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Abstract

Background: Maize (Zea mays ssp. mays) is the most abundantly cultivated and highly valued food commodity in
the world. Oil from maize kernels is highly nutritious and important for the diet and health of humans, and it can
be used as a source of bioenergy. A better understanding of genetic basis for maize kernel oil can help improve
the oil content and quality when applied in breeding.

Results: In this study, a KUI3/SC55 recombinant inbred line (RIL) population, consisting of 180 individuals was
constructed from a cross between inbred lines KUI3 and SC55. We phenotyped 19 oil-related traits and
subsequently dissected the genetic architecture of oil-related traits in maize kernels based on a high-density
genetic map. In total, 62 quantitative trait loci (QTLs), with 2 to 5 QTLs per trait, were detected in the KUI3/SC55 RIL
population. Each QTL accounted for 6.7% (qSTOL1) to 31.02% (qBELI6) of phenotypic variation and the total
phenotypic variation explained (PVE) of all detected QTLs for each trait ranged from 12.5% (OIL) to 52.5% (C16:0/
C16:1). Of all these identified QTLs, only 5 were major QTLs located in three genomic regions on chromosome 6
and 9. In addition, two pairs of epistatic QTLs with additive effects were detected and they explained 3.3 and 2.4%
of the phenotypic variation, respectively. Colocalization with a previous GWAS on oil-related traits, identified 19
genes. Of these genes, two important candidate genes, GRMZM2G101515 and GRMZM2G022558, were further
verified to be associated with C20:0/C22:0 and C18:0/C20:0, respectively, according to a gene-based association
analysis. The first gene encodes a kinase-related protein with unknown function, while the second gene encodes
fatty acid elongase 2 (fae2) and directly participates in the biosynthesis of very long chain fatty acids in Arabidopsis.

Conclusions: Our results provide insights on the genetic basis of oil-related traits and a theoretical basis for
improving maize quality by marker-assisted selection.
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Background
Maize (Zea mays ssp. mays) is one of the most com-
monly cultivated cereal crops in the world, and a major
source of human food, animal feed and bioenergy. Maize
has been used as a model system for plant genetics and
solved a lot of uncertain plant biological problems [1].
Maize kernels are composed of approximately 4% fat,
10% protein, and 72% starch and, supplies an energy
density of 365 Kcal/100 g [2]. Oil is one of the three
main components in maize kernels, whose energy is 2.25
times that of starch [3]. As a mixture, maize oil contains
five fatty acids that account for more than 98% of the oil
concentration including palmitic (C16:0), stearic (C18:0),
oleic (C18:1), linoleic (C18:2) and linolenic (C18:3) acids
[4]. Three kinds of unsaturated fatty acids account for
27.5, 51.5 and 1.4%, respectively. The high energy and
polyunsaturated fatty acids in maize oil make it a highly-
quality edible oil that is healthy for humans. Maize can
also be used as biomass energy, which can bring consid-
erable income to industrial production. Therefore, with
the increase in oil content in maize kernels, the add-
itional value of maize varieties will certainly increase.
Long-term artificial selection of high-oil maize popula-

tions has led to the creation of a series of genetic re-
sources, including Illinois high-oil (IHO) population and
Beijing high-oil population [1, 5], which were subse-
quently widely applied to dissect the genetic architecture
of oil biosynthesis in maize kernels. In view of the limi-
tations of analytical methods and molecular markers, the
accuracy of QTL mapping based on the biparental popu-
lation is low, and it is difficult to clone genes decades
ago. Subsequently, with the development of sequencing
technology [6–8], an increasing number of molecular
markers have been applied to QTL mapping, which
greatly improves the accuracy of QTL mapping. A large
number of chromosomal regions and QTLs affecting oil
concentration and fatty acid composition were identified
using segregating populations in maize [9–16], and these
studies indicated that the oil concentration and fatty acid
composition were controlled by a few major genes and
many minor genes with mainly additive effects. In
addition, epistatic interactions also contribute to varia-
tions in oil content in specific populations [15, 16]. Simi-
lar results were obtained in two publicly available maize
genetic resources, NAM (the nested association mapping
population) [17] and AMP508 (association mapping
population) [3] based on high-resolution and high-
power QTL analysis.
The biological processes of oil synthesis and accumu-

