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Abstract

Background: Browning spot (BS) disorders seriously affect the appearance quality of ‘Huangguan’ pear and cause
economic losses. Many studies on BS have mainly focused on physiological and biochemical aspects, and the
molecular mechanism remains unclear.

Results: In the present study, the structural characteristics of ‘Huangguan’ pear with BS were observed via scanning
electron microscopy (SEM), the water loss and brown spots were evaluated, and transcriptomic and metabolomics
analyses were conducted to reveal the molecular mechanism underlying ‘Huangguan’ pear skin browning disorder.
The results showed that the occurrence of BS was accompanied by a decrease in the wax layer and an increase in
lignified cells. Genes related to wax biosynthesis were downregulated in BS, resulting in a decrease in the wax layer
in BS. Genes related to lignin were upregulated at the transcriptional level, resulting in upregulation of metabolites
related to phenylpropanoid biosynthesis. Expression of calcium-related genes were upregulated in BS. Cold-induced
genes may represent the key genes that induce the formation of BS. In addition, the results demonstrated that
exogenous NaH,PO,-2H,0 and ABA treatment could inhibit the incidence of BS during harvest and storage time by
increasing wax-related genes and calcium-related genes expression and increasing plant resistance, whereas the
transcriptomics results indicated that GA; may accelerate the incidence and index of BS.

Conclusions: The results of this study indicate a molecular mechanism that could explain BS formation and
elucidate the effects of different treatments on the incidence and molecular regulation of BS.
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Background

Pear (Pyrus spp.), belongs to the subfamily Pomoideae in
the family Rosaceae, the third most important temperate
fruit species after grape and apple [1]. There are many
pear varieties planted in China, and the main species
cultivated for commercial production include sand pear
(P. pyrifolia Nakai), ussurian pear (P. ussuriensis Maxim),
white pear (P. bretschneideri Rehd), and Xinjiang pear (P.
sinkiangensis Yu), as well as interspecific hybrid types [2].

‘Huangguan’ pear (Pyrus bretschneideri x Pyrus pyrifo-
lia) is an early- and medium-maturing cultivar widely
planted in northern China that has a high-quality and
exquisite appearance after bagging [3]. This fruit has
many excellent characteristics, such as a beautiful ap-
pearance, strong resistance, early fruit bearing and high
yield in successive years, which are traits that are desired
by the majority of producers and consumers. However,
browning spot (BS) disease often occurs at the surface of
‘Huangguan’ pear fruits after bagging before harvest or
during storage [4]. The symptoms of BS include an ini-
tial brown spot that spreads irregularly from the disease
spot to the surroundings and becomes darker during
fruit maturation [4, 5]. Whole fruit browning may occur
in the later stages of this disease. Interestingly, this dis-
order affects only the exocarp of pear fruit, and the flesh
and core are not affected [6]. Multiple lesions are con-
nected into a round, irregular shape or chicken claw-like
shape. Therefore, BS disorder is also known as chicken-
claw disease by orchardman in China, and it causes a
significant decrease in the commercial value of fruit for
fruit farmers [7].

BS were first discovered in Xinji City, Hebei Province,
in 1996. This disease mainly occurs on ‘Huangguan’
pears. However, a small number of green pear varieties,
such as ‘Dangshansuli’ (P. bretschneideri Rehd.), ‘Lvbaoshi’
(P. pyrifolia Nakai), ‘Suisho’ (P. pyrifolia Nakai), Xuehua’
(P. bretschneideri Rehd.) and ‘Xueqing’ (P. pyrifolia Nakai),
also experience BS [8]. It was reported that BS disease of
‘Huangguan’ pear is an important physiological disorder
[9-11] that mainly occurs in bagged fruits at the mature
stage and after low-temperature storage [12—-14]. In gen-
eral, BS disorder of ‘Huangguan’ pear is affected by many
factors, such as environmental factors (continuous rainfall
and low temperature weather [12], chemical fertilizers
use [15]), preharvest factors (bagging time, fruit bag
type [5, 16], and swelling agent use [17]), and postharvest
factors (cooling period duration [12-14, 18], storage
temperature and CO, and O, concentrations [19-21]).

Some researchers believe that the thinning of the wax
layer and skin cell wall of pears caused by bagging is the
main cause of BS [16]. After bagging, the adaptability of
fruit exocarp to severe environmental changes is reduced
and the development of fruit exocarp is delayed. It has
been reported that BS are closely related to calcium
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deficiency and phenolic dysregulation in pericarp tissue
[9, 19, 22]. To date, research on BS disease has mainly
focused on mineral nutrition (such as Ca [3, 5, 9, 11, 17,
23-27], Mg [5, 9], K [5, 9] and B [23]) and physiology
and biochemistry [28, 29]. Additionally, the use of swell-
ing agents may be another causes of BS [17]. Exogenous
treatment with ethylene [4, 30], methyl jasmonate
(MeJA) [31], 1-methylcyclopropene (1-MCP) [18] and
CaCl, [32] has been reported to affect the browning of
postharvest ‘Huangguan’ pear. In addition, rapid post-
harvest cooling tends to increase BS formation, while
slow cooling inhibits BS formation [12]. However, few
studies have focused on the effect of exogenous phyto-
hormone treatments, and the molecular mechanisms
that regulate BS processes in ‘Huangguan’ pear.

