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Abstract 

Background:  Understanding mechanisms of sugar accumulation and composition is essential to determining fruit 
quality and maintaining a desirable balance of sugars in plant storage organs. The major sugars in mature Rosaceae 
fruits are sucrose, fructose, glucose, and sorbitol. Among these, sucrose and fructose have high sweetness, whereas 
glucose and sorbitol have low sweetness. Japanese pear has extensive variation in individual sugar contents in 
mature fruit. Increasing total sugar content and that of individual high-sweetness sugars is a major target of breeding 
programs. The objective of this study was to identify quantitative trait loci (QTLs) associated with fruit traits includ-
ing individual sugar accumulation, to infer the candidate genes underlying the QTLs, and to assess the potential of 
genomic selection for breeding pear fruit traits.

Results:  We evaluated 10 fruit traits and conducted genome-wide association studies (GWAS) for 106 cultivars and 
17 breeding populations (1112 F1 individuals) using 3484 tag single-nucleotide polymorphisms (SNPs). By imple-
menting a mixed linear model and a Bayesian multiple-QTL model in GWAS, 56 SNPs associated with fruit traits were 
identified. In particular, a SNP located close to acid invertase gene PPAIV3 on chromosome 7 and a newly identi-
fied SNP on chromosome 11 had quite large effects on accumulation of sucrose and glucose, respectively. We used 
‘Golden Delicious’ doubled haploid 13 (GDDH13), an apple reference genome, to infer the candidate genes for the 
identified SNPs. In the region flanking the SNP on chromosome 11, there is a tandem repeat of early responsive to 
dehydration (ERD6)-like sugar transporter genes that might play a role in the phenotypes observed.

Conclusions:  SNPs associated with individual sugar accumulation were newly identified at several loci, and candi-
date genes underlying QTLs were inferred using advanced apple genome information. The candidate genes for the 
QTLs are conserved across Pyrinae genomes, which will be useful for further fruit quality studies in Rosaceae. The 
accuracies of genomic selection for sucrose, fructose, and glucose with genomic best linear unbiased prediction 
(GBLUP) were relatively high (0.67–0.75), suggesting that it would be possible to select individuals having high-sweet-
ness fruit with high sucrose and fructose contents and low glucose content.
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Background
Pears (Pyrus spp.) belong to the subtribe Pyrinae of the 
Rosaceae and are one of the most important fruit crops in 
temperate regions. The origin of pear is presumed to be 
in the mountainous regions of southwestern China and 
to date back to the Tertiary period (65 to 55 million years 
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ago) [1]. Pears that dispersed toward the west became 
domesticated as European pear (P. communis L.), whereas 
others that dispersed toward the east gave rise to Asian 
pear species. Asian pears have fruit with crisp, juicy, and 
sandy texture that is edible just after harvesting. Records 
of pear cultivation in China have been found from 2000 
to 3300 years ago [1, 2], and major cultivated Asian pears 
are traditionally classified into three species: P. ussu-
riensis Maxim., P. bretschneideri Rehder, and P. pyrifolia 
(Burm. f.) Nakai [3, 4]. Among the three species, P. pyri-
folia is presumed to have been introduced into Japan pre-
historically and became the major species in Japan [5]. 
Previous reports suggested that there were opportunities 
for ancient cultivar exchange between Japan and east-
ern China [6, 7], but the varieties currently cultivated in 
Japan and China are genetically different from each other, 
suggesting that they have different breeding histories. In 
Japan, local cultivar ‘Nijisseiki’ has been one of the lead-
ing cultivars, and ‘Nijisseiki’ and its relatives have been 
repeatedly used as parents in breeding programs, sug-
gesting that recent cultivars have narrow genetic diversity 
[7].

Some fruit traits that are important for pear breed-
ing programs and have been genetically studied are fruit 
harvesting day, fruit weight, fruit hardness, acid con-
tent, and sweetness [8–11]. Among these, sweetness 
is the most important factor determining fruit quality 
[9]. Fruit sweetness is controlled not only by the total 
sugar content but also by individual sugar composition. 
While sucrose is the major individual sugar in carbohy-
drate translocation from source to sink in most crops, 
the Rosaceae are unique in that sorbitol plays an impor-
tant role in this process [12]. After the sugar loaded into 
Rosaceae fruit is converted by several enzymes that play 
a critical role in sugar metabolism during fruit develop-
ment [12–17], sucrose, fructose, glucose, and sorbitol 
accumulate in mature Rosaceae fruit. These sugars have 
different levels of sweetness per unit mass (g): if sucrose 
is rated 1, then fructose is 1.50–1.75, glucose is 0.70–
0.80, and sorbitol is 0.55–0.70 [18–20]. The mechanisms 
of sugar accumulation and interconversion are important 
not only in fruit but also in plant storage organs such as 
sugar beet taproots, sugarcane stems, and potato tubers 
[21–23]. Whereas increasing sucrose yield and concen-
tration are important breeding objectives in sugar beet 
and sugarcane, the content of the reducing sugars fruc-
tose and glucose during storage affects the culinary qual-
ity of potato products such as chips and French fries.

In a study of various Rosaceae species, pear had a large 
variation in individual sugar contents in mature fruit 
[24], whereas cultivar collections of apple and peach 
had less variation [15, 25–27]. Fructose is dominant in 
the fruit of most apple cultivars [25, 26], while sucrose is 

dominant in most peach cultivars [15, 27]. QTLs associ-
ated with the conversion of sucrose to hexose in mature 
fruit were identified on chromosomes 1 and 7 in Japanese 
pear [9]. Simple sequence repeats (SSRs) correspond-
ing to the regions flanking acid invertase genes PPAIV3 
and PPAIV1 were detected within the QTL intervals. 
The enzymes encoded by these genes are located in the 
vacuole, where they catalyze the conversion of sucrose to 
hexose. Large-effect QTLs that control the conversion of 
sucrose to hexose were also identified at the similar posi-
tion on apple chromosome 1 [28]. Moreover, QTLs for 
soluble solids concentration (SSC) have been mapped on 
pear chromosomes 2, 4, 5, 6, and 8 [11, 29], though the 
effects of these QTLs fluctuated from year to year.

Whole-genome duplications are suggested to have 
occurred in pear and apple, as their genome sequences 
have extensive syntenic blocks covering much of the 
chromosomes (2n = 2x = 34) [30]. In addition to synteny 
of their whole genomes, these species also have interest-
ing genes and QTLs in common. The S haplotypes that 
control gametophytic self-incompatibility [31] and genes 
for susceptibility to Alternaria alternata [32, 33] are 
located at the same positions in both genomes. A mem-
ber of the 1-aminocyclopropane-1-carboxylate synthase 
(ACS) gene family is related to several important fruit 
traits including fruit harvesting day, storage ability, and 
fruit drop [11, 34–36]. QTLs for harvesting date on chro-
mosome 3 were commonly identified in several studies 
[11, 37–39]. Because of the high similarity between Pyrus 
and Malus genome sequences, pear genetic studies have 
been conducted using advanced apple genome informa-
tion [9, 40]. The genome of a doubled haploid ‘Golden 
Delicious’ (GDDH13) composed of 280 assembled scaf-
folds and arranged into 17 pseudomolecules is now the 
most widely used reference genome in apple genetic 
studies [41]. Although draft genomes of Chinese pear, 
wild pear in China (P. betulaefolia), and European pear 
are available [42–44], a draft genome of Japanese pear 
has not yet been available.