lation are complex in plant seeds and are well known in
Arabidopsis, in which 120 enzymes and more than 600
genes are involved [18]. However, little is known about
maize, and only a few genes related to oil content and
fatty acid composition have been cloned [19–22]. For

example, the DGAT1–2 gene, which was cloned by map-
based cloning, encodes an acyl-CoA: diacylglycerol acyl-
transferase, and catalyzed the final step of oil synthesis,
which can affect oil and oleic-acid contents [20]. After-
wards, a DGAT-based association analysis was carried
out to identify the functional loci and develop two PCR-
based functional markers [23]. Stearoyl-ACP desaturase
(SAD) plays a key role in fatty acid biosynthesis, and has
been identified in maize by gene-based association ana-
lysis [24]. These results suggested that gene-based asso-
ciation mapping was a suitable strategy for revealing the
candidate genes underlying QTLs and shortening the
time of gene cloning.
In the present study, a RIL population derived from

two maize inbred lines, KUI3 and SC55, consisting of
180 individuals was used to: (1) dissect the genetic archi-
tecture of oil concentration and fatty acid composition,
(2) estimate the number and effects of QTLs and epi-
static interactions underlying oil-related traits, and (3)
identify candidate genes that control oil related traits.

Methods
Genetic materials and field experiments
A RIL population consisting of 180 individuals was de-
veloped by a cross between two maize inbred lines KUI3
and SC55. The two parents originated from an previous
reported association panel that contained 508 genetically
diverse maize inbred lines (AM508) [25]. Hybrid F1 was
self-pollinated 6 times to produce the F7 generation by
single-seed descent. All lines and parents were planted
in a randomized complete block with two replicates at
Beijing and Hainan in 2013. Each family line was grown
in a single-row plot (2.5-m rows, 0.67 m between rows),
and the planting density was 45,000 plants/ha.

Measurement of fatty acids in maize kernels
Mature ears were harvested and shelled manually. Fifty
kernels were randomly selected, dried for 60 h at 45 °C,
ground into powder, and then stored in a desiccator for
fatty acid measurement. Lipid was extracted as described
by Fang et al. [16]. A HP7890A gas chromatogram (GC)
(Agilent Technologies, USA) was employed to analyze
the fatty acids compositions. An HP-INNOWAX poly-
ethylene glycol capillary column (30 m × 320 μm×
0.5 μm, Agilent Technologies) was used to separate the
samples at 250 °C. The GC was operated at a constant
flow pressure of 140.9 kPa, the initial oven temperature
of 220 °C, with a 16min isothermal, and then the oven
temperatures were increased by 20 °C / min to 240 °C,
with a 5 min isothermal. The FID temperature was
250 °C, and the split ratio of nitrogen was 10:1.
Nine distinct fatty acids were measured, including pal-

mitic (C16:0), palmitoleic (C16:1), stearic (C18:0), oleic
(C18:1), linoleic (C18:2), linolenic (C18:3), arachidic
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(C20:0), behenic (C22:0), and lignoceric (C24:0) acids,
and the oil content was calculated as the sum of the oils.
Another 9 ratio traits were derived from 9 fatty acids:
C16:0/C16:1, C16:1/C18:0, C18:0/C18:1, C18:1/C18:2,
C18:2/C18:3, C18:0/C20:0, C20:0/C22:0, C22:0/C24:0,
SFA/USFA (saturated fatty acid = C16:0 + C18:0 + C20:
0 + C22:0 + C24:0; unsaturated fatty acid = C16:1 + C18:
1 + C18:2 + C18:3). The detailed protocol was described
in Fang et al. [16].

Analysis of phenotypic data
Phenotypic data processing was performed with R Ver-
sion 3.6.1 (www.R-project.org). Analysis of variance was
performed with the “aov” function in R to evaluate the
genotype, environment and replication effect. The model
for ANOVA was y = μ + αg + βa + (αβ)ge + γar + εgar, where
μ represents the grand mean (the total of all the data
values from two environments divided by the total sam-
ple size), αg represents the effect of the gth line, βa rep-
resents the effect of the area, (αβ)ge represents the effect
of the line × area interaction, γar represents the effect of
the area × replicate interaction, and εgar represents the
residual. The broad-sense heritability of each trait was
calculated as H2 = αg

2/(αg
2 + αge

2/r + αδ
2/ar) [15, 16],

where e is equal to 2 environments, r is equal to 2 repli-
cations in each environment, αg

