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Abstract

Background: The Orchid family is the largest families of the monocotyledons and an economically important
ornamental plant worldwide. Given the pivotal role of this plant to humans, botanical researchers and breeding
communities should have access to valuable genomic and transcriptomic information of this plant. Previously, we
established OrchidBase, which contains expressed sequence tags (ESTs) from different tissues and developmental
stages of Phalaenopsis as well as biotic and abiotic stress-treated Phalaenopsis. The database includes floral
transcriptomic sequences from 10 orchid species across all the five subfamilies of Orchidaceae.

Description: Recently, the whole-genome sequences of Apostasia shenzhenica, Dendrobium catenatum, and
Phalaenopsis equestris were de novo assembled and analyzed. These datasets were used to develop OrchidBase 4.0,
including genomic and transcriptomic data for these three orchid species. OrchidBase 4.0 offers information for
gene annotation, gene expression with fragments per kilobase of transcript per millions mapped reads (FPKM),
KEGG pathways and BLAST search. In addition, assembled genome sequences and location of genes and miRNAs
could be visualized by the genome browser. The online resources in OrchidBase 4.0 can be accessed by browsing
or using BLAST. Users can also download the assembled scaffold sequences and the predicted gene and protein
sequences of these three orchid species.

Conclusions: OrchidBase 4.0 is the first database that contain the whole-genome sequences and annotations of
multiple orchid species. OrchidBase 4.0 is available at http://orchidbase.itps.ncku.edu.tw/

Keywords: Orchid, Whole-genome sequences, Apostasia shenzhenica, Dendrobium catenatum, Phalaenopsis equestris,
Database

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: wessonwu@mail.ncku.edu.tw; zjliu@fafu.edu.cn;
tsaiwc@mail.ncku.edu.tw
2Department of Electrical Engineering, National Cheng Kung University,
Tainan 70101, Taiwan
6Key Lab of National Forestry and Grassland Administration for Orchid
Conservation and Utilization at College of Landscape Architecture, Fujian
Agriculture and Forestry University, Fuzhou 350002, Fujian, China
1Orchid Research and Development Center, National Cheng Kung University,
Tainan 70101, Taiwan
Full list of author information is available at the end of the article

Hsiao et al. BMC Plant Biology          (2021) 21:371 
https://doi.org/10.1186/s12870-021-03140-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s12870-021-03140-0&domain=pdf
http://orcid.org/0000-0002-9919-9579
http://orchidbase.itps.ncku.edu.tw/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:wessonwu@mail.ncku.edu.tw
mailto:zjliu@fafu.edu.cn
mailto:tsaiwc@mail.ncku.edu.tw


Background
The Orchid family is the largest families of the monocot-
yledons and an economically important ornamental
plant worldwide. The orchid is a valuable evolutionary
model organism with an unparalleled diversity of in-
novative vegetative, floral and ecological features. They
have colonized successfully almost all habitats on earth.
The reasons of the orchid’s dramatic diversification have
been associated to the specific interaction between the
orchid flower and pollinators [1], rapid and successive
interplay between natural selection and drift [2], symbi-
otic relationship between orchid and fungi [3], crassula-
cean acid metabolism (CAM) and epiphytic growth [4].
The speciation rate of orchids is suggested to be excep-
tionally high [5]. New species of orchids keep being dis-
covered worldwide implying that the evolution of
orchids is still ongoing.
Containing more than 900 genera and 27,000 species

[6], the Orchidaceae belonging to class Liliopsida, order
Asparagales, is composed of five subfamilies including
Apostasioideae Cypripedioideae, Epidendroideae, Orchi-
doideae and Vanilloideae (Fig. 1). Orchids have unique
reproductive strategies that contribute to their successful
radiation. These include pollination-triggered ovary/
ovule development, mature pollen grains aggregated as
pollinia, micro- and mega-gametogenesis with highly
synchronized timing for effective fertilization, and the
dispersal of millions of immature embryos from mature
pods [7]. Several orchid species have been used as model
species for plant science research. In especial, because