Several useful DNA markers have been developed 
and applied in Japanese pear breeding programs: these 
include DNA markers to identify self-compatibility [45, 
46], a molecular marker associated with disease resist-
ance genes [47, 48], and markers associated with fruit 
harvesting day [8, 9, 11]. Unlike some traits controlled 
by a single gene or large-effect QTLs, marker-assisted 
selection (MAS) for traits controlled by multiple minor 
genes has not been applied in pear breeding programs. 
Currently, genomic selection (GS) is gaining attention as 
an efficient breeding method for such traits in fruit trees. 
GS utilizes predicted breeding values given by predic-
tion models based on genome-wide single-nucleotide 
polymorphism (SNP) data to enable selection of superior 
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individuals. The potential of GS for use in Japanese pear 
breeding was assessed by Minamikawa et  al. [10], who 
used 86 varieties (84 Japanese pear, 2 Chinese pear) 
and 765 F1 trees from 16 breeding populations (full-sib 
families) genotyped for SNPs to compare the accuracy 
of genomic prediction obtained using 12 different meth-
ods. The mean prediction accuracy for these models was 
about 0.6 for fruit quality traits, but those for physiologi-
cal disorders such as heart rot and watercore were low.

In this study, we updated Minamikawa et al.’s [10] study 
by further evaluating sugar components, by increasing 
the numbers of cultivars and individuals, and by apply-
ing a more powerful genotyping method. Here, we used 
double-digest restriction-site associated DNA sequenc-
ing (ddRAD-Seq) to genotype 106 cultivars and 17 breed-
ing populations (1112 F1 individuals), representing about 
40% more genotypes than in the previous study. This 
method uses two restriction enzymes, which provides an 
advantage in precise and repeatable selection and enables 
paired-end sequencing of identical loci across multiple 
samples using next-generation sequencing, reducing the 
cost and time for genotyping [49]. To characterize the 
sugar metabolism in these materials and to eventually 
increase the content of specific sugars, here we meas-
ured individual sugar contents as well as total sugar con-
tent. The objective of this study was to identify the QTLs 

associated with individual sugar contents and some fruit 
traits, and to infer the candidate genes for these QTLs. 
Because many important genes and QTLs have been 
identified in the apple genome, we used it as a reference 
genome to identify the chromosome positions of QTLs 
and surrounding genes. We also examined the potential 
of GS and considered strategies for introducing GS into 
pear breeding programs. The genotypes and phenotypes 
obtained would be a source of information for both prac-
tical pear breeding programs and GS.

Results
Phenotypic distribution of individual sugars
The average contents of sucrose (SUC), fructose (FRU), 
glucose (GLC), sorbitol (SOR), and total sugar content 
(TSC) averaged over 1218 individuals (Table  1) were 
43.1, 40.6, 14.9, 32.2, and 130.7 mg/ml, respectively. SUC 
showed the greatest range of phenotypic variation (1.6–
117.0  mg/ml, variance 355.6; Table S1). The distribu-
tions of FRU, GLC, SOR, and TSC were much narrower: 
9.6–70.7  mg/ml (variance 91.9), 0–35.0  mg/ml (vari-
ance 64.3), 11.5–56.3 mg/ml (variance 56.5), and 101.3–
173.8 mg/ml (variance 125.2), respectively. Fruit harvest 
time (HarT) ranged over 93 days (July 23 to October 23, 
mean August 31; Table S1). The range of fruit weight 
(FruW) was 92.5–1016.1 g (mean 394.2 g), fruit hardness 

Table 1  Populations and cultivars used in this study and the proportion of genetic clusters at K = 4

The breeding populations  are the product of about five to seven generations of crossing in a pear breeding program at the Institute of Fruit Tree and Tea Science

Population structure was estimated for each individuals in software ADMIXTURE 1.30  K = 4

Population ID Seed parent Pollen parent Number of  
individuals

“orange” cluster “light blue” 
cluster

“dark blue” 
cluster

“green” cluster

523 Akizuki 373-55 106 0.00 0.00 1.00 0.00

538 Akizuki Hoshiakari 28 0.00 0.66 0.34 0.00

539 Akizuki 450-63 62 0.00 0.01 0.99 0.00

541 Kosui Hoshiakari 47 0.00 0.68 0.26 0.05

542 Akiakari 450-7 33 0.00 0.30 0.40 0.29

543 Natsushizuku Hoshiakari 78 0.00 0.71 0.29 0.00

545 Kosui Inagi 38 0.04 0.04 0.44 0.49

546 Akizuki Akiakari 36 0.00 0.19 0.54 0.27

547 Akiakari Okuroku 70 0.00 0.02 0.03 0.95

574 450-63 Chikusui 51 0.00 0.03 0.97 0.00

578 Hoshiakari Narumi 100 0.00 0.99 0.01 0.00

581 Kanta Hoshiakari 62 0.51 0.49 0.00 0.00

588 Hoshiakari Tsukuba49 121 0.00 0.99 0.01 0.00

589 Kanta Rinka 49 0.77 0.07 0.04 0.12

590 373-055 Kanta 39 0.56 0.00 0.44 0.00

591 Tsukuba51 Kanta 74 0.99 0.00 0.00 0.00

592 Shurei Kanta 72 0.61 0.00 0.39 0.00

595 Osa gold Chikusui 46 0.12 0.02 0.68 0.18

Cultivar collection 106 0.13 0.14 0.37 0.36
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(FruH) was 2.2–9.5 lb (mean 4.8 lb), SSC was 10.3–18.1% 
(mean 13.8%), and acidity (Aci, measured by pH), was 
3.4–5.6 (mean 4.9).

Phenotypic correlation coefficients and their sig-
nificances for all trait combinations were calculated 
(Table  2). SUC had strong negative correlations with 
FRU, GLC, and SOR (r =  − 0.57, − 0.76, and − 0.42, 
respectively), and GLC had positive correlations with 
FRU and SOR (r = 0.39 and 0.36, respectively). TSC was 
correlated positively with SUC, FRU, and SOR (r = 0.36, 
0.22, and 0.29, respectively) but was not significantly cor-
related with GLC. TSC had a very strong positive cor-
relation with SSC (r = 0.92), indicating that the SSC of 

juice from mature Japanese pear was composed almost 
entirely of sugars.

ddRAD genotyping
A total of 1.7 billion reads were obtained from the 1218 
individuals (average of 1.4 M reads per individual). After 
trimming low-quality data and adapter sequences, 94.5% 
of the high-quality reads were successfully mapped onto 
the apple GDDH13 reference genome. After selecting 
SNP loci with VCFtools and removing individual SNP 
markers with < 25% missing data, we obtained 9011 SNPs. 
Missing data were imputed using Beagle 4.0, and 7463 

Fig. 1  Genetic structure of plant materials used in this study. a Principal component analysis was performed in software PLINK v1.90 using 3484 tag 
single-nucleotide polymorphisms (SNPs). The major parental cultivars of populations in this study (‘Kanta’, ‘Akizuki’, and ‘Hoshiakari’) are indicated by 
arrows. b Population structure estimated for each cross and the cultivar collection in software ADMIXTURE 1.30 at K = 3 and K = 4. The color used for 
each population corresponds to the color of its predominant cluster at K = 4 in b 
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SNPs with > 0.8 imputation accuracy were selected. To 
normalize the SNP density, 3484 tag SNPs were selected 
from the 7463 SNPs using Haploview.

