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Abstract

watermelon fruit, remains unclear.

Background: Kinesin (KIN) as a motor protein is a versatile nano-machine and involved in diverse essential
processes in plant growth and development. However, the kinesin gene family has not been identified in
watermelon, a valued and nutritious fruit, and yet their functions have not been characterized. Especially, their
involvement in early fruit development, which directly determines the size, shape, yield and quality of the

Results: In this study, we performed a whole-genome investigation and comprehensive analysis of kinesin genes in
C. lanatus. In total, 48 kinesins were identified and categorized into 10 kinesin subfamilies groups based on
phylogenetic analysis. Their uneven distribution on 11 chromosomes was revealed by distribution analysis.
Conserved motif analysis showed that the ATP-binding motif of kinesins was conserved within all subfamilies, but
not the microtubule-binding motif. 10 segmental duplication pairs genes were detected by the syntenic and
phylogenetic approaches, which showed the expansion of the kinesin gene family in C. lanatus genome during
evolution. Moreover, 5 CIKINs genes are specifically and abundantly expressed in early fruit developmental stages
according to comprehensive expression profile analysis, implying their critical regulatory roles during early fruit
development. Our data also demonstrated that the majority of kinesin genes were responsive to plant hormones,
revealing their potential involvement in the signaling pathways of plant hormones.

Conclusions: Kinesin gene family in watermelon was comprehensively analyzed in this study, which establishes a
foundation for further functional investigation of C. lanatus kinesin genes and provides novel insights into their
biological functions. In addition, these results also provide useful information for understanding the relationship
between plant hormone and kinesin genes in C. lanatus.
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Background

Kinesins, widely distributed in all eukaryotic organisms
[1], are a group of microtubule-based motor proteins
that move along microtubule (MT) protofilaments, pow-
ered by hydrolyzing ATP, to drive various essential bio-
logical processes [2]. All kinesin proteins share a

* Correspondence: lyuan@nwafu.edu.cn

Shujuan Tian and Jiao Jiang contributed equally to this work.

State Key Laboratory of Crop Stress Biology for Arid Areas, College of
Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China

K BMC

conserved motor domain of approximately 350 amino
acids. The “motor head” domain consists of an ATPase
catalytic site and MT-binding sites, which possesses
catalytic ATPase and MT-binding abilities [3]. The kine-
sin family is classified as N-type, the middle and C- type
kinesins respectively, with the motor head domain at or
near the N-terminus, in the middle, and close to the C-
terminus of the molecule. The “motor head” domain is
followed by the stalk region and the “small globular tail”
at the opposite end of the kinesin molecule. The “motor
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head” domain is responsible for protein movement pow-
ered by ATP hydrolysis [4—-6]. And the “stalk/tail” do-
main is important for the interaction with subunits of
the holoenzyme or with the cargo molecules [4, 7, 8].
The short “neck” region between the “head” and “stalk/
tail” is essential for functions such as the direction of
motility or regulation of activity [9]. The motor domain
is well conserved in each kinesin subfamily, whereas the
stalk/tail region outside the motor domain is highly di-
vergent even in the same subfamily, reflecting the di-
verse biological functions even within the same
subfamily.

Based on phylogenetic analysis using the conserved
motor domain sequences, the kinesins are divided into
fourteen families, designated as kinesin-1 to kinesin-14.
Kinesins that do not belong to any of these subfamilies
are considered as orphans, but most kinesins identified
can easily be assigned to a specific family [10]. Most
members of kinesin families have an N-terminal motor
domain named as N-type kinesins whereas few families
have an internal motor domain or a C-terminal motor
domain. The directionality of kinesins varies between
families, which is sometimes correlated with the position
of the motor domain. In general, kinesins with the N-
terminal motor domain travel to the plus ends of MTs
whereas the C-terminal motors move toward the minus
ends of MTs [11-14].