2 is the genetic variance,
αge

2 is the interaction of genotype with environment,
and αδ

2 is the residual error. The 90% confidence inter-
vals of H2 were computed.
The function “lmer” in the lme4 package of R was

used to fit to a linear mixed model to obtain the best lin-
ear unbiased prediction (BLUP) values for each trait of
each individual line: yijk = μ + gi + ej + εijk, where yijk is
the kth phenotypic value of individual i in jth environ-
ment, μ is grand mean of all environments, gi is the ith
genetic effect, ej is the effect of different environments
and εijk is the random error. μ was considered a fixed ef-
fect and gi and ej were considered random effects [26].
The BLUP values for each line were used for the pheno-
type description statistics, Pearson correlation coefficient
analysis and QTL mapping.

Construction of genetic map
All family lines, together with their parents, were geno-
typed with the Illumina MaizeSNP50 BeadChip (Illumina
Inc., San Diego, CA, USA), which contains 56,110 single
nucleotide polymorphisms (SNPs) covering 19,540 maize
genes [27]. The in-house Perl scripts were used to com-
pare the genotypes between parents and the RILs. Missing
data, heterozygosity and minor allele frequency for all
SNPs and the missing data and heterozygosity for each
line were calculated. After quality control, 180 inberd lines
with missing data of < 15.0% and heterozygosity of < 8.0%
were used for further analysis [28]. A total of 11,841 SNPs

were polymorphic with 2372 genetic blocks captured. A
modified physical order method as described in Pan et al.
[28], was used to construct the genetic linkage map, with
all lengths of 1974.8 cM (Fig. S1).

QTL mapping
Windows QTL Cartographer 2.5 was used to perform
QTL mapping for all traits using composite interval
mapping [29]. Model 6 of the Zmapqtl module was used
to detect QTLs in the whole genome. The scanning
interval between markers was set at 2.0 cM, with a 10
cM window size. Forward-backward stepwise regression
with five controlling markers was used to control for
background from flanking makers. After 1000 permuta-
tions, the threshold logarithm of odds (LOD) value to
declare putative QTLs was determined at a significance
level of P < 0.05. The confidence interval of QTL pos-
ition was estimated with the one-LOD support interval
method [30]. The R function ‘lm’ was performed to de-
termine total phenotypic variation explained (PVE) by
significant QTLs [4, 16].

Epistasis analysis
As described as shown in Wen et al. [16, 31], a two-way
ANOVA was carried out to estimate the pairwise addi-
tive × additive epistatic interactions for all identified
QTLs for each trait at P < 0.05. The proportion of vari-
ance explained by epistasis was evaluated by comparing
the residual of the full model that contained all single-
locus effects and two-locus interaction effects with that
of the reduced model that excluded two-locus inter-
action effects. In addition, the peak bin markers were
used in the epistatic interaction analysis and all the het-
erozygous genotypes were assigned as missing values for
simplicity.

Gene-based association analysis
The SNPs located in the gene body and regions within 5
kb upstream and downstream of the coding region were
extracted from the 1.25 million SNPs with MAF ≥ 0.05
in a panel of 508 maize lines [32]. The associations be-
tween all SNPs and oil-related traits were analyzed using
a mixed linear model [33] considering the population
structure [34] and relative kinship [35]. Bonferroni ad-
justed significance thresholds (P ≤ 0.01/n) of, P ≤ 1.6 ×
10− 4 for GRMZM2G101515 and P ≤ 1.5 × 10− 4 for
GRMZM2G022558, were used to identify significant as-
sociations. Linkage disequilibrium (LD) between two
sites was calculated with TASSEL 5.0 [35].

Correlation between gene expression and traits
The analysis of the correlation between gene expression
in developing kernels at 15 days after pollination (DAP)
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[36] and oil-related traits in mature kernels [4] was per-
formed using the R function ‘cor.test’.

Annotation and gene expression analysis of 19
colocalized genes
Based on the information available in the MaizeGDB
(https://www.maizegdb.org), the function of each gene
was inferred from orthologues in Arabidopsis or rice.
The data of gene expression in developing embryo,
endosperm and seeds was obtained in Chen et al. [37].

