, 95 indica I (IndI), 74 indica II
(IndII), 43 tropical japonica (TrJ), 93 temperate japonica
(TeJ), 46 aus, and 178 admixture of the others (Adm),
respectively (Fig. 2c). Based on the results from both the
phylogenetic tree and PCA, the panel was separated into
six groups.

The LD decay distance was further estimated using
the identified SNPs. As delineated in Fig. 2d, the
genome-wide LD decay rate of all populations was ap-
proximately 43 kb, where the r* dropped to half of the
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Fig. 1 Distribution of five yield-related traits in rice and Pearson coefficient analysis. The lower left represents the linear regression statistics
between each two traits, the diagonal histogram represents the distribution of each trait, and the upper right number represents the correlation
coefficient (positive numbers represent positive correlation, negative numbers represent negative correlation); asterisks represent significance (*
stands for p-value less than 0.05; *** stands for p-value less than 0.001); yellow circles indicate that the absolute value of the correlation is greater
than 0.5, and blue represents less than 0.5

maximum value. Due to that, the theoretical average
marker density was one SNP per 9 kb. In fact, the actual
value of SNP density in the genome already reached 0.6
(kb/SNP) as the distribution of these SNPs within the
whole genome was summarized in Fig. S1. Therefore, we
concluded that these markers were sufficiently dense for
detecting the associated QTNss.

SL-GWAS and ML-GWAS analyses

All five yield-related traits were analyzed using one SL-
GWAS (MLM) to identify QTL and five ML-GWAS
(mrMLM, FASTmrMLM, pLARmEB, pKWmEB, and
ISIS EM-BLASSO) methods to identify QTNs (Fig. S2).
As for MLM, 152, 106, 12, 111, and 64 SNPs corre-
sponding to 3, 19, 8, 53, and 56 QTLs were found to be
tightly associated with GL, GW, GT, TGW, and YPP
under the cut-off criterion of p-value =1.65x 10™°, re-
spectively (Table S2). As figured in QQ plots (Fig. S2f
and 2i), the curves of GL and TGW were consistent with

optimal trends, implying that the false-positive errors
were controlled well and the results of the MLM model
were reliable.

A total of 74 significant QTNs (LOD > 3) were simul-
taneously defined to be associated with the above five
objective traits by at least two ML-GWAS methods
(Table 1). Among these QTNs, 19, 9, 7, 22, and 17 were
found to be associated with GL, GW, GT, TGW, and
YPP, respectively. A total of 22 correlated QTNs were
distinguished for TGW, which were widely located on
all 12 chromosomes. For GW, 9 candidate QTNs were
distributed on chromosomes 3, 4, 5, 9, 10, and 12. A
total of 17 QTN hotspots were detected significantly re-
lated to YPP, spread over 2, 3, 4, 5, 6, 7, 8, 10, 11, and
12 chromosomes. Of these, six QTNs were found simul-
taneously using at least three ML-GWAS methods
(qYPP-3-1, qYPP-4-2, qYPP-5-2, qYPP-7-2, qYPP-10-1,
and qYPP-10-2). Notably, qYPP-7-2 was determined
across all five ML-GWAS approaches, explaining the
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Fig. 2 Genetic structure of the 529 rice panel. (a - b) PCA plots of the 529 rice core varieties. PCA plots present the genetic variation in the rice accessions
with PC1 and PC2, PC2 and PC3, separately. (c) Phylogenetic tree clustering of 529 rice core germplasm accessions. (d) Genome-wide LD decay is
estimated from all population and subpopulations. The x-axis represents the physical distance and the y-axis represents the average pairwise correlation
coefficient () of SNPs. The black, grey, purple, blue, green, orange, and red colors represent All, Adm, Aus, Indl, Indll, Tej, and Trj, successively
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0.28 ~1.79% of the phenotypic alteration. Five QTNs
(qTGW-5-1, gTGW-5-2, qGW-5-2, qYPP-7-2, and qYPP-
10-2) were mapped by four or more ML-GWAS models.