Phalaenopsis and their hybrids are important for the or-
chid breeding and the availability of horticultural mu-
tants, the Phalaenopsis plants are often chosen for the
orchid development study [8–11]. Species of Phalaenop-
sis are found throughout the islands of the Pacific Ocean
and the tropical Asia. Phalaenopsis equestris and Phalae-
nopsis aphrodite subspecies formosana, two native spe-
cies in Taiwan, are often chosen as parents for breeding
commercial cultivars. P. equestris has several beneficial
traits such as branches with abundant colorful flowers
and numerous spikes. P. equestris is a diploid plant and
the estimated haploid genome size 1.6 Gb, which is rela-
tively small in Phalaenopsis [12, 13]. P. equestris has 38
chromosomes that are small and uniform in size (<
2 μm). The fundamental studies and genomic sequences
availability have laid the basis for P. equestris to be the
first whole-genome sequenced orchid plant [8]. Dendro-
bium is the third largest genus of Orchidaceae. Dendro-
bium is a fascinating group of orchids because of their
diverse floral architectures, fleshy stems, and synthesis of
many kinds of polysaccharides [14]. The fleshy stem of
Dendrobium catenatum contains various kinds of poly-
saccharides. Many of these polysaccharides have medi-
cinal applications, such as immuno-enhancing, anti-
inflammatory, antioxidant and anti-glycation activities
[14]. Apostasia shenzhenica is a representative of one of
two genera, Apostasia and Neuwiedia, that form a sister
clade to the rest of the Orchidaceae. Apostasioideae pos-
sess several morphologically unique characteristics dif-
ferent from other orchids. The most remarkable one is

Fig. 1 Phylogeny of five subfamilies in Orchidaceae
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their floral morphology. Apostasia shows an undifferen-
tiated labellum at the adaxial side of second floral whorl
and relatively simple gynostemium at the center of the
flower [15].
Previously, we established OrchidBase to accommo-

date and manage the transcriptome sequences in 11
cDNA libraries, generated from various tissues, includ-
ing inflorescence and flower buds, vegetative tissue, leaf,
developing seed, protocorm, cold-treated and pathogen-
inoculated plantlets of the three orchid species (P. eques-
tris, P. bellina and P. aphrodite subsp. Formosana) [16].
The second version of OrchidBase included the floral
transcriptomes of 10 orchid species from each of the five
Orchidaceae subfamilies: Neuwiedia malipoensis and
Apostasia shenzhenica (Apostasioideae); Paphiopedilum
armeniacum and Cypripedium singchii (Cypripedioi-
deae); Cymbidium sinense and Phalaenopsis equestris
(Epidendroideae); Hemipilia forrestii and Habenaria
delavayi (Orchidoideae); Vanilla shenzhenica and
Galeola faberi (Vanilloideae) [17].
In year 2015, the genome of P. equestris was se-

quenced via a whole-genome shotgun strategy. Its gen-
ome size is estimated to be 1.16 Gb, which contains
29,431 predicted protein-coding genes [18]. This species
is also the first whole-genome–sequenced water-
conserving CAM (crassulacean acid metabolism) plant.
CAM means an important elaboration of photosynthetic
carbon fixation that allows chloroplast-containing cells
to fix CO2 initially at night using phosphoenolpyruvate
carboxylase (PEPC) in the cytosol. The genome informa-
tion of P. equestris was used to construct OrchidBase 3.0
[19]. In year 2016, the whole genome of D. catenatum
was sequenced by Illumina HiSeq 2000 platform [14]. In
year 2017, the primitive orchid A. shenzhenica was
whole genome sequenced by using several different ap-
proaches including PacBio, Illumina, and 10X genomics
technologies [15]. In the work of Zhang et al. [15], the
quality of P. equestris and D. catenatum assembled gen-
ome was respectively improved by adding sequence
reads generated by both PacBio and 10X genomics tech-
nologies. Owing to OrchidBase 3.0 contained the limited
old version information of Phalaenopsis genome pub-
lished in 2015, we update the new version genome of P.
equestris, and added genomic information of two other
orchid species, D. catenatum and A. shenzhenica, in
OrchidBase 4.0. Useful annotation information and easy-
to-use web interfaces are provided in OrchidBase 4.0 to
access comprehensive sequence data.