This study observed the changes at the site of BS and
analysed the molecular mechanism underlying BS
formation at the transcriptomic and metabolomic levels.
The incidence of BS after treatment with exogenous
reagents [NaH,PO42H,O (P), abscisic acid (ABA),
gibberellin A3 (GA3)] during harvest and storage was in-
vestigated. The key genes involved in exocarp formation
were also analysed after treatment, which would pro-
vided a basis for the molecular mechanism underlying
BS formation and elucidated the effect of different treat-
ments on the molecular regulation of BS formation.

Results

Phenotype characteristics of BS disease of ‘Huangguan’
pear

Compared with the normal pear skin of ‘Huangguan’
pear, the BS-infected skin exhibits spots with an irregu-
lar, chicken claw-like shape that are randomly distrib-
uted over the surface (Fig. 1A). BS are a physiological
disease that causes a slight depression in the affected
area. Paraffin section observations revealed that the de-
gree of lignification of the exocarp cells of the BS parts
was significantly higher than that of the normal parts
(Fig. 1C, D). SEM observations revealed a thick cuticular
layer on the skin of the normal ‘Huangguan’ pear, how-
ever, the BS part of ‘Huangguan’ pear skin consisted of
layers of dead cells and more densely arranged exocarp
cells (Fig. 1 E, F). Those results indicated that the occur-
rence of BS may be caused by necrosis of the exocarp
and hypodermal cortical tissues.

The SEM analysis also found that there were many
cracks on the fruit surface, although the cracks on the
BS part were covered by the lesions (Additional file 1:
Fig. S1). Hence, an experiment to detect the rate of
water loss (RWL) was conducted between CK and BS
groups. After 10 d of storage at room temperature
(25°C), the RWL of the three groups of ‘Huangguan’
pear and ‘Huangguan’ pear with BS disease was calcu-
lated. The results showed that the RWL of groups #1
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Fig. 1 Phenotypic characteristics of BS of ‘Huangguan’ pear. (A) Phenotypes of normal ‘Huangguan’ pear and ‘Huangguan’ pear with BS disease.
Observation of the paraffin sections of the normal part (C) and BS disease part (D) of ‘Huangguan pear. SEM analysis of the normal part (E) and BS disease
part (F) of Huangguan' pear. (B) RWL of CK and BS of ‘Huangguan’ pear at 10 days of storage under room conditions after harvest. The vertical bar
indicates the standard error. The reported value is the mean + SEM (p < 0.05). The ordinate represents three different groups, and each group has 10 fruits
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and #3 was significantly higher than that of ‘Huangguan’
pear with BS disease (Fig. 1B). The average RWL of the
CK and BS groups was 3.49 and 3.19%, respectively.
Therefore, BS lesions could inhibit water loss, which
may be regulated by the layers of densely arranged dead
cells at the fruit surface.

Transcriptome and metabolome differences between the
CK and BS fruits
RNA-Seq generated 6.24 gigabytes (GB) of clean data for
each sample from the 5 complementary DNA (cDNA)
libraries. A total of 30,596 expressed genes were
identified, including 1212 new genes that were initially
identified in this study. Successfully mapped reads
ranged between 69.91 and 72.68%, and the average was
71.29% (Additional file 2: Table S1).

To compare the metabolites in the control group (CK)
and BS-infected group (BS) metabolites of ‘Huangguan’

pears, datasets obtained from a Xevo G2 XS QTOF
high-resolution tandem mass spectrometer (Waters) in
electrospray ionization positive ion mode (ESI+) and
negative ion mode (ESI-) were subjected to a principal
component analysis (PCA). The results showed that me-
tabolites from the CK and BS groups were clearly sepa-
rated in the score plots, in which the first principal
component (PC1) was plotted against the second princi-
pal component (PC2). (Additional file 1: Fig. S2 A, B).
PLS-DA (plots from partial least squares discriminant)
analyses were further performed to check the metabolite
differences between the CK and BS groups (Additional
file 1: Fig. S2 C, D), and the results showed significant
biochemical differences between CK and BS.

Transcript analyses of the two comparison groups by
DESeq2 [33] identified 6299 DEGs, including 4854 up-
regulated and 1445 downregulated DEGs in the BS pear
exocarp (Fig. 2A). To classify the functions of DEGs
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between the CK and BS groups, the assembled unigenes
were annotated by using different protein databases (GO
and KEGG) for homologous alignment. In the GO
categories, DEGs were annotated with 1212 GO terms,
with 1480 unigenes in biological process, 1906 unigenes
in cellular component, and 1609 unigenes in molecular
function, which included terms such as metabolic
process, membrane and catalytic activity (Additional file
1: Fig. S3). KEGG pathway annotation analyses showed
that the global and overview maps, carbohydrate metab-
olism, signal transduction and environmental adaptation
were overrepresented (Additional file 1: Fig. S4). KEGG
enrichment analyses were further performed to assess
the DEGs between the CK and BS groups. We found
seven significant pathways, including the MAPK signal-
ling (245), flavonoid biosynthesis (72), plant-pathogen
interaction (267), carotenoid biosynthesis (38), porphyrin

and chlorophyll metabolism (37), plant hormone signal
transduction (216) and brassinosteroid biosynthesis
pathways (17) (Fig. 2B). To further identify the functions
of BS-related genes, we analysed the gene expression in
those significantly enriched pathways. The numbers of
up- and downregulated genes are listed in Table 1.