Linkage disequilibrium and population structure
Linkage disequilibrium (LD) between pairs of loci was 
estimated using all 7463 SNPs, before selecting the tag 
SNPs. The r2 values (estimates of LD) were plotted against 
marker distances (bp) in the apple genome GDDH13. The 
average r2 values dropped below 0.2 at a marker distance 
of 250 kb and below 0.1 at 1750 kb (Figure S1). Popula-
tion structure was estimated by principal component 
analysis (PCA) and Bayesian clustering analysis (Fig.  1; 
Table 1; Table S1). In PCA, the first principal component, 
which explained 16.3% of the total variation, reflected the 
difference between old cultivars or populations derived 
from relatively old cultivars (green) and populations 
derived from crosses among new cultivars (light blue, 
orange, and dark blue). The second principal component, 
which explained 12.5% of the total variation, reflected the 
genetic difference between ‘Kanta’ and ‘Hoshiakari’, i.e., 
the populations derived from ‘Kanta’ (orange) were dis-
tributed towards positive values of the second principal 
component and those of ‘Hoshiakari’ (light blue) were 
distributed towards negative values.

Prior to setting the value of K for Bayesian cluster-
ing analysis, the standard errors of the cross-validation 
error were calculated and found to plateau around 
K = 15. Because the cluster diagrams for values of K 

around K = 15 were too complicated to provide a clear 
overview of the genetic relationships among the breed-
ing populations, Bayesian clustering analyses at K = 3 
and K = 4 are shown in Fig.  1. We chose these values 
because the clusters at K = 3 and K = 4 roughly corre-
sponded to the classification based on PCA. Although 
cultivars showed admixed genetic structure, each 
breeding population had a simple genetic structure. 
Populations derived from crosses with ‘Kanta’ (pro-
portion of “orange” cluster = 1.00) and other cultivars 
(population IDs 581, 589, 590, 591, and 592) presented 
the “orange” genetic cluster, those derived from crosses 
with ‘Hoshiakari’ (proportion of “light blue” = 1.00) 
and other cultivars (IDs 538, 541, 543, 578, 581, and 
588) presented the “light blue” genetic cluster, and 
those derived from crosses with ‘Akizuki’ (proportion 
of “dark blue” = 1.00) and other cultivars (IDs 523, 538, 
539, and 546) presented the “dark blue” genetic clus-
ter. When K = 4, a “green” cluster was formed from the 
“dark blue” and the “light blue” clusters in some culti-
vars and populations (IDs 542, 545, 546, and 547). The 
average ratio of “orange”:“light blue”:“dark blue” in 1218 
individuals was 0.20:0.38:0.42 at K = 3, and the average 
ratio of “orange”:“light blue”:“dark blue”:“green” was 
0.19:0.33:0.35:0.13 at K = 4. The new “green” cluster 
seemed to be derived from relatively old cultivars such 
as ‘Okuroku’ (not included in the 1218 individuals) and 
‘Inagi’ (proportion of “green” = 0.60) that are geneti-
cally somewhat different from recent cultivars.

Table 3  Molecular markers showing association with traits evaluated using a mixed linear model (MLM)

Traits are as defined in Table 2 

PVE indicates the percentage of the phenotypic variance explained by the QTL

SUC = sucrose content, FRU = fructose content, GLC = glucose content, HarT = harvest time,, Aci = acidity

SNP Trait Chromosome Position (bp)  -log10 (p) value PVE (%)

Chr07_33139082 SUC 7 33139082 9.9 23.5

Chr15_17923340 SUC 15 17923340 4.4 6.0

Chr06_7938399 FRU 6 7938399 5.9 0.7

Chr07_33139082 FRU 7 33139082 6.6 9.2

Chr11_41197041 FRU 11 41197041 6.3 2.9

Chr15_16568005 FRU 15 16568005 5.7 1.7

Chr00_30710088 GLC 0 30710088 8.8 21.1

Chr06_7938399 GLC 6 7938399 4.6 2.3

Chr07_33139082 GLC 7 33139082 6.5 25.2

Chr11_41197041 GLC 11 41197041 18.9 21.7

Chr03_31587739 HarT 3 31587739 8.9 16.5

Chr15_16568005 HarT 15 16568005 12.2 20.3

Chr00_23086705 Aci 0 23086705 5.0 4.4

Chr06_20720912 Aci 6 20720912 15.7 13.1

Chr14_14932973 Aci 14 14932973 4.2 3.0

Chr16_3043313 Aci 16 3043313 7.6 11.0



Page 7 of 19Nishio et al. BMC Plant Biol          (2021) 21:378 	

Genome‑wide association study (GWAS)
GWAS analysis was conducted for 10 fruit traits by 
applying two methods: one using a mixed linear model 
(MLM) to test the significance of association between a 
single SNP and each trait, and the other using a Bayes-
ian multiple-QTL model. The latter was regarded a vari-
ational approximation version of the BayesB method [50] 
in which all SNPs were simultaneously fitted in the model 
with a variational approximation [51] (hereafter referred 
to as vBayesB). In the MLM method, each SNP was 
tested separately, so some SNPs actually linked to QTLs 
with minor effects were not identified as significant when 
there are other QTLs with large effects located near the 
miner effects and concealed their effects the miner QTLs. 
To compensate for this drawback of the MLM method, 
we additionally applied the vBayesB method for GWAS, 
in which multiple SNPs are simultaneously fitted in a sta-
tistical model for explaining phenotypic data. Because 
the vBayesB method is based on a multiple-SNP model, it 
allows detection of minor-effect QTLs even when closely 
linked to those with larger effects. In this method, how-
ever, the false positive rate might be slightly increased 
depending on the non-genetic background effects and the 
threshold value for significance. For covariates control-
ling background effects, we included the progeny effect 
specific to each F1 family in the model while we adopted 
a threshold value of 0.85 for posterior probability for SNP 
inclusion in the model. These settings for vBayesB were 
suitable for controlling the false positive rate. We consid-
ered the SNPs that were significantly detected with both 
methods as reliable QTLs affecting traits related to sugar 
contents. As shown in Figure S2, a substantial proportion 
of the SNPs significant with the MLM method were also 
assigned high posterior probabilities of being included in 
the model with the vBayesB method.

In the MLM-based GWAS, 16 significant SNPs were 
identified for five fruit traits (SUC, FRU, GLC, HarT, 
and Aci; Table  3). No significant SNPs were identi-
fied for SOR, TSC, FruW, FruH, or SSC. The relation-
ships between genotype and phenotype for SNPs that 
explained ≥ 10% of the phenotypic variation for a trait 
are shown in box plots (Fig.  2). Different sugar content 
traits that were significantly associated with the same 
SNP are grouped in Fig. 2 in order to compare the rela-
tionships between marker genotype and the content of 