Results
Phenotypic variation, correlation and heritability
Phenotypic variations of the 19 target traits for parents
and RILs are shown in Table 1. The mean value of SC55
(5.27%) was higher than that of KUI3 (4.13%) for oil
content. The KUI3/SC55 RIL population harbored abun-
dant diversity for most of the investigated phenotypic
traits, for which continuous and approximately normal
distributions were observed (Fig. S2). The mean of the
KUI3/SC55 RIL population based on the BLUP values
was close to the mid-parent value for almost all mea-
sured traits with transgressive segregation (Table 1), sug-
gesting that both parents harbored the alleles
responsible for increasing the oil-related traits. The coef-
ficient of variation (CV) values ranged from 7.39% (C16:
0) to 52.10% (C18:0/C18:1), with an average of 33.04%
(Table 1). Highly significant effects of genotype, environ-
ment and genotype × environment interactions were ob-
served by the ANOVA analysis of all traits except C16:1
(Table 1), indicating that oil-related traits are sensitive
to genotypes and environments. Pairwise Pearson’s cor-
relation coefficients of 19 traits revealed that most of the
traits showed a significant correlation with each other,
with coefficients from 0.17 between C16:0/C18:0 and
C18:0/C18:1 to 0.984 between C18:1 and C18:1/C18:2 in
the KUI3/SC55 RIL population (Fig. S3). Broad-sense
heritability (H2) was high for all traits, ranging from 0.56
to 0.89, indicating that most of the phenotypic variations
were genetically controlled (Table 1).

Genetic architecture of the oil-related traits
Based on a linkage map of 1974.8 cM, QTLs for 19 oil-
related traits were detected in the KUI3/SC55 RIL popu-
lation. After 1000 permutations, the empirical threshold
logarithm of odds (LOD) value for all traits (P < 0.05)
was 3.2, and the values ranged from 3.2 to 3.6. In total,
62 single QTLs distributed in 38 genomic regions across
all chromosomes were detected, with the QTL number
per trait ranging from 2 to 5 in the KUI3/SC55 RIL
population (Fig. 1a; Table S1). The 1-LOD QTL interval
averaged for 9.9 Mb (5.9 cM), with a range from 0.2 to
68.9Mb (1.2 to 13.8 cM). The phenotypic variation that
could be explained by each QTL (PVE) ranged from

6.68% (qSTOL1) to 31.02% (qBELI6), with an average of
10.3% and the total PVE of all detected QTLs for each
trait ranged from 12.5% (OIL) to 52.5% (C16:0/C16:1)
(Fig. 1b). Of all these identified QTLs, only 5 had a large
effect, with PVE ≥ 15% in three genomic regions on
chromosome 6 and 9. The QTL with the largest effect,
qBELI6, was C22:0/C24:0 on chromosome 6, which was
flanked by markers SYN12691 and SYN24474, and
accounted for 31.02% of the phenotypic variation. The
QTL- qLIG6 for C24:0 with the second largest effect was
on chromosome 6, and accounted for 24.46% of the
phenotypic variation, with alleles from KUI3 being re-
sponsible for the increasing effect. Additionally, two par-
ents, KUI3 and SC55, harbored similar numbers of
favorable alleles at, 29 and 33, respectively (Fig. 1c), sug-
gesting that many favorable alleles existed in regular
maize lines with minor effects.
In addition to single QTLs, two pairs of epistatic QTLs

referring to 3 loci were detected for two traits, C18:2
and C18:1/C18:2 (Table S2). The two epistatic QTL
pairs explained 3.3 and 2.4% of the phenotypic variation.
Considering that the number and effect of epistatic
QTLs were small, epistatic interactions between two
QTLs with additive effects contributed less than additive
effects to the genetic basis of oil-related traits in the
KUI3/SC55 RIL population.