We characterized the exocarp of ‘Huangguan’ pear
metabolomic changes in the BS disease parts. A total of
8829 and 8646 ions were identified in ESI+ and ESI-
modes, respectively. After filtering low-quality ions that
had RSD >30%, 8432 and 7887 ions were retained in
ESI+ and ESI- modes, respectively. Then, we identified
differential metabolites between the CK and BS groups,
and detected 1742 and 1555 differential ions in BS, in-
cluding 1348 and 1173 upregulated ions and 394 and
382 downregulated ions in ESI+ and ESI- modes, re-
spectively (Fig. 2C). In addition, 1581 and 781
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Table 1 The top 7 enriched pathways of DEGs in BS

Pathway name Type Down Pathway ID Q-value

MAPK signaling pathway - plant Environmental Information 34 ko04016 4.86E-12
Processing

Flavonoid biosynthesis Metabolism 21 ko00941 1.47E-06

Plant-pathogen interaction Organismal Systems 22 ko04626 1.14E-05

Carotenoid biosynthesis Metabolism 12 ko00906 0.001625608

Porphyrin and chlorophyll metabolism Metabolism 13 ko00860 0.008369283

Plant hormone signal transduction Environmental Information 71 ko04075 0.008369283
Processing

Brassinosteroid biosynthesis Metabolism 3 ko00905 0.02783563

These were selected with an FDR adjusted Q-value< 0.05

differentiated metabolites were categorized into 96 and
74 KEGG pathways in ESI+ and ESI- mode, respectively
(Additional file 3: Table S2). The KEGG enrichment
analysis of differentiated metabolites (removing the du-
plicated ions in ESI+ and ESI- mode) showed that the
biosynthesis of secondary metabolites, porphyrin and
chlorophyll metabolism, cutin suberin and wax biosyn-
thesis, phenylpropanoid biosynthesis, alpha-linolenic
acid metabolism and brassinosteroid biosynthesis path-
ways were the most abundant (Fig. 2D). The differen-
tially up- and downregulated metabolites are listed in
Table 2.

Analysis of DEGs and DEMs between the CK and BS
groups

The phenotypic characteristics and metabonomics ana-
lysis of the pericarp indicated that the cutin suberin and
wax biosynthesis pathway and lignin biosynthesis may
be involved in the formation of BS. The fatty acid elong-
ation pathway is upstream of cutin suberin and wax
biosynthesis pathway [34]. At the transcriptome level,
we found that many genes involved in wax biosynthesis
were downregulated in BS, including the CYP94Al,
HHT, HTH, CYP704C1, WSD1, and FAR3 genes and 10
KCS family genes, indicating that the decrease in wax

may be one of the causes of BS(Fig. 3A B). Six genes in-
volved in lignin biosynthesis were upregulated, namely,
4CL2, CADI1, CYP84A1l, 4CL1, CYP98A2, and COMT1,
and two genes were downregulated, namely, CAD6 and
CCRI1 (Fig. 3C), resulting in the upregulation of metabo-
lites in the phenylpropanoid biosynthesis pathway (Table 2).
These results suggested that the formation of BS is
caused by the decrease in epicuticular wax and the
increase in lignified cells.

Transcriptome analysis revealed that plant-pathogen
interactions (PPIs) and the MAPK signalling pathway
(MAPK) are also key factors associated with BS (Fig. 3D-
F). PGIPs (polygalacturonase inhibiting proteins) are as-
sociated with the plant cell wall and play a crucial role
in plant defence [35], and they are upregulated in BS.
LSH10 was a probable transcription regulator that acts
as a developmental regulator by promoting cell growth
in response to light, and it is upregulated in BS. We also
detected six calcium-related genes differentially
expressed in CK and BS, including CaM, CML42,
CML45, CaLP7, CaLP2, and CaLP3, indicating that the
calcium content in pear exocarp may be one of the fac-
tors affecting BS. In addition, we found 12 DEGs of the
WRKY family in PPI and MAPK. These result indicated
that the defence response caused by the change in

Table 2 Enriched KEGG pathways of differential metabolites between CK and BS

Pathway Count Up Down Pathway ID
Biosynthesis of secondary metabolites 228 173 55 map01110
Phenylpropanoid biosynthesis 31 22 9 map00940
Porphyrin and chlorophyll metabolism 29 21 8 map00860
Flavonoid biosynthesis 18 16 2 map00941
Brassinosteroid biosynthesis 17 15 2 map00905
Carotenoid biosynthesis 16 13 3 map00906
Linoleic acid metabolism 16 14 2 map00591
alpha-Linolenic acid metabolism 13 12 1 map00592
Cutin, suberine and wax biosynthesis 11 1M 0 map00073
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calcium content in pear exocarp caused by bagging was
involved in the formation of BS. Detailed information on
these DEGs is listed in Additional file 4: Table S3.
Through metabolomics, we found that there was no
significant difference in auxin (IAA) content between
the CK and BS groups. Among cytokinins (CTKs), N6-
dimethylallyladenine and zeatin were reduced in BS,
while the content of gibberellins (GAs), abscisic acid
(ABA), jasmonic acid (JA) and salicylic acid (SA) were
all upregulated in BS except gibberellin A4 (Fig. 4). At
the transcriptional level, we identified 216 DEGs in-
volved in plant hormone signal transduction, including
55, 15, 37, 18, 23 and 12 DEGs in the IAA, CTK, GA,
ABA, JA, and SA signalling pathways, respectively (Fig. 4).
In the IAA signalling pathway, the AUXI, TIR1, and
AUX/IAA genes were downregulated, which indicated that