Moreover, we compared 161 published rice yield-
related genes’ locations with 74 significant QTNs and
their genomic ranges (300kb up- and down-stream
around the associated QTNs) (Fig. 3 and Table S3).
Nearly one-third of QTNs overlapped with the known
genes in total. For example, gGL-3-3, gGL-3-4, and qGL-
3-5 overlapped with GS3 (Grain Size 3). Stunningly,
three QTLs, gGL-5-1, qGW-5-1, and gGW-5-2, control-
ling multiple traits (GL and GW) simultaneously existed
in the same region on chromosome 5, which were adja-
cent to GWS5 (Grain Width 5). These regions are gener-
ally regarded as pleiotropic. Additionally, we found 51
novel QTLs such as qYPP-4-1, qGL-10-1, gTGW-11-2,
and gTGW-12-1 without coinciding with or adjacent to
the known genes.

In addition, we compared the results of ML-GWAS
and SL-GWAS and a total of 20 common QTNs were
identified (Table S4). Four, four, seven, and five QTNs

were discovered associated with GL, GW, TGW, and
YPP, respectively. While no common QTN for GT was
identified in this study.

Prediction of potential candidate genes

Only the QTNs simultaneously detected by both ML-
GWAS and SL-GWAS were further analysed. The
qTGW-7-1, which was located at 18,639,992bp on
chromosome 7, was identified associated with TGW
using both SL-GWAS and ML-GWAS methods. This
QTN was detected tightly related to TGW with LAR-
mEB, pKWmEB, and ISIS EM-BLASSO methods with
the LOD ranged from 3.57 to 11.64 (Table 1). In the
MLM method, this SNP was also significantly (p-value =
3.62x 10~ °) associated with TGW with an R* of 7.79%
(Table S2). Then, a local LD block (18,623,910-
18,644,333 bp) was defined (Fig. 4a) with the step we
mentioned in the Method section. Based on genome-
wide annotation information, LOC_Os07g31440 and
LOC_0Os07g31450 were extracted from this region.
Among them, LOC_Os07g31440 encodes an expressed
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Table 1 The significant QTNs for five rice yield-related traits detected simultaneously by using two or more multi-locus GWAS

methods
Trait QTN Chr Position LOD R? (%) Method Reported genes
Grain Length qGL-1-1 1 16,255,794 3.57-6.37 0.29-1.91 1,23
qGL-3-1 3 8,800,352 343-4.15 1.71-3.56 4,5
qGL-3-2 3 16,182,203 342-581 1.92-2.23 1.3
qGL-3-3 3 16,699,322 3.68-4.70 2.78-7.54 14 GS3
qGL-3-4 3 16,717,839 347-3.51 2.68-6.97 23 GS3
qGL-3-5 3 16911,337 4.01-4.76 349-9.75 15 GS3
qGL-3-6 3 35,509,618 3.22-7.14 2.79-3.68 1,3 qrGws
qGL-5-1 5 5,371,587 4.23-4.92 1.25-2.28 25 GSE5/GWS
qGL-5-2 5 6,215,765 3.12-501 391-572 14
qGL-6-1 6 4,252,841 4.07-9.18 0.74-1.13 13
qGL-6-2 6 22,641,242 854-8.57 7.17-7.35 13
qGL-7-1 7 4,465,180 3.79-11.29 1.01-9.81 1,23
qGL-8-1 8 1,629,499 5.01-5.78 067-1.33 13
qGL-8-2 8 14,139,411 3.87-4.67 2.57-3.29 135
qGL-10-1 10 4,663,209 449-6.46 766-13.25 4,5
qGL-10-2 10 5,288,007 4.05-5.38 1.93-263 12
qGL-12-1 12 1,135,876 3.37-342 0.00-1.19 23
qGL-12-2 12 5,542,726 4.02-8.98 0.77-1.25 23
qGL-12-3 12 14,546,343 5.74-7.38 0.08-1.73 13
Grain Width qGW-3-1 3 10,817,310 3.50-4.81 0.34-3.64 23
qGW-3-2 3 21,604,259 3.02-3.65 1.62-5.28 14
qGW-4-1 4 26,662,080 3.95-5.95 1.77-2.83 34 STRK1
qGW-5-1 5 5,359,498 4.12-693 1.68-6.34 24,5 GSE5/GWS
qGW-5-2 5 5,371,587 4.92-11.55 2.83-7.20 1345 GSE5/GWS5
qGW-9-1 9 191,910 3.59-535 2.30-2.68 34
qGW-9-2 9 1,318,664 6.74-7.74 597-13.97 34 BCI12
qGW-10-1 10 22,500,927 331441 1.04-1.50 24 OsCAOT
qGW-12-1 12 22,677,925 3.04-1234 0.29-147 23
Grain Thickness qGT-5-1 5 4,830,996 12.94-13.56 4.93-7.23 14
qGT-5-2 5 7,022,361 494-5.14 1.85-3.20 24
qGT-5-3 5 7,036,290 4.34-13.62 332-338 15
qGT-5-4 5 23,605,308 3.03-4.41 0.85-5.69 13 OsSNATT
qGT-6-1 6 15,688,533 343-4.25 3.59-4.17 14
qGT-6-2 6 19,652,114 3.52-1041 223-11.95 13 OsSPDS2
qGT-12-1 12 17,685177 3.02-5.90 2.09-3.77 14
1000-Grain Weight qlGW-1-1 1 4,853,002 6.27-6.60 1.97-2.11 14 GW5L
qTGW-1-2 1 33,427,348 3.19-4.48 0.60-1.57 34
qrGW-2-1 2 2,529,182 4.94-10.21 0.56-5.62 23
qlGW-3-1 3 16,776,481 6.15-7.49 0.89-2.76 134 GS3
qrGW-4-1 4 31,950,052 3.14-4.28 042-142 34
qrGW-4-2 4 32,409,784 4.54-5.22 147-241 24 FLO2
qIGW-5-1 5 4,859,527 7.33-891 0.86-3.90 1,345
qrGW-5-2 5 7,115,594 4.35-12.71 0.34-4.51 1,345
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Table 1 The significant QTNs for five rice yield-related traits detected simultaneously by using two or more multi-locus GWAS