Construction and content
Implementation and architecture
OrchidBase 4.0 is composed of a SQL server database
server, a windows application, and a web interface. For
storing and managing collected orchid genome sequence

information and the annotation data, the SQL Server
2012 system is adopted. The windows application exe-
cutes sequence analysis, and the C# programs and Perl
scripts are applied to parse orchid genome data and con-
struct the database. Several existing tools were used for
improving database coverage, system performance, and
the user interface. The web interface is constructed
using HTML and the Microsoft. NET (framework 4.62).
The OrchidBase 4.0 was developed based on Model-
View-Controller (MVC) architecture principles by using
the ASP.NET MVC 4 framework [20] and Visual C#
programming language. The operation system is the IIS
6.0 on the Microsoft Windows Server 2016 Standard.
Genome Browser is visualized under Apache web server
on the Ubuntu 16.04. The interactive data visualization
web page is based on D3.js and ASP.NET MVC. For
building a web-based visualization and presenting data
in an interactive and convenient way with maximum
compatibility, D3.js, the powerful JavaScript toolkit, was
applied to create cross-platform vector graphics. The
JBrowse, an AJAX-based browser, is applied to navigate
orchid genomes [21, 22].
Figure 2 shows the overview of the database architec-

ture. In addition, the content of the database (data and
tools) is summarized in Table 1. The SQL and BLAST
database (Fig. 2) are implemented in a virtual machine
of a cloud system with one CPU, 2 TB hard disk, and 16
GB RAM. Genome Browser is equipped in the hardware
of a workstation with one CPU (48 cores), 2 TB hard
disk, and 346 GB RAM (Fig. 2). Figure 3 shows the fea-
ture diagram of the OrchidBase 4.0 which including gen-
ome (newly created in this version) and transcriptome
(described in OrchidBase and OrchidBase 2.0) informa-
tion. The OrchidBase 4.0 simplifies the workflow for
large and complex orchid genome data analysis and
visualization. OrchidBase 4.0 is an open-access, web-
available portal that integrates the available data for the
genomes of the three orchid species and related tran-
scriptomic information.

Expanded database content
The raw data and whole genome-assembled scaffold se-
quences of Phalaenopsis equestris (BioProject
PRJNA192198 and PRJNA389183) were downloaded
from the NCBI database. The Bioproject PRJNA262478
containing raw data and whole genome-assembled scaf-
fold sequences of Dendrobium catenatum were also
downloaded. Genome sequences and whole-genome as-
sembly of Apstasia shenzhenica included in BioProject
PRJNA310678 were fetched. Statistics of these three or-
chid genomes is shown in Table 2.
Based on these datasets, predicted protein-coding

genes and translated amino acid sequences were anno-
tated by combining homology-based prediction, de novo
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gene prediction, and RNA sequence-aided prediction
[15]. Each predicted gene is assigned to a specific Gene
ID. The specific genes could be selected to investigate
their annotated functions of biological processes.
The transcriptomics data were downloaded from

BioProjects PRJNA288388, PRJNA304321, and
PRJNA348403. For providing expression profile of
each orchid gene, all RNA-seq reads were mapped to
the predicted genes and counted FPKM values for
each gene in the various tissues and different develop-
mental stages. All of this biological information has
been integrated into the OrchidBase 4.0.