cell enlargement and plant growth were suppressed. In
the CTK signalling pathway, the CREI and B-ARR genes
were upregulated, which indicated that cell division was
promoted. In the GA signalling pathway, GIDIC and
CES15 were upregulated among the GIDI genes, and
SCL21, SCL22, SCL4, SCL14, SCL33, SCL30, and SCL11
were upregulated among the DELLA genes. Additionally,
nine TFs in the bHLH family in the GA signalling pathway
were identified, of which six were upregulated and three
were downregulated. The increase in gibberellin content
and expression of GA signalling genes in BS indicated that
GA may have a certain promotion effect on BS. Greater
ABA, JA and SA content in BS was observed in the BS
group, and the gene expression of ABA, JA and SA signal-
ling pathways was also significantly increased, which
induced the disease resistance in the plants. Detailed
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Stress response

information on all genes involved in plant hormone signal
transduction is listed in Additional file 4: Table S4.

BS has been reported to be associated with a sudden
drop in temperature. Cold exercise or slow cooling are
commonly used in production to reduce the incidence
of BS [12-14]. We identified three cold-shock protein
CS120-like (CS120) genes (gene 1D:103937809, 103,937,
810, 103,937,807) and one low-temperature-induced 65
kDa protein-like isoform X1 (L7165, gene ID: 103940885)
that were significantly upregulated in BS (Fig. 5). Hydro-
phobic protein RCI2B (RCI2B, gene ID: 103955844) has
been proven to be a cold-induced gene [36] that is upregu-
lated in BS. Aquaporin is a membrane protein that was

originally characterized as a water channel through which
H,O could permeate biological membranes [37]. Four
DEGs in aquaporin PIP (gene ID: 103946629, 103,942,423,
103,937,187, 103,956,770), PIP1—-4 and PIP2-8 were upreg-
ulated, while PIP2-2 and PIP2-5 were downregulated in
BS.

Transcription factors (TFs) involved in BS formation

TFs are important regulators that activate or repress the
expression of both coding and noncoding genes to influ-
ence or control many biological processes [38]. In our
analysis of the transcriptome data, we detected 423 dif-
ferentially expressed TFs between the CK and BS
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Fig. 5 Transcript abundance of significant DEGs between CK and BS. The error bars are the means + SEM of three biological repeats

groups, including 341 upregulated and 82 downregulated
TFs. The AP2-EREBP, MYB and WRKY families were
the most abundant TF families between the CK and BS
groups, followed by the bHLH, NAC, C2H2, and HSF
families (Table 3).

Coexpression network of BS-related genes

In our transcriptome analysis, we found that wax,
lignin, calcium, plant hormone signal transduction,
and cold-induced genes were the key genes for BS
formation. We performed a coexpression network
analysis to illuminate the collaboration between those
genes, and the analyses with transcriptome data
showed that GA signal and IAA signal genes were
classified into different coexpression clusters with
wax, lignin biosynthesis and calcium-related genes
(Fig. 6). We found that bHLH137, bHLH128, IAA14
and [AA27 were coexpressed with multiple genes in-
volved in fatty acid elongation, cutin, suberin and
wax biosynthesis, lignin biosynthesis, MAPK and PPIL.
These findings indicate that the formation of BS may
be regulated by plant hormone signals, especially
IAA and GA signals.

Combined analysis of the metabolome and transcriptome
MixOmics [33] multifunctions were used for multivariable
dimensionality reduction to explore the relationship

between transcriptomics and metabolomics (Fig. 7A). The
block splsda function in mixOmics was used to analyze
differential genes and differential metabolites, and the
plotVar and circosPlot functions were used to visualize
the results. We found that DEGs and DEMs were closely
correlated. In general, most DEGs and DEMs are far from
the center of the circle, which means a strong correlation
between them. Alternatively, a regularized canonical cor-
relation analysis (rCCA) [39] was performed to measure
the degree of correlation between genes and metabolites
(Fig. 7B). In total, a correlation between 6299 DEGs and
1280 DEMs was detected. We named the four quadrants
with numbers 1-4. The results showed that quadrants 1
and 4 represent the opposite expression trend of DEGs
and DEMs, suggesting that the expression of DEGs and
DEMs had a negative correlation. In contrast, quadrants 2
and 3 represent the consistent expression trend of DEGs
and DEMs, indicating that those genes may be a positively
regulated by metabolites.