methods (Continued)

Trait QTN Chr Position LOD R? (%) Method Reported genes
qIGW-7-1 7 18,639,992 357-11.64 1.39-6.37 34,5
qIGW-7-2 7 18,895,502 4.22-7.48 1.70-4.99 35 OsSPL13
qlGW-7-3 7 19,391,625 4.26-11.43 0.44-4.99 1,35 OsSPL13
qIGW-7-4 7 23,476,357 3.77-5.02 0.48-3.88 13
qIGW-7-5 7 26,928,988 3.89-7.12 0.60-1.40 34
qTGW-8-1 8 25,590,176 3.10-4.53 034-135 345
qrGW-8-2 8 26,309,952 551-6.94 1.06-1.95 1,3 GW8/OsSPL16/qGWS8
qTGW-9-1 9 2,009,389 3.01-3.70 0.45-2.50 34
qlGW-10-1 10 2,107,100 581-1133 1.29-5.77 345
qrGW-11-1 11 18,100,034 4.54-9.46 0.35-2.83 134 OsBDG1
qTGW-11-2 1 20,067,792 3.52-6.31 0.87-2.95 124
qTGW-11-3 1 25914,037 3.04-7.25 0.88-1.53 35
qTGW-12-1 12 9,394,697 8.15-10.58 1.72-4.77 13
qIGW-12-2 12 16,332,104 3.01-4.30 0.13-0.89 34

Yield Per Plant qYPP-2-1 2 26,731,138 3.01-3.80 1.13-3.13 4,5
qYPP-3-1 3 7,685,085 4.19-11.64 3.11-526 14,5
qYPP-4-1 4 513,812 4.81-5.88 2.67-3.98 1,5
qYPP-4-2 4 25,868,074 4.96-6.52 2.15-3.25 14,5 LABAT
qYPP-5-1 5 28,202 3.72-6.29 3.59-4.01 15
qYPP-5-2 5 25,806,082 4.43-8.85 1.17-6.77 34,5 OsRab7
qYPP-5-3 5 29,791,637 3.71-536 238-3.89 15
qYPP-6-1 6 15,037,982 5.50-6.92 3.75-3.87 4,5
qYPP-6-2 6 30,797,769 3.42-4.60 0.65-1.80 25
qYPP-7-1 7 337,826 8.93-9.51 1.86-5.81 13
qYPP-7-2 7 20,669,197 3.08-6.62 0.28-1.79 12345
qYPP-8-1 8 79,975 4.58-5.62 1.65-1.86 25
qYPP-8-2 8 19,396,188 3.12-5.64 0.27-3.08 1.3 PAYT
qYPP-10-1 10 5,854,315 3.21-4.64 0.33-2.03 235
qYPP-10-2 10 20,388,038 381-1261 0.57-6.99 2345
qYPP-11-1 1 994,705 340-3.62 0.59-2.97 34 ONACI122
qYPP-12-1 12 10,578,786 3.15-4.20 1.65-3.60 4,5