each individual sugar, possibly revealing SNPs involved 
in sugar conversion. Two QTLs for SUC were detected 
on chromosomes 7 and 15; four QTLs for FRU were 
detected on chromosomes 6, 7, 11, and 15; and four QTLs 
for GLC were detected on chromosomes 0, 6, 7, and 11. 
Chr07_33139082 was identified as a significant SNP for 
SUC, FRU, and GLC, with 23.5%, 9.2%, and 25.2% of the 
phenotypic variance, respectively, explained by the SNP 
effects. For QTLs that had a large and significant effect 
on one or more individual sugar contents, the average 
values of all sugar content traits for each genotype are 
shown in Table S2. The average values of genotypes at 
Chr07_33139082 for AA, AC, and CC were 54.0, 39.1, 
and 27.4 mg/ml for SUC; 36.8, 43.0, and 42.2 mg/ml for 
FRU; and 10.4, 16.0, and 22.8 mg/ml for GLC, respectively 
(Fig. 2, Table S2), suggesting that the effect of the QTL on 
SUC had strong negative correlations with its effects on 
both FRU and GLC. On the other hand, this SNP seemed 
to have little effect on TSC (131.5, 130.5, and 129.5 mg/
ml for the average values of AA, AC, and CC, respec-
tively; Table S2). For FRU, two SNPs (Chr06_7938399 
and Chr11_41197041) were significant. Chr11_41197041 
showed effects with negative correlation between FRU 
and GLC. The effect of Chr11_41197041 on GLC had 
the highest − log10 (p) value, with 21.7% of the variance 
explained by the SNP. The average value for GLC of each 
genotype at Chr11_41197041 was 10.8  mg/ml for GG, 
14.3 mg/ml for GT, and 21.4 mg/ml for TT, whereas the 
average values for FRU were 42.8 mg/ml for GG, 40.5 mg/
ml for GT, and 38.1 mg/ml for TT (Fig. 2, Table S2). On 
the other hand, this SNP seemed to have a relatively small 
effect on TSC (129.4, 130.9, and 132.1  mg/ml for the 
average value of GG, GT, and TT, respectively; Table S2). 
Chr00_30710088, located on fictive chromosome 0 in the 
apple GDDH13 genome, was also significant for GLC, but 
was strongly linked to Chr11_41197041 in several popu-
lations (for example, r2 = 1.00 between Chr00_30710088 
and Chr11_41197041 for population 589, derived from 
‘Kanta’ and ‘Rinka’). Thus, the effect of Chr00_30710088 
was excluded from further analysis and discussion. Also, 
Chr15_17923340, which was significant for SUC, and 
Chr15_16568005, which was significant for FRU, are close 
to each other, suggesting that these two SNPs are detect-
ing the same QTL. For HarT, two significant SNPs were 
identified in the MLM-based GWAS. Chr03_31587739 

(See figure on next page.)
Fig. 2  Box plots showing the association of SNP genotypes with six fruit traits. The SNPs shown explained more than 10% of the phenotypic 
variance for the indicated trait(s). Box plots for different traits associated with the same SNP are enclosed by rounded rectangles. Chr15_1792340 for 
SUC and Chr15_16568005 for FRU, which are close to one another, are enclosed by a rounded rectangle with a dotted line. Chr04_29871378 for FRU 
and Chr12_4383743 for FruH were identified only in the vBayesB-based GWAS analysis (Table 4); the rest were identified in the MLM-based GWAS 
analysis (Table 3) or in both. The fictive chromosome 0 contains all unassigned scaffolds. For each QTL genotype, the red dot and thick horizontal 
line indicate the average value and median value, respectively
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Fig. 2  (See legend on previous page.)
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and Chr15_16568005 showed high − log10 (p) values (8.9 
and 12.2, respectively) and explained 16.5% and 20.3% 
of the phenotypic variance, respectively. The difference 
between the average values of the CT and TT genotypes 

was 14  days for Chr03_31587739, while the number 
of CC individuals was too low to include in the com-
parison. For Chr15_16568005, the average values of the 
AG and GG genotypes were comparable (52.7 and 52.0, 

Table 4  Molecular markers showing association with traits evaluated using a Bayesian multiple-QTL model (vBayesB)

Traits are as defined in Table 2 

Prob indicates posterior probability 

PVE indicates the percentage of the phenotypic variance explained by the QTL

SUC = sucrose content, FRU = fructose content, GLC = glucose content, SOR = sorbitol content, TSC = total sugar content, HarT = harvest time, FruW  = fruit weight, 
FruH = fruit hardness,  SSC = soluble solids concentration (%), Aci = acidity

SNP Trait LG Position (cM) Prob PVE (%)

Chr07_33139082 SUC 7 33139082 1.00 23.5

Chr09_18310939 SUC 9 18310940 0.93 8.8

Chr12_26930814 SUC 12 26930814 0.99 2.9

Chr04_29871378 FRU 4 29871378 0.97 12.7

Chr06_35256785 FRU 6 35256784 0.87 0.6

Chr10_8714751 FRU 10 8714751 0.97 0.3

Chr10_31918464 FRU 10 31918464 0.87 6.9

Chr11_41197041 FRU 11 41197040 0.99 2.9

Chr14_29691767 FRU 14 29691768 0.99 5.5

Chr01_27419265 GLC 1 27419264 0.91 1.2

Chr07_33139082 GLC 7 33139082 0.89 25.2

Chr10_31918464 GLC 10 31918464 0.87 8.9

Chr11_41197063 GLC 11 41197064 0.96 23.7

Chr14_28907638 SOR 14 28907638 1.00 0.4

Chr15_4672726 SOR 15 4672726 0.88 0.4

Chr02_2240743 TSC 2 2240743 1.00 2.0

Chr05_43292357 TSC 5 43292356 1.00 2.1

Chr07_9849922 TSC 7 9849922 0.98 6.5

Chr04_5362900 HarT 4 5362900 0.93 3.4

Chr05_7790403 HarT 5 7790403 1.00 0.1

Chr05_31445189 HarT 5 31445188 0.98 1.4

Chr06_7938399 HarT 6 7938399 0.97 10.1

Chr07_20343398 HarT 7 20343398 0.99 0.6

Chr13_37081601 HarT 13 37081600 0.97 1.6

Chr17_4322827 HarT 17 4322827 1.00 1.3

Chr01_30025944 FruW 1 30025944 0.89 4.9

Chr07_33920595 FruW 7 33920596 0.95 1.6

Chr09_1463613 FruW 9 1463613 0.89 2.7

Chr16_4765134 FruW 16 4765134 0.88 0.3

Chr02_29263941 FruH 2 29263940 0.91 4.6

Chr08_6783563 FruH 8 6783563 0.88 2.7

Chr12_4383743 FruH 12 4383743 0.87 10.6

Chr02_19653219 SSC 2 19653220 0.91 0.9

Chr04_30194726 SSC 4 30194726 1.00 0.2

Chr17_5809940 SSC 17 5809940 1.00 8.2

Chr01_26225120 Aci 1 26225120 1.00 1.1

Chr04_9535067 Aci 4 9535067 0.92 2.3

Chr06_20720912 Aci 6 20720912 0.91 13.1

Chr06_32310033 Aci 6 32310032 0.95 0.4

Chr09_15996669 Aci 9 15996669 0.90 0.6
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respectively), but that of AA was 66.2. Out of the four 
significant SNPs associated with Aci, Chr06_20720912 
and Chr16_3043313 showed relatively high percentages 
of variance explained (13.1% and 11.0%, respectively). 
The average values for Aci at Chr06_20720912 were 4.85 
for AA, 4.96 for AT, and 5.20 for TT (Fig. 2), and those at 
Chr16_3043313 were 4.85 for CC, 4.90 for CG, and 5.08 
for GG (Fig. 2).