Effects of P, ABA and GA; treatments on BS

Treatments with P, ABA, and GAj; were performed to
investigate their effects on the BS of ‘Huangguan’ pear
(Fig. 8A, B). The P and ABA treatments significantly re-
duced the incidence and index of BS. The incidence and
index of BS treated with GA3z were higher than those of
the other treatments. The results showed that the P
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Table 3 Differentially expressed transcription factors (TFs) between CK and BS

TF family Number Up Down Description

AP2-EREBP 53 40 13 Ethylene-responsive transcription factor
MYB 49 43 6 MYB-related protein

WRKY 46 44 2 WRKY DNA -binding domain

bHLH 35 21 14 Helix-loop-helix DNA-binding domain

NAC 26 24 2 NAC domain-containing protein

C2H2 17 16 1 Zinc finger protein

HSF 16 16 0 Heat stress transcription factor

GRAS 15 15 0 scarecrow-like protein

LOB 13 10 3 LOB domain-containing protein

MADS 10 8 2 SRF-type transcription factor

G2-like 10 9 1 myb-related protein

C3H 9 8 1 Zinc finger CCCH domain-containing protein
mTERF 9 8 1 mMTERF domain-containing protein
C2C2-Dof 9 6 3 dof zinc finger protein

TCP 7 5 2 Circadian rhythm - plant

FHA 7 5 2 FHA domain-containing protein

C2C2-GATA 7 4 3 GATA-binding protein

Tify 7 5 2 jasmonate ZIM domain-containing protein
C2C2-CO-like 7 6 1 zinc finger protein CONSTANS

ABI3VP1 6 3 3 B3 domain-containing protein

Trihelix 6 5 1 trihelix transcription factor

OFP 6 3 3 isoleucyl-tRNA synthetase

FAR1 5 5 0 zinc finger SWIM domain-containing protein
ARF 5 3 2 auxin response factor

other TFs 43 29 14

total 423 341 82

treatment had the best inhibitory effect on BS disorder,
and ABA treatment also had a certain inhibitory effect
on BS, and the GAj; treatment promoted the occurrence
of BS.

In addition, we investigated the BS incidence of
‘Huangguan’ pears with different treatments during
storage (Fig. 8C, D, E). We found that the P treat-
ment effectively inhibited BS at 4 and 5 months of
storage (Fig. 8C, D), while the ABA treatment inhib-
ited BS at 5 months of storage, but the result did not
significant differ from that of the other time periods
compared with the CK (Fig. 8D). The incidence of
BS was higher after GAj; treatment during storage,
indicating that GA3; may promote BS after low-
temperature storage (Fig. 8C, D, E).

Transcriptomics analysis of pear exocarp after P, ABA,

and GA; treatments

We analysed the changes at the transcription level of
pear exocarp to explore the effects of different

treatments on the occurrence of BS. After the P treat-
ment, 2363 DEGs were identified, including 2115 upreg-
ulated genes and 248 downregulated genes. A total of
3104 DEGs occurred after treatment with ABA, includ-
ing 2354 upregulated genes and 750 downregulated
genes. The GA; treatment caused 1566 DEGs, including
1052 upregulated genes and 514 downregulated genes
(Fig. 9A). To classify the functions of DEGs after differ-
ent treatments, KEGG annotation analysis was carried
out, and it showed that the global and overview maps,
carbohydrate metabolism, signal transduction and envir-
onmental adaptation were overrepresented (Fig. 9C).
Furthermore, we identified the expression of genes in-
volved in BS formation (Fig. 9B) and found that wax
biosynthesis-related genes, such as KCS10, KCSI9,
KCS11, FAR3, WSDI1, CERI, were upregulation after P
treatment. Similarly, ABA treatment also increased the
expression of wax-related genes, including KCSI1,
KCS20, KCS4, FAR3. Moreover, treatment with P and
ABA increased the expression of many genes involved in
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Fig. 6 Coexpression network of genes involved in BS formation. Detailed information on the genes is listed in Additional file 4: Table S3 and Table S4
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the PPI and MAPK pathways, including calcium-related
genes (CaM, CalP3, CalP2, CalP7, CML42, and
CML45) and WRKY TFs (WRKY71, WRKY11, WRKY24,
WRKY75, WRKY53, WRKY26, WRKY22, and WRKY40),
which may improve the plant’s resistance to disease.
However, the effect of GA; treatment was not obvious.

These results are consistent with the previous incidence
of BS observed after the three treatments.

Gene expression analysis by g-RT-PCR after treatment
Previous studies have shown that a reduction of the wax
layer may be one of the causes of BS. Therefore, we
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analysed the expression of five wax-related genes in the
pericarp of ‘Huangguan’ pear after different treatments
(Fig. 10). We found that KCS1I, FAR3, WSDI, and
CERI1 were upregulated after the P treatment and KCS11
and CERI were upregulated after the ABA treatment.
The expression of OCRI was downregulated after the P
and ABA treatments but did not significantly differ after
the GA; treatment. BS has been reported to be related
to calcium deficiency in the peel [3, 9, 22]. Five calcium-
related genes, CalLP2, CalP3, CalLP7, CML45, and
CML42, were upregulated after the P and ABA treat-
ments but did not show significant changes in expres-
sion after the GA3 treatment (Fig. 10). Additionally, five
genes involved in both PPI and MAPK can be activated
by various biological and abiotic stresses [13], including
PGIP and LSHI0 and the three WRKY family TFs
WRKY53, WRKY7I, WRKY33. Among them, the
expression of LSH10, WRKY53, WRKY71, and WRKY33
increased to different degrees after the P and ABA treat-
ments. The expression of PGIP was increased after ABA
treatment. However, GA; treatment did not affect the
expression of these genes and even had a persistent
effect (Fig. 10). These results are consistent with the
transcriptome data.