Methods 1-5 represnet mrMLM, FASTmrEMMA, pLARmMEB, pKWmEB, and ISIS EM-BLASSO, respectively

R? (%): the proportion of total phenotypic variance explained by each QTN

protein with unknown function. The LOC_0Os07g31450,
also known as CHR729/CRL6, is a CHD (Chromodo-
main, helicase/ATPase, and DNA-binding domain) protein.
Then, we defined four haplotypes of LOC_Os07¢31450
(HapA, HapB, HapC, and HapD) based on the missense
mutations in the gene. The accessions with the favorable
HapD displayed significantly higher TGW than those with
the HapA, HapB, and HapC types (Fig. 4b). These findings
revealed that the grain weights of the accessions with favor-
able haplotype variations were predominantly improved
compared to those with unfavourable variations. A previous

study reported that CHR729 expresses ubiquitously, such
as in stems, leaves, leaf sheaths, young panicles, and flower
organs [28]. To further explore the expression pattern of
LOC_0s07g31450 in different tissues, we utilized the CREP
database to analyse and found LOC_0s07g31450 had the
highest expression level in the young panicles (< 1 mm, 3—
5 mm, and 10-15 mm) (Fig. 4c).

The gGW-9-2 was another QTN simultaneously de-
tected by both SL-GWAS and ML-GWAS. This QTN
was identified significantly associated with GW using
pLARmMEB and pKWmEB methods with the LOD value
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of 6.74 and 7.74, respectively. Moreover, this site was
also detected by the MLM method with the p-value
of x107%. A 50.7kb LD block (1,314,833-1,365,534
bp) was defined for this QTN. In this region, LOC_
0s09¢02830 is annotated as OsMADS78 which be-
longs to the MADS-box family. OSMADS78 has been
confirmed to be an important regulator of early seed
developmental transition and impacts both rice seed
size and quality [29]. Nevertheless, the biological
function of OsMADS78 is far from being understood.
Here, our study speculated that OsMADS78 might
contribute to rice grain width regulation.

Discussion

Comparison of SL-GWAS and ML-GWAS results

The conventional single-locus methods like the general
linear model (GLM) and MLM have been widely imple-
mented to identify genetic variants in many cereals
[30-32]. However, these models have certain shortcom-
ings as they neglect the overall effects of multiple loci
and suffer from the problem of multiple test correc-
tions for critical values. For example, the stringent
threshold leads to missing many robust QTLs, particu-
larly small-effect QTLs in MLM [16]. ML-GWAS
methodologies therewith have been developed, such as



Zhong et al. BMC Plant Biology (2021) 21:364

Page 8 of 12

Q

—logio(p)

107 15 20 .25 30

e Chromosome 7 position (Mb) - R

1862 Mb 18.63 Mb 1864Mb
Loy v v b v v v b

LOC_0s07g31440 LOC_0s07g31450

0 5

LOC_0s07g31460

T [T

Minghui 63
Shanyou 63

& N
o S
QR

o\\

Qbo‘“‘Q 0«8 & Q
S

Fig. 4 (a) Local linkage disequilibrium for gTGW-7-

Zhenshan 97 _

e"‘ 6°’®%7’®6"’