QTL clusters
Fourteen QTL clusters were observed in this study, of
which 6 covered no less than 3 single QTLs (Fig. 1a;
Table S1), and the others covered 2 single QTLs. Specif-
ically, L25 contained 5 QTLs for 5 oil-related traits on
chromosome 6: C18:2, C22:0, C24:0, C18:1/C18:2 and
C20:0/C22:0. The PVE of these QTLs ranged from 8.9 to
24.46%, of which two were main-effect QTLs (Fig. S4a).
On chromosome 1 and 9, there were two loci harboring
4 QTLs: L6 for C16:0, C20:0, C18:0/C18:1, and SFA/
USFA and L34 for C24:0, C22:0, C20:0, and C18:0/C20:
0, respectively. All these QTLs were minor-effect QTLs
except qARA9, whose PVE ranged from 6.68 to 15.22%.
The region of L34 spanned 25.8–100.4Mb and was
much larger than that of L6 (257.6–264.5 Mb), as a re-
sult of low-frequency recombination events occurring in
the interval of L34. The other 3 loci, i.e., L12, L20 and
L28, contained 3 QTLs and were located on chromo-
some 3, 4 and 6, respectively. L28 spanned a small re-
gion from 164.0 to 165.4 Mb, contained qBELI6,
qBEH6–2 and qARBE6–2 and could explain 31.02, 10.82
and 15.36% of the phenotypic variation, respectively,
which makes it a valuable target for further gene clon-
ing. The spanning interval of L20 was 1.5Mb (237.5–
239.0Mb), which was much smaller than that of L12,
whose interval was more than 20Mb. All the 6 QTLs for
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L12 and L20 had minor effects, with PVEs ranging from
6.75 to 11.91%.
Interestingly, QTL-gene colocalization identified 2

known genes falling within 2 loci for L25 and L19 (Fig.
S4). The DGAT1–2 gene [20], which encodes an acyl-
CoA: diacylglycerol acyltransferase and catalyzes the
final step of oil synthesis, is located in the interval of
L25, and might be the candidate gene (Fig. 4a). Add-
itionally, the FAD2 gene encoding fatty acid dehydrogen-
ase colocalized with L19, which covered qPAE4–3 and
qPALE4–2 (responsible for C16:1 and C16:0/C16:1, re-
spectively) (Fig. S4b).

Mining of candidate genes for oil-related traits by linkage
and gene-based association analysis
Combined with a previous report about a GWAS for 21
oil-related traits [4], 19 (25.7%) of the 74 candidate genes
were detected in this study based on physical position
(Fig. 2; Table S1). These genes covered 10 loci that have
the potential to affect oil biosynthesis and accumulation
in maize kernels. Of the 19 genes, 4 encoded enzymes
involved lipid metabolism reactions that directly regu-
lated the lipid synthesis and metabolism including fatty
acid desaturase 2 (FAD2), fatty acid elongase 2 (FAE2),
diacylglycerol acyltransferase (DGAT1–2) and Myristoyl-

acyl carrier protein thioesterase (Fig. S5; Table S4). four
genes were annotated as enzymes involved in other me-
tabolism reactions, such as aldehyde dehydrogenase, Ser/
Thr protein phosphatase, acid phosphatase and alpha/
beta-Hydrolases. One gene was annotated as transcrip-
tion factor. The proteins encoded by remaining 10 genes
were classified as chaperonin protein, ribosomal protein,
zinc finger, G protein, cytochrome P450 and proteins
with unknow function (Fig. S5). In addition, combined
with the published RNA-seq data, we found that 94.7%
(18/19) of these genes expressed in developing embryo,
endosperm and seeds except GRMZM2G141999 (Fig.
S6; Table S4). Eight genes were highly expressed in de-
veloping embryo at various stages, which indicated the
potential roles in lipid synthesis and metabolism, be-
cause the embryo was the main site of oil accumulation.
Coincidentally, two of the 8 genes highly expressed in

embryo were located in two QTL clusters in physical
position, L28 on chromosome 6 and L34 on chromo-
some 9, which fell in the peak bin of the most coloca-
lized QTLs (Fig. 3a, e), and were considered important
candidate genes. L28 contained 3 QTLs, namely, qBELI6
for C22:0/C24:0, with the largest PVE of 31.02%, moder-
ate effect QTL-qBEH6–2 for C22:0 and major QTL-
qARBE6–2 for C20:0/C22:0, encompassing the