Furthermore, the expression of five cold-induced genes
was detected, namely, CS120-1 (gene ID: 103937807),
CS120-2 (gene ID: 103937809), CS120-3 (gene ID:
103937810), LTI65 and RCI2B. The results show that
the ABA treatment increased the expression of CSI120-

1, CS120-2 and LTI65, while CS120-1 and LTI65 were
downregulated after the P treatment. The expression of
RCI2B was decreased after all tree treatments. The re-
sults show that ABA treatment may improve the adapt-
ability of fruit to chilling injury, while the effect of P and
ABA treatment on the expression of cold-related genes
was not obvious.

Regulatory network of BS formation

According to our investigation and research, we believe
that many factors result in BS, especially the low tem-
peratures. The possible regulatory network is shown in
Fig. 11. The development of fruit exocarp is delayed, and
the concentration of Ca”* is reduced after bagging. The
fragile peel cannot withstand swelling when the fruit en-
larges. When the temperature drops, the peel is
stretched, cracks appear, and low temperature-induced
genes are upregulated, which causes a series of defensive
reactions through the PPI and MAPK pathways. In
addition, the high humidity conditions in bags cause cu-
ticular thinning of the pear exocarp, which may cause
cracks on the fruit surface. Then, dead cells accumulate
near those cracks, which ultimately become BS.

Discussion

Factors influencing BS on ‘Huangguan’ pear

BS disease is the main disease of ‘Huangguan’ pear and
primarily occurs in bagged fruits at the mature stage.
However, a small proportion of BS cases has also been
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found on unbagged fruits, although the shape of the dis-
ease is mostly circular and not consistent with that of
bagging (Additional file 1: Fig. S5). Therefore, bagging
may not be the only cause of BS. We observed that the
onset of BS was characterized by a close arrangement of
lignified dead cells accompanied by a significant reduc-
tion in epidermal wax (Fig. 1). The transcriptomic ana-
lysis showed that the expression of wax-related genes in
BS was decreased while the expression of lignin-related
genes was increased (Fig. 3), which was consistent with
the observed phenotypic phenomenon. However, the
cause of this phenomenon is still unclear.

It has been reported that BS is associated with sudden
decreases in temperatures [12, 13, 18]. BS has been
considered a chilling injury symptom in cold-stored
‘Huangguan’ pear [30]. Studies have shown that

‘Huangguan’ pear is susceptible to BS disorder a few
days after low-temperature storage [4]. It has been re-
ported that MeJA can improve the chilling resistance of
eggplant (Solanum melongena L.), and also can inhibit
browning disorder [31, 40, 41]. This finding indicated
that BS may be caused by low temperature. We detected
four low temperature-induced genes by transcriptomics
that were highly expressed in BS but barely expressed in
the normal pericarp, including the CS120, LTI65 and
RCI2B genes (Fig. 5). Protein synthesis is generally inhib-
ited when the temperature drops abruptly, and the produc-
tion is significantly lower than at a normal physiological
temperature; however, cold-shock proteins (CSPs) increase
dramatically under these conditions [42]. L7165 and RCI2B
are induced by low temperature in Arabidopsis thaliana
[36, 43]. Li. et al. [13] studied the effect of cold exercise
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treatment on ‘Huangguan’ pear, and the results showed that
cold exercise effectively inhibited fruit peel brown spots
and had no obvious effect on storage quality. Based on
these findings, low temperature is indeed one of the causes
of BS.

Calcium deficiency in the pericarp is also responsible
for BS (3, 5, 9, 11, 17, 23-27]. Studies have shown that
the water-soluble and total Ca®>* contents in both the
skin and flesh tissue and the total Ca>* content only in
the skin of fruits with BS were significantly lower than
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those of fruits without BS [3]. Alternatively, stress can
not only induce calcium signalling but also the expres-
sion of calcium-binding proteins in plants [44]. Ferguson
suggested that an imbalance in Ca** contents leads to
metabolic disorders that result in physiological diseases
[45]. In our study, the expression of calcium-related
genes in infected and unaffected pericarp was analysed
via transcriptomic. We detected six calcium-related
genes that were upregulated in BS, namely, CalP2,
CalLP3, CML45, CML42, CaLP7, and CaM. These genes
are involved in the PPI and MAPK pathways. In
addition, studies have shown a close relationship be-
tween Ca®" and aquaporin (AQP) activity [46]. The ef-
fect of Ca** on AQP activity is mainly achieved through
CDPK [47]. Certain environmental factors, such as
drought, low temperature, light exposure and nutritional
deficiency, can promote the expression of the AQP gene
[48, 49]. We detected four AQP genes that showed dif-
ferential expression, namely, PIP1-4, PIP2-8, PIP2-2,
and PIP2-5 (Fig. 5). The AQP genes may affect BS by
regulating the calcium concentration.