In the vBayesB-based GWAS, 40 SNPs showed pos-
terior probabilities exceeding 0.85 for all 10 fruit traits 
(Table 4, Table S2). Out of those 40 SNPs, 4 were also 
significant in the MLM-based GWAS: Chr07_33139082 
for SUC and GLC, Chr11_41197041 for FRU, and 
Chr06_20720912 for Aci. Chr11_41197063 (for GLC) 
is close to Chr11_41197041, suggesting that they are 
associated with the same gene. Although the posterior 
probability values were high, the percentages of pheno-
typic variance explained by the SNPs were not large for 
most of the detected SNPs. Out of the 40 SNPs, only 
7 had percentages of phenotypic variance explained 
of ≥ 10%, including the four that were also significant 
in MLM-based GWAS (considering Chr11_41197063 
to be the same locus as Chr11_41197041). In addition 
to those four, Chr04_29871378 explained 12.7% of the 
phenotypic variance for FRU, and the average value of 
each genotype was 45.3 mg/ml for CC, 39.6 mg/ml for 
CG, and 35.6 mg/ml for GG (Fig. 2). These values were 
positively correlated with those for TSC (134.2  mg/
ml for CC, 129.8  mg/ml for CG, and 127.3  mg/ml for 
GG; Table S2), though this SNP was not detected in the 
vBayesB-based GWAS for TSC. Chr06_7938399 (for 
HarT) and Chr12_4383743 (for FruH; see Fig.  2) each 
accounted for 10% or more of the phenotypic variance 
for the indicated trait, but these SNP had minor geno-
type frequency (< 0.05) and did not segregate in most of 
the populations.

To illustrate the effects of the 56 SNPs from the two 
GWAS analyses in each population, the percentages of 
phenotypic variance explained by SNPs in each popula-
tion were calculated and displayed in a heatmap (Figure 
S3). While the SNPs identified in MLM-based GWAS 
tended to show effects across the 1218 individuals, some 
SNPs identified in vBayesB-based GWAS showed effects 
specific to a population. For example, Chr04_5362900 
(for HarT) and Chr12_4383743 (for FruH) explained high 
percentages of variance only in the cultivar collection.

Based on the QTLs and genes previously identified in 
apple, we searched for candidate genes for fruit traits in 
the GDDH13 genome (Table  5). For the QTLs associ-
ated with individual sugar contents, we found an acid 
invertase gene, a sucrose synthase gene, and ERD6-like 
genes as candidates on apple chromosomes 4, 7, 11, and 
15. For the QTLs for fruit harvesting day, a gene for the 
NAC18.1 transcription factor was found on chromosome 
3, and a member of ACS gene family was found on chro-
mosome 15. An aluminum-activated malate transporter-
like gene, ma1, was also detected on chromosome 16 as a 
candidate for acidity. When we searched for the locations 
of these candidate genes in European pears and wild pear 
in China by using BLAST + , all of the candidate genes 
were detected in similar regions of both genomes.

Genomic selection
We attempted to predict the breeding values of indi-
viduals with genomic best linear unbiased prediction 
(GBLUP), in which a polygenic effect included in MLM-
based GWAS was regarded as the breeding value of an 
individual, and with the vBayesB-based method, which 
was also used in GWAS. We used each F1 family as a 
tested population and the remaining families and culti-
vars as the training population, where a prediction model 
was constructed with both observed phenotypes and 

Table 6  Prediction accuracies of genomic selection for each trait based on genomic best linear unbiased prediction (GBLUP) and 
vBayesB-based method

Values indicate Pearson’s correlation coefficient (r) between predicted genotypic values and phenotypic values

Trait GBLUP vBayesB

SUC 0.72 0.69

FRU 0.67 0.60

GLC 0.75 0.75

SOR 0.63 0.58

TSC 0.55 0.39

HarT 0.74 0.65

FruW 0.56 0.46

FruH 0.56 0.41

SSC 0.57 0.45

Aci 0.64 0.66
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SNP genotypes of a training population and the breed-
ing values of each tested population were predicted from 
SNP genotypes with the constructed model. We calcu-
lated correlation coefficients between predicted breeding 
values and observed phenotypes over all individuals in F1 
families (Table  6). The prediction accuracies in GBLUP 
were higher than those in the vBayesB-based method 
for SUC, FRU, SOR, TSC, HarT, FruW, FruH, and SSC, 
whereas the prediction accuracies in GBLUP for GLC 
and Aci were the same as or slightly lower than those 
in the vBayesB-based method. GLC showed the highest 
values of prediction accuracy in both GBLUP and the 
vBayesB-based method (0.75). TSC, FruW, FruH, and 
SSC showed lower values of prediction accuracy, espe-
cially with the vBayesB-based method (0.39–0.46).

Discussion
Several phenotypic correlations among individual sug-
ars were identified in 1218 individuals and cultivars. 
SUC had strong negative correlations with both FRU and 
GLC (r =  − 0.57 and − 0.76, respectively), and FRU had a 
positive correlation with GLC (r = 0.39). This result was 
quite similar to those in previous studies of QTLs for 
individual sugar traits [9] and genetic differences in indi-
vidual sugars among leading or promising cultivars [52]. 
In addition, SOR had a negative correlation with SUC 
in this study (r =  − 0.42). These results suggested that 
sugar conversion from sucrose to hexose or from sorbi-
tol to sucrose had a strong influence on sugar composi-
tion in mature fruit. TSC had quite a strong correlation 
with SSC, suggesting that it would be possible to use SSC 
for the first screening of individuals: it is much easier to 
measure SSC (the amount of sugar in fruit) than TSC, 
which requires high-performance liquid chromatogra-
phy. In a previous study, the broad-sense heritability of 
TSC was only 0.33, whereas those of SUC, FRU, GLC, 
and SOR were 0.64, 0.69, 0.71, and 0.76, respectively [52]. 
Segregating TSC into individual sugars would be an effec-
tive way to identify the genes associated with sugar accu-
mulation and conversion in mature fruit, because the low 
heritability of TSC would make genetic analyses of that 
trait difficult. HarT had positive correlations with FruW, 
TSC, and SSC, as reported in previous studies [10, 53]. 
This suggests that it might be difficult to develop early-
ripening cultivars with large fruit size and high sugar 
content. On the other hand, FruH and Aci did not show 
clear correlations with other fruit traits, suggesting that 
they are independent and controlled by different genes.

In previous studies, LD values of Japanese pear had 
been calculated based on genetic linkage maps (centi-
morgan distance) [8, 10]. In this study, we calculated 
LD based on the apple physical map, enabling us to 
compare the LD blocks with those in apple. The average 

r2 values dropped below 0.2 at 250  kb. Our material 
had a smaller LD block size than the apples studied by 
Moriya et al. [54] and Kumar et al. [55], but a larger LD 
block size than in the study of Leforestier et  al. [56]. 
We expected that the LD in Japanese pear would be 
high because genetic bottlenecks and breeding history 
would have increased the extent of LD by eliminating 
recombinant lineages [8]. Nevertheless, the LD block 
size was smaller than in several apple genetic studies, 
suggesting that apple experienced a strong bottleneck 
similar to that presumed to have occurred during pear 
breeding and domestication. In the present study, the 
cultivar collection had admixed structure in Bayes-
ian structure analyses and showed broad distribution 
in PCA compared to individual populations, whereas 
each population had smaller genetic diversity than the 
cultivar collection. In the Bayesian structure analysis at 
K = 4, the populations were roughly divided into four 
groups: those derived from crosses between ‘Kanta’ and 
other cultivars (“orange”), those derived from crosses 
between ‘Hoshiakari’ and other cultivars (“light blue”), 
those derived from crosses between ‘Akizuki’ and other 
cultivars (“dark blue”), and cultivars and populations 
relatively distant from those three cultivars (“green”). 
‘Kanta’ has high sweetness, with high TSC and FRU 
[52], ‘Hoshiakari’ has a scab resistance gene inherited 
from local cultivar ‘Kinchaku’ [57], and ‘Akizuki’ has a 
good fruit texture with excellent fruit shape. Since each 
of these cultivars has specific desirable characteristics, 
they have been used as parents in Japanese pear breed-
ing programs. In essence, the populations used in this 
study were based on only 13 founder cultivars [57]. 
Because of the loss of genetic diversity among modern 
cultivars [36], the genetic diversity of the populations 
used in this study was not very large. The genetic struc-
ture identified in this study reflects the small genetic 
differences between the parental cultivars used to cre-
ate the populations, which basically represent the same 
gene pool, rather than ancestral populations derived 
from different gene pools.