Fig. 1 The distribution and effects of single QTL identified for 19 oil related traits in KUI3/SC55 RIL population. a Distribution of single QTL on
chromosomes. QTL regions across the maize genome are represented by confidence intervals, and LOD values are scaled by color. b Total PVE of
single (blue bars) and epistatic (red bars) QTLs for each trait. c Effect size (represented by PVE) and the origin of the increasing alleles of the
identified QTLs. Blue and red bars indicate that increasing alleles come from KUI3 and SC55, respectively
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GRMZM2G101515 gene, which can encode a protein
with an unknow function (Fig. 3a). To further explore
the association between the gene and oil-related traits,
62 SNPs were extracted in the gene body and region
within 5 kb upstream and downstream of the
GRMZM2G101515 gene from 1.25 million high-quality
SNPs with MAF ≥ 0.05 in 508 maize inbred lines [32]. A
marker-trait association analysis with these SNPs using a
mixed linear model identified 4 significant loci associ-
ated with C22:0/C24:0 at P ≤ 1.6 × 10− 4 (Fig. 3b, Table
S3). The most significant SNP, chr6.S_164986588 for al-
leles A and C, was located on exon 5 at P = 7.91 × 10− 6,
which can give rise to a change in amino acids for glu-
tamate (T) to threonine (P). The LD between chr6.S_
164986588 and the other three SNPs ranged from 0.34
to 1 (Fig. 3c). The lines with allele C have a higher ratio
of C22:0/C24:0 than those with allele A (Fig. 3d).
Meanwhile, the lines harboring allele A expressed
GRMZM2G101515 at slightly high levels at P = 0.025
(Fig. 4a), and the gene expression and the ratio of
C22:0/C24:0 showed a weak correlation (Fig. 4b).
These results showed that the expression difference of
the GRMZM2G101515 gene might affect the ratio of
C22:0/C24:0.
In addition, 3 of 4 QTLs contained in L34, namely,

qBEH9 for C22:0, qARA9 for C20:0 and qSTAR9 for
C18:0/C20:0, colocalized with the GRMZM2G022558
gene (Fig. 3e). This gene encodes fatty acid elongase 2
(fae2), which is involved in the biosynthesis of very long-
chain fatty acids in Arabidopsis [38], and is incorporated
into a variety of plant lipids. Similarly, from a 1.25 mil-
lion SNP database of 508 maize inbred lines, we ex-
tracted 66 SNPs with MAF ≥ 0.05 spanning from 5-kb
up- to downstream of fae2 coding region, and then 35

SNPs that associated with C18:0/C20:0 were identified
by marker-trait association analysis, including 2 in the
5’UTR, 6 in exon1, 1 in the 3′ UTR and the rest in the
region behind the 3’UTR. The peak signal, chr9.S_
86864550 in exon 1, whose P-value reached 7.52 ×
10− 11(Fig. 3f, Table S3), was in LD with almost all the
other significant SNPs, which can lead to amino acid
changes (Fig. 3g). Lines harboring allele A were signifi-
cantly greater than those harboring G at the ratio of
C18:0/C20:0 (Fig. 3h). Meanwhile, the expression of fae2
in lines with allele A was distinctly higher than that in
lines with allele G (Fig. 4c) and the expression level was
correlated with the ratio of C18:0/C20:0 at P = 0.002
(Fig. 4d). These results indicated that changes in the ex-
pression of fae2 could change phenotypes.

Discussion
Genetic components of oil-related traits in maize kernels
Maize oil is a compound made up of different kinds of
fatty acids. Previous studies have shown that oil-related
traits are quantitative traits controlled by multiple genes
[9–17], which was also revealed by the finding that all
traits followed normal distributions and showed trans-
gressive segregation in this work. Our study detected 62
QTLs at 38 loci, of which only 5 were major QTLs, with
PVE ≥ 15%. Therefore, two contrasting genetic architec-
tures were found for 19 oil-related traits. Three fatty
acid traits, C20:0, C22:0, and C24:0 and two ratio traits
C20:0/C22:0 and C22:0/C24:0, were controlled by a sin-
gle major QTL plus some small-effect QTLs, while the
others were controlled by many small-effect QTLs. It is
worth noting that only two minor-effect QTLs were de-
tected for oil content in the present study, which is in
keeping with a recent report [16], while 6–16 QTLs were

Fig. 2 Co-localization of QTLs and known genes for oil-related traits. All 10 maize chromosomes (Chr 1–10) were depicted to scale (Mb, million
base pairs). Red region indicated the confidence interval region of QTLs and the black lines indicated the position of genes
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identified in high-oil populations [11, 13–15], 22 QTLs
identified in the NAM population [17] and 26 loci asso-
ciated with oil content throughout a GWAS analysis [4].
The application of different mapping populations gave
rise to differences in QTL numbers and effects. In the
present study, subtle variations in oil content between
two parents, KUI3 (4.13%) and SC55 (5.27%), were

observed. Two QTLs contributed to 12.5% of the pheno-
typic variation in oil content in the KUI3/SC55 RIL
population. The PVE for oil content was more than 50%
in high-oil populations [15, 39]. Favorable allele accumu-
lation is a route for increasing oil concentration, and
high-oil maize lines have more favorable alleles, some of
which have main effect; therefore, an increasing number