1. (b) Box plot of TGW traits about four haplotypes of LOC_0s07g31450. The x-axis represents
four haplotypes of LOC_0s07g31450 and the y-axis represents 1000-grain weight. The table below is the detailed information of four haplotypes.
(c) Heatmap of the expression pattern of LOC_0s07g31450 in various tissues among three local rice species. The y-coordinate indicates three
species and relative expression, and x-coordinate indicates 39 different parts and development stages of rice tissue. Red represents higher gene
expression and green indicates lower gene expression level, the gene expression levels are log, transformed

50 0.0007
—
0.014
0.0011

Lmnn

LOC_0Os07g31450

8

LOC_0s07g31450
B3 HapA
B3 HapB
B3 Hapc
B3 HapD

1000 grain weight
@
g

3

Position/bp(Chromosome 7)

18,625,138 | 18,625,510 | 18,633,831 | 18,633,853 | 18,635,582

HapA A(val) A(Leu) G(Ser) G(Pro) T(Glu)

HapB G(Ala) A(Leu) A(Leu) G(Pro) A(Asp)

HapC G(Ala) A(Leu) G(Ser) G(Pro) T(Glu)

HapD G(Ala) G(Pro) G(Ser) T(Thr) T(Glu)

10.00
9.00
8.00
7.00
6.00
5.00

Q0
J’&&v "7} S o\ \‘}\‘} ?,
'bq'bq Q &\ 4.00

& 3.00

6 &
q%‘\of)w,b\v
&

\\° \\Q\@Q\\ K

J

mrMLM, FASTmrMLM, LASSO [33], and FarmCPU
(Fixed and random model Circulating Probability Unifi-
cation) [34]. After comparing the statistical power of
ML-GWAS with SL-GWAS methods, several studies
demonstrated that multi-locus methods have lower
false-positive error and higher statistical power than
single-locus ones [17, 35, 36]. According to each ML-
GWAS algorithm has its own characteristics and differ-
ent QTL detection, investigators generally combine the
merits of several ML-GWAS methods to mine target
QTL for complex agronomic traits [26, 37, 38].

In the present study, we adopted the MLM model and
five ML-GWAS methods to analyse five yield-related
traits of 529 rice core germplasms. Consequently, 152,
106, 12, 111, and 64 significant SNPs, while 3, 19, 8, 53,
and 56 QTLs were detected by MLM underlying GL,
GW, GT, TGW, and YPP, respectively (Table S2).

Likewise, 161, 136, 160, 189, and 171 significant QTNs
were identified using ML-GWAS methods linked with
the above five traits successively. We noted that the
number of QTLs mapped by MLM was less than the
QTNs identification of five ML-GWAS algorithms, espe-
cially of those about GT and YPP. The previous study
observed similar findings in GWAS analysis of soybean
seed size, suggesting that the recognition results of the
five ML-GWAS methods outperformed those of the two
SL-GWAS programs. In addition, the QTNs distribution
detected by ML-GWAS approaches were more dispersed

compared with MLM. For instance, as described in Fig.
S2a, the significant loci identified by MLM were concen-
trated near GS3 on chromosome 3. Whereas, many loci
on other chromosomes failed to meet the threshold, in-
dicating that it was difficult to find new loci from other
chromosomes when applied traditional MLM. After-
ward, a lot of significant QTNs presented across ML-
GWAS models were not only situated on chromosome
3, but also widely distributed on other chromosomes,
among which QTNs examined by at least three methods
are worthy of further research. These data explicated
that the ML-GWAS algorithms are considered more ef-
fective, powerful, and robust when applying to investi-
gate the small-effect QTN for yield-related traits.

Comparison of QTLs or QTNs detected in our study and
previous studies

Over the past decade, numerous rice yield-related genes
such as GS3, GW2, and GWS5 have been identified and
their functional roles were deeply elucidated [39, 40].
Among them, GS3, the first molecular characterized
QTL for grain size, controls grain weight and length,
with minor impacts on grain width and thickness [41].
GW2 (Grain width 2), negatively regulates grain width
[42] and GW2 homologs in common wheat plays a
critical role in the genetic control of grain weight and
protein content traits [43]. GWS5 influences grain
width and weight acting in the brassinosteroid
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pathway and overexpression of GSE5/GWS resulted in
narrow grains [44, 45].