Previous expression profiles analysis revealed that
plant kinesin genes play important roles in fruit develop-
ment. In apple (Malus domestica Borkh.) cultivar Fuji,
the kinesin gene KIN2 was strongly expressed in early
stage of fruit development [15]. Further investigation
showed that KIN2 gene was also expressed primarily in
two other apple genotypes “Gala” and “Golden Deli-
cious” [16]. This demonstrated that the kinesin gene
KIN2 carries out regulatory role in early fruit develop-
ment in apple. In cucumber, the kinesin genes CsKFI-7
were highly expressed during early fruit development
and involved in rapid cell division or expansion [17].
Moreover, the CsKF1 and CsKF3 were dramatically ac-
tive in the fruit elongation stages, implicating their es-
sential roles in the fruit length regulation in cucumber
[18]. Intriguingly, in tomato (Solanum lycopersicum), the
kinesin gene SpPAKRP was predominantly expressed in
the placenta tissue in the 4-DPA (Days Post Anthesis)
fruit, so SpPAKRP is likely involved in controlling early
fruit development by regulating placenta development
[19, 20]. The watermelon fruit as well as tomato is clas-
sified as a berry fruit and the edible parts of the fruit de-
velop from placenta [21]. In addition, the size, yield and
quality of the cucurbits fruit depend on the regulation of
the placenta during early fruit development [22—24]. So,
identification and the functional analysis of kinesin is
the ideal entry point for exploring molecular mechanism
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of kinesin genes in regulating watermelon early fruit de-
velopment. Moreover, other kinesin genes have been
verified to participate in different biological functions,
including root, stem and leaf various vegetative tissues
development genes (e.g., DBSI, BC12/GDDI, AtKINE-
SIN-4A/FRA1) [25-28]; plus anther, male gametophyte,
embryo, endosperm and seed development genes ( e.g.,
SRS3 and NtKRP) [29-31]. These works revealed the
critical roles of plant kinesins in many essential pro-
cesses in plant development, including not only plant
vegetative growth but also plant reproductive process.
However, up to now, little is known about kinesin family
genes in watermelon. And very few kinesins have been
functionally identified during early fruit development.
Therefore, it is well worthy to extensively investigate
their roles in economic crops, like watermelon.
Watermelon is the fifth consumed fresh fruit in the
world. It is a highly nutritional valued fruit, known as
“the king of summer fruits”. The early fruit development
directly determines the size, shape, yield and quality of
the watermelon fruit. Considering the involvement of
kinesin genes in early fruit development via regulating
placenta development in tomato [19, 20], genome-wide
study of the kinesin genes in watermelon is the ideal
pointcut for exploring their real roles in the critical de-
velopmental processes, especially in watermelon early
fruit development. Thus, kinesin genes were analyzed in
the Citrullus lanatus genome in this study. The phylo-
genetic relationships, gene structure, chromosomal loca-
tions, and conserved motifs of the encoded proteins
were also investigated. The tissue-specific expression
patterns of all CIKINs genes in watermelon were further
studied, as well as CIKINs expression under hormone-
treated condition. Particularly, five CIKINs genes showed
specific and abundant expression in early fruit develop-
ment stage. Our work provides useful information re-
garding the molecular mechanism of kinesin genes
regulating early fruit development and a new insight into
the yield and quality control mechanism in watermelon.

Results

Genome-wide identification of kinesin genes in Citrullus
lanatus

A total of 63 candidate genes were identified from the
watermelon genome (Cucurbit Genomics Database,
http://www.icugi.org/) based on amino acids sequence
analysis. 15 candidate genes didn’t contain conserved
kinesin motor domain and then were excluded from fur-
ther analysis. In addition, these remaining 48 Kinesin
genes can also be verified by hidden Markov models
(HMMs) analysis search of function conserved Pfam do-
mains, which was consistent with the above sequence
similarity blasting. In conclusion, 48 kinesin genes with
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complete and functional structures are presented in the
watermelon genome, designated as CIKINs hereafter.

To explore basic properties of each kinesin, the
lengths of genome DNA and protein sequences, the
numbers of the introns and exons, the isoelectric point
and the theoretical molecular weight were predicated,
respectively (Table S1). The kinesin genes in Citrullus
lanatus genome have coding sequence lengths of 927-
8670 base nucleotides, encoding proteins length ranged
from 308 to 2889 amino acids with predicted molecular
weight in the range of 25.0-330.3 KDa. The theoret-
ical isoelectric point calculation indicated that the kine-
sin protein isoelectric points (pI) were distributed in the
range of 5.10-9.65 (Table S1).