Fig. 3 Candidate genes for L28 and L34. a LOD profiles of the identified QTL bins for L28 and GRMZM2G101515 were colocalized with a QTL
cluster. The dashed lines show the physical positions of genes. b Candidate-gene association analysis for GRMZM2G101515. The most significant
locus is shown in red. The intensity of gray shading indicates the extent of LD (r2) between the most significant locus and the other variants
identified in this region. The gene struct.is shown on the x-axis. The black and light-gray shading represents exons and UTRs, respectively. c The
linkage disequilibrium (LD) patterns of all identified variants (MAF≥ 0.05) in genes GRMZM2G101515. d The effect of peak locus for
GRMZM2G101515 in an association panel. e LOD profiles of the identified QTL bins for L34 and GRMZM2G022558 were colocalized with a QTL
cluster. f Candidate-gene association analysis for GRMZM2G022558. g The linkage disequilibrium (LD) patterns of all identified variants (MAF≥
0.05) in genes GRMZM2G022558. h The effect of peak locus for GRMZM2G022558 in an association panel
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and effect of QTLs were identified in the biparental
population constructed by high-oil lines. Nevertheless,
favorable alleles also existed in regular maize lines ac-
cording to the founding in this study. In addition, vary-
ing environments could also influence the number of
detected QTLs.
Another remarkable finding in this work is that two

pairs of epistatic interaction QTLs with additive effects
were identified for two oil-related traits. However, they
presented limited contributions to increasing the fatty
acids composition. This result was consistent with a few
previous reports [15, 16]. As an example, 2–7 pairs of
epistatic QTLs were detected for oil content and 5 fatty
acid compositions in high-oil maize [15]. The proportion
of total phenotypic variance explained by all epistatic
QTLs ranged from 5.2 to 12.6% for each trait. Similar re-
sults were obtained in rapeseed, rice, peanut and wheat
[40–43], demonstrating that epistasis could make a sub-
stantial contribution to variation in complex quantitative
traits in different crops. The magnitudes of individual
QTLs with additive effects and the percentage of total
phenotypic variation explained by individual QTLs were
greater than those of epistatic QTLs, indicating that
additive effects rather than epistatic effects played a

crucial role in contributing to the genetic basis of oil-
related traits in the KUI3/SC55 RIL population.

Colocalization of oil-related QTLs identified in this study
with previous studies
The mining of oil-related QTLs is beneficial for a better
understanding of oil biosynthesis and accumulation in
maize kernels. In comparison with previous studies [11,
13–17], 75.8% (47/62) of all identified QTLs in this study
were previously reported based on the B73 reference
genome version 2, indicating the reliability and accuracy
of the results. All 15 newly identified QTLs had moder-
ate effects and were distributed on 8 chromosomes (ex-
cept for chromosome 5 and 6), and the PVE ranged
from 6.75% (qSTOL4) to 11.94% (qPAST8), which re-
vealed the specificity of the genetic background from the
two parents. Considering the physical position of all
QTLs, 26.3% (10/38) of loci were freshly verified in the
current study, including two QTL clusters, L20 and L33,
located on chromosome 4 for C18:0, C18:0/C18:1, and
SFA/USFA and chromosome 8 for C16:0/C18:0 and
C18:0/C20:0, respectively. Pleiotropy and close linkage
could cause trait correlations and lead to colocalization
of QTLs, which means that a few QTLs controlling

Fig. 4 GRMZM2G101515 and GRMZM2G022558 alter the ratio of fatty acids in maize kernel. a Comparison of the relative expression at peak locus
alleles A and C for GRMZM2G101515. b Correlation of C22:0/C24:0 with the relative expression of GRMZM2G10151 in kernels at 15 DAP. c
Comparison of the relative expression at peak locus allele A and G for GRMZM2G022558. d Correlation of C18:0/C20:0 with the relative expression
of GRMZM2G022558 in kernels at 15 DAP
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different traits were identified in the same genomic re-
gions [44]. These two new loci supported by multiple
QTLs are credible and have the potential to serve breed-
ing. Moreover, the reasons for colocalization of the two
loci require further study.
The two candidate genes, GRMZM2G101515 and