In this study, we identified several candidate genes 
based on the genome sequence of GDDH13. All of these 
candidate genes were successfully mapped to the whole-
genome sequences of European pear and wild pear in 
China, suggesting that those genes are conserved in the 
Pyrinae (Table  5). We identified a QTL associated with 
conversion of SUC to FRU and GLC on chromosome 
7. A previous study also identified a QTL associated 
with conversion of SUC to FRU and GLC in this region 
(chromosome 7) and on chromosome 1, and further sug-
gested that acid invertase genes PPAIV1 and PPAIV3 
were the candidate genes [9]. In apple, a similar QTL for 
conversion of individual sugars was also identified on 
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chromosome 1 in both mature fruit and fruit after storage 
[28]. Thus, it is possible that the AIV gene family plays an 
important role in determining individual sugar contents 
in mature fruit of Rosaceae fruit species. A candidate 
gene for QTLs that were significant for SUC and FRU on 
chromosome 15 (Chr15_17923340 and Chr15_16568005) 
might be sucrose synthase 4 (MD15G1223500, 
Chr15:18,156,590–18,162,358). Another possibility 
is sucrose phosphate synthase 1F (MD15G1164900, 
Chr15:12,407,116–12,413,753), though it is located at a 
distance of about 500 kb from the detected SNP. Because 
sucrose synthase catalyzes the reversible conversion of 
sucrose and UDP to UDP-glucose, and sucrose phosphate 
synthase catalyzes the synthesis of sucrose from sucrose 
6-phosphate, it is reasonable that these genes are related 
to the QTLs on chromosome 15. Chr11_41197041 was 
identified as a significant SNP for both FRU and GLC, 
showing a strong effect in several populations (Table 
S2). Because a negative correlation between FRU and 
GLC was observed for this SNP, it would potentially ena-
ble us to select genotypes with high FRU and low GLC, 
thus improving fruit sweetness. The QTL identified at 
Chr04_29871378 for FRU explained 12.7% of the variance 
among 1218 individuals and showed relatively high per-
centages of variance in several populations (more than 
10% of the variance explained in nine populations; Figure 
S3). The effect of the QTL was limited to FRU; other indi-
vidual sugars seemed to be unaffected, suggesting that an 
increase in FRU is directly associated with an increase in 
TSC (Table S2).

Interestingly, early responsive to dehydration 
(ERD6)-like gene, encoding sugar transporters, are 
also located near two of the SNPs (Chr11_41197041 
and Chr04_29871378). A single ERD6-like gene was 
detected near Chr04_29871378 (MD04G1211000; 
Chr4:29,523,287–29,525,923), whereas a tandem repeat 
of ERD6-like genes (MD11G1293100, MD11G1293200, 
MD11G1293300, MD11G1293400; Chr11:41,256,007–
41,275,197) was detected near Chr11_41197041. Arabi-
dopsis ERD6 was found to be sugar transporters in 
bacteria, yeasts, other plants, and mammals [58]. This 
transporter was reported to be localized to the tono-
plast, acting as an H + /glucose symporter to facilitate 
the export of glucose from the vacuole to the cytosol and 
regulating cellular glucose in response to various stresses 
[59]. Tandem duplications of the ERD6-like family genes 
were found to be conserved in citrus, grape, apple, and 
Chinese jujube [60]. The order of the tandem repeat of 
ERD6-like genes detected in this study is also conserved 
in the genomes of European pear and wild pear in China 
(Table 5). Zhang et al. [61] suggested that duplication of 
sugar transporter genes plays crucial roles in sugar accu-
mulation. Because Chr11_41197041 was the SNP with 

the largest effect on GLC, explaining 21.7% of the pheno-
typic variance, it is reasonable that transport of glucose 
from the vacuole to the cytosol by this transporter con-
tributed to the observed changes in the individual sugar 
contents in mature fruit. The vacuole of mature fruit can 
occupy more than 90% of the cell volume [62], storing 
sugars and other compounds. Export of glucose instead 
of H+ by the product of this gene may produce an elec-
trochemical gradient across the vacuolar membrane and 
bring other sugars into the vacuole.

Several QTLs for HarT and Aci similar to those 
identified here were identified in previous stud-
ies of apple. The NAC18.1 transcription factor 
(MD03G1222600; Chr3:30,696,191–30,698,216) is 
a promising functional candidate for fruit ripen-
ing [63] and is close to Chr03_31587739 (for HarT) 
in this study. A NAC-family genes were also asso-
ciated with maturity date and slow ripening in 
peach [64, 65]. One member of the ACS gene fam-
ily (MD15G1203500) is located at Chr15:16,180,415, 
which is close to Chr15_16568005 (for HarT) in this 
study. This QTL and the function of the ACS gene 
have already been analyzed in several studies and 
found to affect fruit harvesting day, storage abil-
ity, and fruit drop [11, 34–36]. The early-harvesting 
genotype is correlated with increased fruit drop and 
short storage ability, suggesting that pear breed-
ers need to consider carefully whether they use this 
marker for MAS, depending on their breeding objec-
tives [38]. In apple, an aluminum-activated malate 
transporter-like gene (ma1, MDP0000252114) was 
identified as the candidate for a gene associated with 
low fruit acidity [66]. In the apple GDDH13 genome, 
ma1 is located at Chr16:3,176,495–3,179,279, which 
is close to Chr16_3043313 (for Aci) in this study. In 
apple, two major loci, Ma3 on chromosome 8 and 
Ma1 on chromosome 16, play an important role in 
fruit acidity [67]. On the other hand, another major 
locus for Aci in this study was identified on chromo-
some 6: this locus showed quite a large effect and 
explained more than 30% of the phenotypic variance 
in seven populations (Chr06_20720912 in Figure S3).

In this study, we focused on detecting QTLs and 
inferring putative candidate genes for those QTLs, 
whereas Minamikawa et  al. [10] focused on the accu-
racy of various methods for genomic prediction rather 
than on inferring candidate genes. We estimated pre-
diction accuracy for GS using GBLUP and a vBayesB-
based method for GWAS analyses. Most traits showed 
higher prediction accuracies with GBLUP than with 
the vBayesB-based method; on the other hand, the pre-
diction accuracy for Aci was slightly higher when the 
vBayesB-based method was used. It is natural that the 
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best GS model varies depending on the trait because the 
distribution of the trait values vary depending on her-
itability, allele frequencies, and the population struc-
ture of the materials. It will be important to choose 
the appropriate model for each trait. The prediction 
accuracies for SUC, FRU, and GLU with GBLUP were 
relatively high (0.67–0.75), suggesting that it would be 
possible to select individuals that have high-sweetness 
fruit (high SUC and FRU, and low GLU). On the other 
hand, the prediction accuracy for TSC, which is the 
most important trait determining fruit quality, is not 
high enough for use in GS (0.55 in GBLUP) There is 
room to improve the prediction accuracy by construct-
ing the genome sequence of Japanese pear and using it 
as a reference genome, thus increasing the number of 
SNPs and improving map precision. The accuracy of 
genomic prediction can also be improved further when 
full-sib data for the target family are available [10]. It 
would be a good idea to apply GS to the populations 
used in this study, i.e., those derived from the crosses 
between ‘Hoshiakari’, ‘Kanta’, ‘Akizuki’, and other culti-
vars. The practical way to introduce genomic selection 
in breeding programs is to predict the genetic values of 
each trait of seedings using next-generation sequencing 
and the best fitting model, and to undercut the seed-
lings that have lower predicted values before planting 
in breeding fields. The selecting intensity can be flex-
ibly determined by breeders based on the objective of 
breeding programs, the number of the seedlings and 
size of the breeding fields.