The MAPK signalling pathway was the most signifi-
cantly enriched pathway in the CK-BS comparison

group, and it is associated with various physiological, de-
velopmental and hormonal responses [50]. Molecular
and biochemical studies have revealed that MAPK acti-
vation correlates with stimulatory treatments, such as
low temperature, drought, wounding, pathogen infec-
tion, hyper and hypo-osmolarity, and reactive oxygen
species [51-55]. Genes involved in both the PPI and
MAPK pathways have been detected. PGIP was proven
to changes the composition of the degradation products
in the cell wall of pear fruit and increases the content of
pectin monomer to induce the disease resistance of
plants [56], which was upregulated in BS. WRKY family
TFs are involved in the plant defence response [57]. We
detected 12 WRKY family TFs that showed differential
expression (Fig. 3). Therefore, BS disease may be a mani-
festation of fruit responses to adverse environments.
Plant hormone signal transduction also plays a critical
role in the formation of BS. Hormonal cues regulate
many aspects of plant growth and development, thereby
facilitating the ability of plants to respond to environ-
mental changes systemically [58]. We found that genes
involved in the IAA signalling pathways were downregu-
lated, while genes involved in the GA and CTK
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signalling pathways were upregulated (Fig. 4). Cold
temperatures have been shown to inhibit plant growth
by reducing auxin accumulation [59]. Alternatively, a
previous study showed that low temperature induces an
increase in GAj sensitivity [60]. We predict that low
temperature causes the differential expression of plant
hormone signalling pathway genes, which indicates that
low temperature might be the most important cause of
BS.

Furthermore, the humidity in fruit bags may be an-
other factor that affects BS. Studies have shown that wax
is influenced by temperature, light intensity and humid-
ity [61], and that high humidity inhibits wax synthesis
[62]. In addition to wax, there are reticular or strip
cracks on the fruit surface caused by the continuous ex-
pansion of flesh cells during the development stage, thus
leading to epidermal expansion and cracking. Some
studies have found that these cracks are easily affected
by external environmental factors [63]. These cracks
may be the cause of BS. Under the action of AQP,
brown spots are formed in pear fruits. Therefore, humid-
ity may be a critical impact factor on BS formation.

Effects of different treatments on BS of ‘Huangguan’ pear
Key differentially expressed genes in BS were screened
by transcriptome analysis. The different treatments
showed that P and ABA significantly inhibited the inci-
dence of BS. Then, the expression of key genes at the
transcriptional level after the treatments was analysed.
The results showed that P treatment could improve the
expression of the wax-related genes WSDI and FAR,
resulting in a thicker cuticle. The expression of calcium-
related genes CalLP3, CML45, CML42, CaLP7, and CaM
was upregulated, which could alleviate calcium defi-
ciency in the fruit exocarp. Additionally, P treatment
improved the expression of genes involved in both the
PPI and MAPK pathways, including LSH10, WRKY53,
WRKY71, WRKY33, WRKY31, WRKY26, and WRKY11,
which improved the adaptability of fruit to adverse envi-
ronments, thereby inhibiting the incidence of BS.

ABA treatment also had a certain inhibitory effect on
BS. ABA has been reported to control the expression of
wax synthesis genes and prevent leaf water loss [64].
However, it is a major hormone involved in the plant re-
sponse to stress. In our results, we found that ABA
treatment can increase the expression of the calcium-
related genes CalP2, CalP3, CML45, CML42, and
CaLP7 and the adaptability of fruits might be improved
by increasing the expression of PGIP, LSH10, WRKYS53,
WRKY71, WRKY75, WRKY33, WRKY31, WRKY26,
WRKY24, and WRKY11. In general, ABA treatment may
roughen the exocarp and improve the disease resistance
of the fruit.
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Conclusion

This study shows that the occurrence of BS was accom-
panied by a reduction in the wax layer and the accumu-
lation of dead cells via lignification. At the transcription
level, genes related to wax synthesis were greatly down-
regulated, genes related to suberin and lignin biosyn-
thesis were greatly upregulated, and genes related to
calcium and low temperature were upregulated. In
addition, the endogenous hormone content between the
CK and BS groups differed based on a decrease in CTK
and an increase in ABA, JA, GA and SA, and these find-
ings were consistent with the expression trend of their
signal transduction-related genes except for CTK. We
also found that the P and ABA treatments inhibited BS
to varying degrees while the GAj; treatment may pro-
mote BS. The expression levels of key genes involved in
BS formation after the different treatments were consist-
ent with the morbidity results. These results provide a
theoretical basis for the molecular mechanism under-
lying ‘Huangguan’ pear browning spot disease.

Methods

Plant materials and treatment

Ripe ‘Huanguan’ pears (CK) and ‘Huangguan’ pears with
BS disorder (BS) were harvested from an orchard in a
gardening field of Dangshan County, Suzhou City, Anhui
Province, during the harvest season in 2018. Treatments
were carried out by spraying NaH,PO42H,O (0.2%,
Sigma 04269), ABA (100 uM, Sigma A1049), and GAj3
(300 mg/L, Sigma G8040) on ‘Huangguan’ pears at 10,
20, and 30 days after full bloom (DAFB). Reagent treat-
ments are commonly used in fruit bags during produc-
tion. Each treatment had three biological replicates, and
each tree had approximately 120 treated fruits.