GRMZM2G022558, were associated with C20:0/C22:0
and C18:0/C20:0, respectively. The former encodes a
kinase-related protein with unknow function, and in
Arabidopsis, it was annotated as an RNA polymerase
II degradation factor-like protein. No reports have
shown that this gene is related to lipid metabolism.
Given that this gene is not in the lipid metabolism
pathway, it probably regulates lipid metabolism in an
indirect way. In addition, the most significant SNP,
chr6.S_164986588, is not necessarily the functional
site of the gene. In most cases, the change of a single
amino acid is not enough to change the protein func-
tion. The expression of GRMZM2G101515 is related
to the phenotype, which means that the phenotype is
likely to be regulated by gene expression. The real
functional site is possible to be some transposons or
structural variations undiscovered by the next-
generation sequencing technology, which are in LD
with the significant SNPs, just like the way of
ZmNAC111 and ZmVPP1 [45, 46] work. The second
encodes fatty acid elongase 2 (fae2), which can elong-
ate fatty acyl-CoAs to produce C20-C24 acyl-CoAs
and then further produce long-chain fatty acids, and
it directly participates in the biosynthesis of very
long-chain fatty acids in Arabidopsis [18]. Similarly,
although many significant SNPs were identified to be
associated with C18:0/C20:0, it’s hard to determine
the functional site of GRMZM2G022558 gene. The
significant correlation between the phenotype and
gene expression in the association panel indicated the
possibility that expression regulated the phenotype.

QTL application in the improvement of maize oil
QTL mapping is a classical strategy to identify loci
for complex quantitative traits of interest. The ultim-
ate goal of QTL mapping is to clone the causal
genes for further application in trait improvement. It
usually takes a long time to obtain genes underlying
QTLs by constructing near-isogenic lines in maize
[47–49], rice [50–52], wheat [53, 54] and other
plants [55, 56]. Combining linkage analysis and
GWAS can greatly shorten the journey [57, 58], and
gene-based association studies can help identify the
favorable allele. These QTLs or genes have the po-
tential to contribute crop improvement by marker-
assisted selection. To date, a large number of QTLs
for different traits in multiple species have been de-
tected, and some of which have actually been applied

to crop improvement [59–61]. However, little is ap-
plied in oil improvement for maize kernels apart
from the DGAT1–2 gene [62]. In detail, Hao et al.
[62] transferred the favorable allele of DGAT1–2
from the high-oil inbred line (By804) into two par-
ents of Zhengdan958 using marker-assisted back-
crossing and successfully increased the oil content of
the improved Zhengdan958 without a change in
grain weight. In the present study, 5 major QTLs
were identified, and 3 of these QTLs were isolated
by joint gene-based association analysis, and two
candidate genes were verified. In addition, these
QTLs were mainly additive in the KUI3/SC55 popu-
lation, which may accelerate molecular breeding by
pyramiding the favorable maize alleles of these de-
tected QTLs or by genomic selection.

Conclusions
In the present study, QTL mapping for 19 oil-related
traits was conducted with high-density SNP markers
in the KUI3/SC55 RIL population. A large number of
QTLs regulating oil content and fatty acid compos-
ition were identified, most of which were moderate
effect QTLs. Two contrasting genetic architecture
were revealed for 19 oil-related traits. Of these traits,
only five harbor a major QTL, reflecting the complex
nature of oil-related traits. In addition, additive effects
rather than epistatic effects played a crucial role in
contributing to the genetic basis of oil-related traits
in the KUI3/SC55 RIL population. Two genes,
GRMZM2G101515 and GRMZM2G022558, were fur-
ther verified to be associated with C20:0/C22:0 and
C18:0/C20:0, respectively, by gene-based association
analysis. The first gene encodes a kinase-related pro-
tein with unknown function, which is likely to act as
a regulator to influence the genes involved in oil bio-
synthesis and metabolism pathway. While the second
gene encodes fatty acid elongase 2 (fae2) and directly
participates in the biosynthesis of very long-chain
fatty acid in Arabidopsis, so that it can regulate the
ratio of C18:0/C20:0 by affecting the content of both
fatty acids in a direct way. In total, these findings
provide insights into the genetic architecture of oil-
related traits and an opportunity to increase oil con-
tent and improve oil quality in maize kernels.
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