In the current study, we characterized 74 QTNs for
five yield-related traits that were simultaneously identi-
fied using two or more ML-GWAS methods. Compared
with the mapped loci of the previous studies, 23 QTNs
and its +300 kb genomic ranges overlapped the known
genes. On chromosome 3, the QTN hotspot (gGL-3-3,
qGL-3-4, and gGL-3-5) was located near the region of
GS3 for grain length. The QTN cluster on chromosome
5 (qGW-5-1, qGW-5-2, and ¢GL-5-1) was mapped
nearby GWS5. Moreover, there were 51 novel QTNs ex-
cluded in the genomic regions of the past reports.
Therefore, these identified makers may be the potential
QTNs controlling rice grain and productivity.

Dissecting two candidate genes of yield-related traits
Using the efficient mixed-model association, two robust
QTLs (gTGW-7-1 and gGW-9-2) were validated with
major effects associated with yield-related traits using
both SL- and ML-GWAS approaches. In the candidate
qTGW-7-1 related to grain weight, LOC_Os07g31450/
CHR?729 is a kind of CHD protein, which encoded pro-
tein contains 2259 amino acids, belonging to the CHD3
subfamily [28]. CHR729 has been reported to play an
essential role in multiple aspects of rice root and seed
development. As an example, CHR729 can control seed-
ling development through the gibberellin pathway [28]
and affect crown root formation through the auxin sig-
nalling pathway [46]. In this study, GWAS results in-
ferred that CHR729 might be related to grain weight,
and transcriptional expression analysis reflected that
CHR729 was highly expressed in young panicles. The
role played by CHR729 in regulating rice grain and even
productivity is worthwhile for further study and
confirmation.

In the candidate gGW-9-2 involved in grain width,
gene LOC_0Os09g02830 (OsMADS78) belongs to the
MADS transcription factor family. MADS family is a
large family with conserved MADS-box domains, whose
members widely take part in the key regulatory pathways
of plant growth and reproduction (including flower
formation) [47]. The OsMADS family in rice participates
in controlling flowering time, development of root and
seed, especially of flower organs [48, 49]. For instance,
OsMADS16/SPW1, which is homologous to APETALA3
in Arabidopsis, belongs to the Class B in the ABC model
of flower organ development, determining the properties
of slates and stamens in rice flower organs [50]. Moreover,
OsMADSI13 controls ovule identity [51]. OsMADS26
negatively regulates resistance to rice blast and drought
tolerance [52]. And OsMADS23, OsMADS25, OsMADS27,
OsMADS57, and OsMADS61 determine root development
[48]. Although there are 75 members in the OsMADS
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family [53], nearly half of the members’ functions are still
unknown. In this study, our findings give a clue that
OsMADS78 may be related to grain width in rice.
Recently, Paul et al. reported that OSMADS78 modulates
early seed developmental transition and impacts rice grain
length, grain width, 1000 grain weight, and grain quality
[29]. This conclusion showed the high reliability of our re-
sults, corresponding with this published research which
verified the biological function of OSMADS78 by over-
expression experiment [29].

Conclusions

In this study, a total of 74 QTN hotspots were simultan-
eously detected for five yield-related traits by two or
more ML-GWAS methods. Among them, gTGW-7-1
and gGW-9-2, closely associated with TGW and GW
separately, were presented across both SL-GWAS and
ML-GWAS analyses. Besides, two key annotated genes
(LOC_0s07g31450 and LOC_0s09¢02830) underlying
the above two target genomic ranges were mined. In
summary, many robust QTLs and two candidate genes
were supposed to potentially modulate grain shape and
productivity in rice. This research made a beneficial at-
tempt by a combinatory approach of ML-GWAS
methods and will facilitate the detection of yield-related
QTNs.

Methods

Phenotyping data and statistical analyses

The complete phenotypic records of 529 rice core acces-
sions were downloaded from RiceVarMap v2.0 [54], an
integrated dataset of rice genomic variations denoted by
Huazhong Agricultural University. This set of germ-
plasm contains diverse rice cultivars. Thereinto, the ma-
terials were classified into 299 indica (95 indica I, 74
indica II, 13 indica III, and 117 indica intermediate
types), 156 japonica (93 temperate japonica, 43 tropical
japonica, and 20 japonica intermediate types), 46 aus, 14
aromatic, and 14 intermediate types.