Utility and discussion
Searching the genome information of the three orchid
species in the database
The A. shenzhenica, D. catenatum, and P. equestris gen-
ome information in OrchidBase 4.0 can be searched to
acquire the assembled scaffolds and predicted gene in-
formation. Through the web interface, the three orchid
genome information contained in OrchidBase 4.0 could
be freely accessed. The information can be accessed via
the “Orchid Genome” icon (Fig. 4, step 1). With the web
interface, a page allows users to select one of the three
orchid genomes (Fig. 4, step 2). Users then could access

Fig. 2 Overview of the database architecture

Table 1 Summary of data and tools that could be browsed and used for the three orchid species (Phalaenopsis equestris,
Dendrobium catenatum, and Apostasia shenzhenica)

Genome browser Scaffold ID, Scaffold sequence, Gene model, miRNA

Gene annotation Gene ID, Gene sequence, BLAST top hit descriptions, KEGG pathway, GO terms, Interpro description, Swissprot description,
TrEMBL description

Gene expression Gene ID, FPKM value in various tissues

Metabolism
pathway

Gene ID, Genes mapped to the KEGG pathways

BLAST tools BLASTN, BLASTX, tBLASTX, BLASTP, tBLASTN
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the five webpages (gene annotation, genome browser,
metabolism pathway, gene expression, and BLAST) for
querying the genome and retrieve the gene information
in the selected orchid genome (Fig. 4, step 3).

Database user protocol
Genome Browser page
Genome browser is a graphical interface for displaying
information of the genomic data. JBrowse browser, a
next-generation genome browser [22], is used in Orchid-
Base 4.0. The JBrowse tool provides all the assembled
scaffolds, which enables the user to access any scaffold
region of the chosen orchid genome (Fig. 4, step 4). The
webpage lists all the scaffolds for the user to select (Fig.
4, step 5). Click the “View/Search” icon, the selected
scaffold‘s information could be shown (Fig. 4, step 6),
and then further lead to the webpage to navigate the se-
lected scaffold detailed data (Fig. 4, step 7). The location
of genes as well as the intron/exon structure of genes
could be visualized (Fig. 4, step 8 to 12). In addition, the

miRNA annotation was integrated in the genome se-
quence (Fig. 4, step 8). Clicking a gene opens a popup
with links for downloading the CDS sequences or gene
annotation information (Fig. 4, step 10 to 12). Gene
model presented in the Genome Browser interface could
jump to the “Gene annotation” page. (Fig. 4, step 13).

Gene annotation page.
The “Gene annotation” page lists the Gene ID, the loca-
tion of the corresponding scaffold, best hit of the homo-
logs, E-value, KEGG pathway mapping, gene ontology
(GO) terms, Interpro, Swissprot, and TrEMBO classifica-
tion (Fig. 5). Users could access this page through step 1
to step 3 of Fig. 5. Through the web interface, users
could query the target information by selecting the or-
chid species and inputting and/or submitting keywords
or a Gene ID to the server (Fig. 5, step 4 to step 6). The
gene sequence and the annotated information managed
in the relational database are shown in the web interface
in response to a query. Users could get the sequence of

Fig. 3 Organizational structure of OrchidBase 4.0 web pages. The OrchidBase 4.0 includes newly added genomic information of three orchid
species (Phalaenopsis equestris, Dendrobium catenatum, and Apostasia shenzhenica) and transcriptomic sequences that have been described in
the previous version

Table 2 Comparison of the assembled genomes among the three orchid species collected in the OrchidBase 4.0

Orchid species Assembled genome
size

N50 length of scaffold
(Mb)

N50 length of contig
(Kb)

Number of predicted
genes

Reference

Phalaenopsis
equestris

1.13 Gb 1.22 45.8 29,545 Zhang et al.
[15]

Dendrobium
catenatum

1.12 Gb 1.06 51.7 29,257 Zhang et al.
[15]

Apstasia shenzhenica 349 Mb 3.03 80.1 21,841 Zhang et al.
[15]
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the selected gene from the Gene ID (Fig. 5, step 7), in-
ternally link to “Genome Browser” page from the Gene
location (Fig. 5, step 8), get the FPKM value of the gene
expression (Fig. 5, step 9), link to GenBank from the Ac-
cession number (Fig. 5, step 10), KEGG database from
KEGG pathway (Fig. 5, step 11), GO database from GO
term (Fig. 5, step 12), Interpro database from Interpro
(Fig. 5, step 13), Swiss-Prot database from Swissprot
(Fig. 5, step 14), and TrEMBL database from TrEMBL
(Fig. 5, step 15).