In order to characterize the distribution of kinesin
genes in the watermelon genome, the physical locations
of kinesin genes on the watermelon chromosomes were
further investigated. 48 kinesin genes were mapped to
the 11 chromosomes (Fig. 1), exhibiting an uneven
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distribution in the watermelon genome. Chrl0 contains
the maximum numbers of 8 kinesin genes, while only
two genes locate on Chr7. The other chromosomes, in-
cluding Chrl, Chr2, Chr3, Chr4, Chr5, Chr6, Chrs,
Chr9, Chrll, contain 3-6 kinesin genes, respectively.

Phylogenetic analysis of kinesin family

To estimate the phylogenetic relationships of water-
melon kinesins to other known kinesins in different
plants, multiple sequence alignment of watermelon kine-
sins motor domain sequences to the sequences from di-
cotyledonous model plant, A. thaliana, and
monocotyledonous crop, O. sativa, was conducted using
the software MUSCLE and the phylogenetic tree of these
kinesins was then generated with MEGA 6.06 using
neighbor joining method (Fig. 2). The phylogenetic ana-
lysis suggested that kinesin proteins from three different
species can be categorized into 10 families: KIN1, KIN4,
KIN5, KIN7, KIN8, KIN10, KIN11, KIN12, KIN13,
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Fig. 1 Distribution of Citrullus lanatus kinesin genes on 11 chromosomes. Chromosome numbers were marked as Chr1- Chr11 at the top of each
chromosome. The sizes of chromosome were labeled on the left of the figure. Forty-eight kinesin genes of watermelon were mapped to different
chromosomes using Map Chart
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Fig. 2 Phylogenetic relations of the kinesins from C. lanatus, A. thaliana and O. sativa. The tree was calculated with MEGA6.06 software using
neighbor-joining method. Neighbor joining phylogenetic tree of the kinesin family. This tree summarizes the evolutionary relationships among
kinesins in watermelon based on the kinesin sequences from Arabidopsis and rice. The length of the branches is proportional to the amino acid
variation rate. Watermelon possess 10 kinesin families, including kinesin-
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14,5,7,8,10,11, 12, 13, 14 families. In addition, the kinesin-7 and

KIN14 (Figure S1 and Figure S2). Among them, the
KIN14 family is the largest family consisting of 52 kine-
sins. The KIN7 family is the second largest family, which
has 36 kinesin members. KIN11 is the smallest family
with only 3 kinesins. Kinesin numbers from watermelon
followed the same distribution tendency as the other
two species. 13 watermelon kinesins belong to the
KIN14 subfamily which is the largest family of all. 7
kinesins are grouped into KIN7, the second largest sub-
family. Only 1 kinesin is in KIN11 family, representing
the smallest subfamily. To further explore the evolution-
ary relationships among kinesin in fruit plants, we iden-
tified 53 kinesin homologs from fruit plant tomato. The
phylogenetic analysis showed that the kinesin-14 and 7
subfamilies were expanded during evolution, which is
consistent with Arabidopsis and rice (Figure S3). The
phylogenetic  relationship does not show any
recognizable distinction between dicot and monocot

species analyzed, indicating functional conservation of
kinesin throughout plant kingdom.

Gene structure and conserved motif distribution analysis
of watermelon kinesin family genes

The gene structure and intron/exon arrangements of the
CIKINs genes were determined by the comparison of the
¢DNA sequence of each CIKIN with its genomic DNA
sequence. The analysis results revealed that the intron
number of all CIKINs genes ranged from 4 to 34.
CIKIN14F only has 4 introns while there are 34 introns
presented in CIKIN12C (Fig. 3).

Multiple sequence alignment of watermelon kinesin
protein sequences was performed and analyzed using
MEME online software to explore sequence features and
functional motifs of each CIKIN protein. Seven typical
conserved motifs for kinesin family proteins, named as
motifs 1-7, have been identified (Fig. 4). Motif 1, highly
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Fig. 3 Genomic structures of kinesin genes in C. lanatus. The CIKINs gene structures were visualized by using the program GSDS2.0 software. The
gene structures and intron/exon arrangements of the CIKINs genes were determined by the comparison of the cDNA sequence of each CIKIN
with its genomic DNA sequence. The intron number of all watermelon CIKINs genes ranged from 4 to 34. CIKINT4F only has 4 introns while there