Conclusions
In this study, we collected phenotypic data for fruit 
traits and conducted GWAS and GS in Japanese pear. 
Several important QTLs for fruit traits were identified, 
and genes associated with sugar accumulation were 
predicted by GWAS using a large number of individu-
als. The SNP located closest to PPAIV3 on chromosome 
7 and a newly identified SNP at chromosome 11 had 
large effects on individual sugar contents. The SNP on 
chromosome 4 that was associated with FRU would be 
useful for increasing the contents of FRU and TSC with-
out decreasing the contents of other individual sugars. 
The candidate genes of QTLs identified in this study are 
conserved in the genomes of several Pyrinae species. 
Further studies including expression analysis of those 
genes and developing gene-specific markers would con-
tribute to clarifying the mechanisms of sugar accumula-
tion and validating the candidate genes for fruit traits. 
Fruit traits are complex and controlled by multiple fac-
tors, so it is important to accumulate relevant genetic 
information. The traits evaluated in this study covered 
the principal fruit traits in pear breeding programs, so 

the results obtained illustrate the feasibility of GS for 
fruit traits in pear.

Methods
Plant materials
A cultivar collection including 106 cultivars and 17 
breeding populations (consisting of 1112 F1 individuals) 
were used in this study (Table 1, Table S1). The cultivars 
were preserved at the NARO (National Agriculture and 
Food Organization) Genebank (www.​gene.​affrc.​go.​jp) 
and the breeding populations were developed at Insti-
tute of Fruit Tree and Tea Science, NARO. The popula-
tion ID numbers are indicated in Table 1, and each family 
contained 28 to 121 individuals. Among those materials, 
74 cultivars and 498 individuals were the same as those 
used in Minamikawa et  al. [10]. The breeding popula-
tions originated from local cultivar ‘Nijisseiki’ and are 
the product of about five to seven generations of crossing 
in the NIFTS pear breeding program. The cultivars and 
F1 individuals were grown with cultural techniques used 
in commercial production in Japan [68]. The trees were 
trained on horizontal trellises, pruned annually in winter, 
and treated for pests and diseases. Fruits were thinned 
to one fruit per three fruit clusters in mid-May and har-
vested during late July to early November according to a 
color chart that indicates the optimum color for picking 
Japanese pear [69].

Ten fruit traits were evaluated: SUC, FRU, GLC, SOR, 
TSC, HarT, FruW, FruH, SSC, and Aci. The contents of 
each sugar (SUC, FRU, GLC, SOR) were analyzed in fruit 
from each individual. To do this, the juice from two fruits 
per sampling date was extracted and the samples were 
combined. Sampling was performed on two days in each 
of the years that the individual or cultivar was analyzed. 
The analysis of sugar components was based on the 
method described by Nishio et al. [9]. TSC was calculated 
by summing the contents of the four sugars. The harvest 
date for each fruit was expressed as the number of days 
after June 30 (i.e., July 1 = day 1), and the average value 
of harvest date for each fruit was used as its phenotypic 
score. Fruit weight (g) per fruit (FruW) was measured 
on a digital scale on each harvest date. Fruit hardness 
(FruH) was measured by the Magness–Taylor pressure 
test (lb). Total SSC was determined with a digital refrac-
tometer (DBX-55; Atago, Tokyo, Japan) by adding a few 
drops of juice onto the lens of the measuring device, and 
the results were recorded as SSC (%). Juice pH was deter-
mined with a pH meter (IQ240; Scientific Instruments, 
San Diego, CA, USA) to estimate acidity (Aci).

Phenotypic data were collected from 2014 to 2018. The 
majority of individuals and cultivars were evaluated for 
more than one year. The average phenotypic values over 

http://www.gene.affrc.go.jp
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five years (2014–2018) were generated by the allEffects 
function from the package “effects”. Phenotypic correla-
tion coefficients and their significance were calculated 
for all trait combinations using R (4.0.0) (R Development 
Core Team).

SNP genotyping
Genomic DNA was extracted from young leaves with 
a DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) 
according to the manufacturer’s instructions. ddRAD-
Seq libraries were constructed as described in Shira-
sawa et  al. [49]. A total of 200  ng of genomic DNA for 
each individual was double digested with PstI and MspI 
(FastDigest restriction enzymes; Thermo Fisher Scien-
tific, Waltham, MA, USA), ligated to adapters using the 
LigaFast Rapid DNA Ligation System (Promega, Madi-
son, WI, USA), and purified using Agencourt AMPure 
XP (Beckman Coulter, Brea, CA, USA) to eliminate short 
(< 300  bp) DNA fragments. Purified DNA was diluted 
with H2O and amplified by 20 cycles of PCR with indexed 
primers. Amplicons were pooled and separated on a 
BluePippin 1.5% agarose cassette (Sage Science, Beverly, 
MA, USA), and fragments of 300–900  bp were purified 
using a Mini Elute Kit (Qiagen). The library was then 
sequenced using a HiSeq 4000 (Illumina, Inc., San Diego, 
CA, USA).

SNPs and indels were identified according to Acquadro 
et  al. [70]. Illumina reads were de-multiplexed on the 
basis of the Illumina TruSeq index. Raw reads were ana-
lyzed with Scythe (https://​github.​com/​vsbuf​falo/​scythe) 
for filtering out contaminant substrings and Sickle 
(https://​github.​com/​najos​hi/​sickle), which removes reads 
with poor-quality ends (Q < 30). Alignment to the refer-
ence apple genome (GDDH13 v1.1; https://​www.​rosac​
eae.​org/​speci​es/​malus/​malus_x_​domes​tica/​genome_​
GDDH13_​v1.1) was carried out using BWA aligner [71] 
(e.g., mem command) with default parameters and avoid-
ing multiple-mapping reads. SNP and indel mining was 
conducted by adopting a Samtools-based pipeline [72]. 
SNPs and indels (hereafter called SNPs) detected from 
the alignments were filtered with VCFtools (version 
0.1.13; parameters: –minQ 20 –minDP 10 –maf 0.01 –
maf 0.99 –min-allele 2 –max-allele 2). Individual SNP 
markers with > 25% missing data were removed from 
further analysis, and the remaining missing values were 
phased and imputed using Beagle v4.1 [73]. Only the 
SNPs with an imputation accuracy > 0.8 were adopted. 
The tagger software implemented in Haploview (http://​
www.​broad.​mit.​edu/​mpg/​haplo​view) was used to select 
tag SNPs using its pairwise function, with a minimum r2 
of 0.8.

The draft genomes of Chinese pear (P. bretschneideri), 
wild pear in China (P. betulaefolia), and European pear 

(P. communis) are all currently available [42–44]. How-
ever, the draft genome of Chinese pear was constructed 
in 2013 and we found that it contains many assembly 
errors. On the other hand, the genome sequences of 
European pear and wild pear in China are presumed to 
have a high level of accuracy, but they are completely 
different species from Pyrus pyrifolia. There is also less 
information on genes and transcripts and fewer relevant 
genetic studies in comparison with those using apple ref-
erence genomes. Because the apple genome GDDH13 
is the most frequently used reference genome in the 
Rosaceae and it has precise order and rich information 
on transcripts, QTLs, and LDs, we used GDDH13 as the 
reference genome in this study.