The vyield-related agronomic characters include grain
length (GL), grain width (GW), grain thickness (GT),
thousand-grain weight (TGW), and yield per plant (YPP)
were downloaded from RiceVarMap2 website (http://
ricevarmap.ncpgr.cn/phenos/). The detailed information,
including experimental design, years, replicate, could be
found in a study [55]. Meanwhile, the minimum, max-
imum, mean, standard deviation, range, and coefficient of
variation (CV) for each trait were calculated in Table S1.
Pearson correlation analysis for phenotypic data was con-
ducted using the SAS 9.4 software (http://www.sas.com/).

Genotyping data processing
High-quality re-sequencing raw data of 529 germplasms
were derived from RiceVarMap (http://ricevarmap.
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ncpgr.cn/vl/) [54]. The detailed information of data pro-
cessing and BCF files could be found on the RiceVarMap
webpage. Raw single nucleotide variants (SNV) were
processed by PLINK 1.9 software with parameter --maf
0.05 --geno 0.05 --snps-only. Then the genotypic data
was imputed by Beagle 5.0 and a total of 607,201 SNPs
were left for further analysis [56].

Clustering analysis, population structure, and LD analysis
The matrix of pairwise genetic distance derived from
607,201 SNPs was implemented to construct phylogen-
etic trees by SNPhylo with the default parameter [57].
Principal component analysis (PCA) and kinship matrix
were performed by the Tassel 5.2 program to estimate
the population structure [58]. Linkage disequilibrium
(LD) between SNPs was estimated as the squared correl-
ation coefficient (r?) of alleles, meanwhile the whole
population and sub-populations were implemented by
software PopLDdecay [59].

Genome-wide association study

In our case, GWAS was performed in 529 rice varieties
with 607,201 high-quality SNPs. A mixed linear model
(MLM) was carried out for single-locus method to
evaluate the trait-SNP association analysis for agriculture
traits using the Tassel software. The first three principal
components (PCs) and kinship matrix were used as co-
variates to correct population structure for decreasing
false-positive rate in MLM. The genome-wide signifi-
cance threshold (p-value = 1.65 x 10™°) was calculated by
negative log(1/n, n is the number of SNPs).

Five ML-GWAS methods within the mrMLM R pack-
age (https://cran.r-project.org/web/packages/mrMLM/
index.html) were used to map candidate QTNs, includ-
ing mrMLM, FASTmrMLM, FASTmrEMMA, pLAR-
mEB, and ISIS EM-BLASSO. All parameters were set at
default values, and the critical LOD score was set to 3
for robust QTNs at the last stage. All these five methods
used the PCA and kinship matrices in our study. The
Manhattan and QQ plots for GWAS were displayed
using the R package CMplot (https://github.com/
YinLiLin/R-CMplot). QTNs were named as Q + the ini-
tial letter of traits name abbreviations + chromosome
number + occurrence sequence [60].

Identification of putative genes

The QTNs identified by at least two different ML-
GWAS methods were regarded as the putative candidate
loci. Local LD blocks containing at least two SNPs were
calculated with all imputed SNP using the PLINK 1.9
software [61]. The local LD blocks of each significant
QTN were determined via confidence intervals described
by Gabriel [62]. The LD heatmap was visualized using
Haploview software [63]. All the genes located in the LD
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block of QTNs were extracted for further analysis. By
comprehensive analysis of gene annotation (MSU 6.1,
http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_
Projects/o_sativa/annotation_dbs/pseudomolecules/
version_6.1/), protein domain function in previous
reports, and transcriptome information (data were
deposited in the CREP database, Collections of Rice
Expression Profiling, http://crep.ncpgr.cn/), the candi-
date genes for each trait were further mined.

Phenotypic difference of candidate genes

The haplotypes of the candidate gene were determined
based on the missense SNP, then the Wilcox-test was
used to test the phenotypic difference among each
haplotype. The characters of each trait were visualized
with box plots using the R 3.6.1 language [64].
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