Gene expression page and Metabolism pathway page.
The list of annotated genes with the FPKM value can be
explored in the “Gene expression” page (Fig. 6). Users
could reach this page through step 1 to step 3 of Fig. 6.
Users can select the species and input a Gene ID to find
the expression of the gene with the FPKM value at various
tissues and different developmental stages (Fig. 6, step 4

to step 7). The Gene ID in this page internally links to
“Gene annotation” page (Fig. 6, step 8).
The “Metabolism pathway” page provides information

for the selected genes involved in the KEGG pathways
(Fig. 7). Users could go to this page through step 1 to step
3 of Fig. 7. When selecting a species (Fig. 7, step 4) and
clicking on a pathway name (Fig. 7, step 5), the panel con-
tents are substituted to portray the Gene IDs involved in
the pathway. Users then could select the specific Gene IDs
and click the “Select & View Results” icon, and the image
displays red-colored enzymes found in the KEGG data-
base (Fig. 7, step 6 to step 7). The colored pathway image
is interactive for accessing the KEGG database to explore
more information (Fig. 7, step 7).

(IV) BLAST page
To help users perform sequence alignment, Orchid-
Base 4.0 provides a graphic user interface for users to

Fig. 4 A step-by-step guide for the “Genome Browser” page
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run BLAST (Fig. 8). The assembled scaffold se-
quences, predicted gene and protein sequences can be
used for BLAST searches [23]. Users could access this
function by two ways: through step 1 to step 2 or
through step 3 to step 4 of Fig. 8. Users can perform

similarity searches of an input sequence against cod-
ing DNA sequences, predicted protein sequences, and
assembled genome sequences using BLAST search
tools (BLASTx, tBLASTx, BLASTp, BLASTn,
tBLASTn) (Fig. 8, step 5). The sequences can be

Fig. 5 A step-by-step guide for the “Gene annotation” page
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Fig. 6 A step-by-step guide for the “Gene expression” page

Fig. 7 A step-by-step guide for the “Metabolism pathway” page
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submitted by pasting the sequences in the webpage
(Fig. 8, step 6 to step 7). Users can set appropriate
parameters or simply select the default parameters to
run the search. The result of BLAST search contains
the lists of gene IDs (Fig. 8, step 8 and step 10), a
link to “Gene annotation” page (Fig. 8, step 9) and
the details of the alignment results (Fig. 8, step 11).

Conclusions
The addition and integration of orchid whole genomic
sequences with detailed annotation information and

easy-to-use web interfaces in OrchidBase 4.0 allow users
to efficiently find target genes, such as floral
development-related genes [24], floral pigmentation
pattern-related genes [25], TCP transcription factor
genes [11], and transposable element [26]. In addition,
the orchid genome sequence has been supplied valuable
information for plant genome evolution and comparative
genomic studies [15, 27]. The OrchidBase 4.0 enables
using genomic data to understand the fundamental biol-
ogy of orchids. In addition, with increases in the amount
of data from high-throughput technologies for genetic

Fig. 8 A step-by-step guide for using the “BLAST” tool
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and physical map construction, both types of maps will
be available for orchids in the near future. At present,
several whole-genome sequencing projects for species in
different subfamilies of Orchidaceae are ongoing. Orch-
idBase 4.0 will be updated continuously and more -omic
information and analysis tools will be included for com-
prehensive analysis of the orchid gene function and gen-
ome evolution.

Availability and requirements
Project name: OrchidBase 4.0.
Project home page: http://orchidbase.itps.ncku.edu.tw/
Operating system(s): Microsoft Windows Server 2016

Standard.
Programming language: ASP.NET and Visual C#.
Other requirements: none required.
License: none required.
Any restrictions to use by non-academics: no

restriction.
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