Pears were immediately transported to the laboratory
at Anhui Agricultural University (Hefei, China) after
harvest. The 0.5mm thickness exocarp was dissected
from the fruit skin with a double-sided blade. Six bio-
logical replicates for metabolic profiling were collected
randomly from the CK and BS of ‘Huangguan’ pear exo-
carp. Three biological replicates of the CK, BS and dif-
ferent hormone treatments were used for RNA
sequencing (RNA-Seq). The collected fruit samples were
frozen in liquid nitrogen immediately and then stored at
-80°C.

Observation of paraffin sections and scanning electron
microscopy of pear exocarp

After removing the dirt on the fruit surface, a 0.6 cm x
0.7 cm piece was cut on the pear surface with a double-
sided blade and immediately fixed in FAA solution. A 3
mm tissue block was cut with a sharp blade and then
fixed in electron microscope fixing solution. The prepar-
ation of the fruit for paraffin sections and electron
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microscopy were conducted at Servicebio (WuHan)
Biotechnology Co., Ltd.

Pear postharvest water loss measurement

‘Huangguan’ pear fruits with BS disease of the same size
were stored at room temperature conditions at 25°C
and used in the experiments, and normal ‘Huangguan’
pear fruits were used as a control. The rate of water loss
(RWL) was calculated using the formula RWL
(%) = (FWy - FW)/FWtl x 100% (FW, = weight of the
fruit at a certain storage time t1, and FW, = weight of
the fruits at a certain storage time t2) [34]. Each group
had 10 fruits, and three independent biological replicates
were performed.

Evaluation of brown spot disorder

According to the coverage rate of spots on the surface of
pears, the BS incidence was divided into 4 levels [31]: O
for no browning, 1 for 1 ~10%, 2 for 11% ~ 20%, 3 for
21% ~ 30, and 31% ~ 100%. The index of BS was calcu-
lated based on the following formula: index = £ (number
of fruit x incidence level)/ [total fruit number x 4 (the
severest level)] [3].

Metabolite statistical analysis

An advanced Xevo G2-XS QTOF mass spectrometer
(Waters, UK) was used for data acquisition, and the
commercial software Progenesis QI (version 2.2)
(Waters, UK) and the BGI metabolomics software pack-
age metaX [65] were used for mass spectrometry data
analysis (filtering out ions with a relative standard devi-
ation (RSD) greater than 30%). Identification was based
on the Kyoto Encyclopedia of Genes and Genomes
(KEGG, http://www.genome.jp/kegg/) database. Signifi-
cantly enriched pathways were assessed on the basis of
the false discovery rate-adjusted hypergeometric test
statistic (p <0.05). We used the prcomp function in the
R software package to perform a PCA. The project uses
variable importance in projection (VIP) values of the
first two principal components in the multivariate PLS-
DA model, combined with fold change (FC) and q-
values from a univariate analysis to choose differentially
expressed metabolites (DEMs) (VIP > 1 and FC > 1.2 or <
0.833 and with an adjusted g-value <0.05 were consid-
ered significant). The cluster analysis used the pheatmap
function in the pheatmap package in R.

Transcriptome analysis of the pear exocarp

Total RNA was purified from plant tissues by ethanol
precipitation and CTAB-PBIOZOL reagent according to
the instructions. DNA nanoballs were loaded into the
patterned nanoarray, and single-end 50-base reads were
generated on the BGISeq500 platform (BGI-Shenzhen,
China). Reads with low quality, connector contamination
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and a proportion of N>5% were removed before the
data analysis to ensure the reliability of the results. The
selected clean reads were mapped to the reference gen-
ome of Chinese white pear (Pyrus bretschneideri) [1] via
HISAT. Transcripts were assembled and annotated from
the read alignment results by Cufflinks v2.1.1 [66]. The
gene expression level was calculated based on the frag-
ments per kilobase of transcript per million mapped reads
(FPKM), and these results were further used to analyse
the differentially expressed genes (DEGs) [67]. The DEG-
Seq method was based on a Poisson distribution, and
DEG detection was carried out according to the method
described in Wang L. et al. [68]. Transcripts with FC
values > -2 (upregulated) or < -2 (downregulated) and
with an adjusted P-value < 0.001 were considered signifi-
cant. The BGI interactive reporting system (https://report.
bgi.com) was used for subsequent analysis.

Gene expression analysis by qRT-PCR

Quantitative real-time PCR (qRT-PCR) was applied to
evaluate the transcription levels of genes associated with
BS under different treatments. Total RNAs were extracted
from collected plant materials using the TRIzol kit
(Tiangen) according to the manufacturer’s instructions.
qRT-PCR was conducted with the SYBR Green (Toyobo,
Shanghai) in an optical 48-well plate using an ABI PRISM
7300 Sequence Detection System (Applied Biosystems,
Foster City, California). Three biological replicates were
performed to ensure the reliability of the data.
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