LD and population structure
LD was estimated using data after the imputation. 
Based on the apple GDDH13 genome, the detected 
SNPs were aligned according to their positions. LD 
between pairs of SNPs was calculated using R (4.0.0) 
(R Development Core Team). The SNPs mapped on the 
fictive chromosome 0, which contains all unassigned 
scaffolds, were removed to calculate the LDs. Average 
LD values (r2) were plotted against physical distances in 
increments of 10 kb.

Population structure was estimated for each cross and 
for the cultivar collection in ADMIXTURE 1.30 [74] 
using the 3484 tag SNPs. The software PLINK v1.90 [75] 
was used to generate an input file from a vcf file. The 
analysis was run five times for each value of K (number of 
inferred ancestral populations) from 1 to 20 to estimate 
the cross-validation values. The cross-validation value 
gradually decreased as the value of K increased. The 
CLUMPAK online tool [76] was applied to graphically 
display the results produced by ADMIXTURE at K = 3 
and K = 4. PCA was performed in PLINK v1.90. Prior 
to PCA, an input file was created by conducting link-
age pruning using the –indep-pairwise option in PLINK 
(plink –file data –indep-pairwise 50 10 0.1). PCA was 
performed using the –pca option in PLINK. The plot was 
drawn with the R package “ggplot” [77].

Statistical methods in GWAS
For the MLM-based GWAS, the effect of a SNP and a 
polygenic effect affected by the genetic background of 
an individual were included in the model as a fixed effect 
and a random effect, respectively. The covariance matrix 
of polygenic effects between individuals was established 
with a kinship matrix calculated from SNP genotypes. 
The effects of population structure were also included as 
fixed effects using the first three principal components 
obtained from the SNP genotype data. We used the R 
package rrBLUP ver. 4.3 [78] for this MLM-based GWAS 

https://github.com/vsbuffalo/scythe
https://github.com/najoshi/sickle
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and evaluated the effects of the significant SNPs on the 
basis of the mean phenotypic value for each genotype of 
the SNP.

For the vBayesB-based GWAS, a Bayesian multi-
ple-QTL model was applied in which all SNPs were 
simultaneously fitted in the model assuming a specific 
probability for each SNP included in the model, called 
SNP weight, and a specific variance for each SNP effect 
as well as the progeny effect specific to each F1 family. 
The progeny effect specific to each F1 family was also 
included in the model to control for the difference in 
genetic background between F1 families. The model 
was fitted with a variational approximation method 
proposed by Hayashi and Iwata [51] using a custom 
program written in Fortran. This Bayesian procedure 
was regarded as a variational approximation of BayesB 
[51] and was previously applied to GWAS in chestnut 
[79], in which the adopted estimation methods were 
described (we refer the reader to this paper for compu-
tational details). The settings of hyperparameter values 
of the prior distributions were conducted following this 
paper [79].

To validate the effect of the detected SNPs, the average 
values of each genotype for the SNPs and the distribution 
of the phenotypic values in the SNP genotypes were plot-
ted. These plots were drawn with the R package “ggplot” 
[77]. The phenotypic variance explained by each SNP was 
calculated according to Nishio et  al. [36]. The percent-
age of the phenotypic variance explained by each SNP 
was calculated by dividing the variance of the SNP by the 
total phenotypic variance.

To infer the candidate genes of the detected QTLs, 
we thoroughly checked the QTLs and genes identified 
in previous apple genetic studies [28, 38–40, 42, 55–57, 
63, 66, 67]. If genes related to sugar synthesis, sugar 
conversion, or sugar transport were located within 
200 kb of a detected QTL, they were listed in Table 5. 
Similarly, if previously identified genes for other fruit 
traits were located within 200  kb of a detected QTL, 
they were added to Table 5. BLAST + [80] was used to 
check whether these genes were located at similar posi-
tions in the whole-genome sequences of European pear 
[42] and wild pear in China [44].

Accuracies of predicted genomic breeding values in GS
The two methods used in GWAS, MLM-based and 
vBayesB-based, were also used for prediction of breed-
ing values based on SNP genotypes. In the MLM-
based method, a polygenic effect was regarded as a 
breeding value that was predicted from SNP genotypes 
through a kinship matrix. This MLM-based method 
was referred to as GBLUP when applied to GS. In this 

study, an intercept but no fixed effects were included 
in MLM for GS. In the vBayesB method, we obtained 
estimates of a SNP effect and a SNP weight for each 
SNP, regarded as an approximate posterior probability 
of each SNP included in the model; accordingly, the 
predicted breeding value of an individual was calcu-
lated as the sum of the estimated SNP effects multi-
plied by the SNP weights over all SNPs.

Generally, in practical breeding programs, new 
elite cultivars and selections have been used as par-
ents to create breeding populations and to select gen-
otypes superior to those of the established leading 
cultivars. Thus, GS would be applied in breeding pop-
ulations obtained by crossing between new combina-
tions of parental genotypes. To evaluate the accuracy 
of genomic prediction for practical pear breeding pro-
grams, we conducted a cross-validation in the following 
way. Each F1 family was regarded as a tested family, and 
the set of cultivars and F1 families with the tested family 
excluded was regarded as a training population. A pre-
diction model was constructed using data for both phe-
notypes and SNP genotypes of a training population, 
and breeding values of individuals of a tested F1 family 
were predicted with a model using only their SNP gen-
otypes. This process was repeated until all F1 families 
were selected just once as a tested population and the 
prediction accuracy was evaluated with the Pearson’s 
correlation coefficient (r) between observed pheno-
typic values and predicted genotypic values. When the 
estimated r was less than 0, it was regarded as 0. The 
prediction accuracy for each tested family based on the 
training population (which excluded the target family) 
was calculated and averaged to understand the accura-
cies of predicted genomic breeding values for the breed-
ing populations used in this study.
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Additional file 1: Figure S1 Plots of average linkage disequilibrium values 
(r2) against physical distances in increments of 10 kb. Gray curves show 
local polynomial fits obtained using kernel smoothing regression. Dotted 
lines indicate the genetic distance at which r2 fell below 0.2. Figure S2 
Summary of the results of genome-wide association studies using two 
different models. a Manhattan plots of −log10(p) values based on a MLM 
for 10 fruit traits. Red lines indicate a false discovery rate of 0.05. Chromo-
some location information is based on GDDH13 Version 1.1. The fictive 
chromosome 0 contains all unassigned scaffolds. b Posterior probability 
of having a QTL based on vBayesB, estimated for 10 fruit traits. Figure S3 
Heatmap showing the percentage of the phenotypic variance explained 
by each QTL in each population. The percentages for the cultivar collec-
tion (designated as “Cultivar”) and for all 1218 accessions including the 
populations and cultivars (designated as “ALL”) are shown on the right. The 
prefix rrBLUP indicates the SNPs identified in the MLM-based GWAS analy-
sis; BayesB indicates those identified in the vBayesB-based GWAS. A blank 
indicates that the population showed no segregation for the SNPs. The 
intensity of the red color corresponds to the percentage of phenotypic 
variance explained

Additional file 2: Table S1 The cultivars and individuals used in this study 
and the performance for fruit traits.

Additional file 3: Table S2. Average values of individual and total sugar 
contents for each genotype of three SNPs having a large and significant 
effect on at least one trait.
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