conserved peptide sequence (FAYGQTGSGKT) inside
the ATP-binding site and motif 6, a conserved
microtubule-binding site (SSRSH), were found in all
watermelon kinesins. Motif 4, another conserved
microtubule-binding site “‘VDLAGSE’, could be detected
in most CIKINs with the exception of CIKIN7C,
CIKIN10D, CIKIN14A and CIKIN14C [32]. The motif 2,
the microtubule-binding site ‘HIPYR’ existed in most
CIKINs with the exclusion of CIKIN1D, CIKIN7C,
CIKIN10D, CIKIN12A, CIKIN14M and CIKIN14G.
Motif 3 is a conserved motif of K/RxIxNxxxVIN at the
beginning of the neck region. Motif 5 is the highly con-
served neck motif consisting of a hydrophobic repeat
pattern of g-xx(x)- o-xxx-9-xx-¢-G. Motif 3 and Motif 5
were presented in the majority of CIKINs [33]. The re-
sults showed that CIKINs proteins contained the typical
conserved feature motifs of kinesin family.

Duplication and syntenic analysis of kinesin gene families
Tandem and segmental duplications play important
roles in the expansion and function of a gene family
[34, 35]. To reveal the possible evolutionary relation-
ships of kinesin gene families, duplication events, seg-
mental and tandem duplication gene pairs of the
kinesin family were investigated in C. lanatus and A.
thaliana. The results implied that there are no tan-
dem genome duplication events occurred for kinesin
genes. However, 15 pairs of segmental duplication
events were identified, where each pair of genes were
situated at separate chromosome in watermelon gen-
ome, such as CIKINIB/ CIKIN1D, CIKIN7F/CIKIN7],
CIKIN14L/ CIKINI4A, CIKIN13B/ CIKIN13C (Fig. 5).
Overall, the synteny analyses suggested that the kine-
sin family in watermelon expanded only through seg-
mental duplications.
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Expression profiles of kinesin genes in different tissues in
watermelon

The expression pattern is important for assessing the
potential roles of CIKINs genes in the processes of plant
growth and development. Therefore, we examined the
expression patterns of 48 CIKINs genes in five different
tissues including the root, stem, leaf, female and male
flower by quantitative reverse transcription PCR (qRT-
PCR) (Fig. 6). The qRT-PCR results indicated that the
kinesin genes in watermelon exhibited a restricted ex-
pression pattern and could only be detected in one or
two tissue tested. Eight watermelon kinesin genes
(Cla013748,  Cla001716,  Cla003337,  Cla011614,
Cla000622, Cla008965, Cla016598 and Cla010272) were
highly expressed in the root, stem and leaf vegetative or-
gans, which indicates their potential roles in vegetative

organs development. In addition, 20 kinesin genes were
preferentially expressed in the female flower. And 9
kinesin genes were specifically expressed in the male
flowers. Overall, 38 kinesin genes were abundantly
expressed in the reproductive organs, suggesting that
they play critical roles in the growth and development of
reproductive tissues.

Key kinesin genes identification involved in early fruit
development

Fruit development of watermelon, as a cucurbit species,
follows the canonical developmental progression of four
stages: ovary development; fruit set; expansive fruit
growth; maturation and ripening [21, 22, 36]. Among
the four stages, the first three stages of development
(ovary development, fruit set, expansive fruit growth) are



Tian et al. BMC Plant Biology (2021) 21:210

Page 7 of 16

i

&
W
&

&
&
&

A

CIKINT 1A

(
|

CIKINT3 e
CIKINg J

—CIKINIaH

N

T,
,%,'v
A
E jw)k
g

CIKINIE
‘A
24y

,(,\s(‘“‘m

—CIKINSC
~CIKIN7I

~
ity
Migy

&
\ %
NSk,
U
5

QZNIAD—

Fig. 5 Synteny analysis between watermelon and Arabidopsis kinesin genes. Chromosomes of watermelon and Arabidopsis are shown in
different colors (red and yellow) and in partial circles. The approximate distribution of each kinesin gene is presented by short black line on the
circle. Colored curves indicate the syntenic relations between watermelon and Arabidopsis kinesin genes. The prefixes ‘WM’ and ‘AT’ respectively

indicate watermelon Citrullus lanatus and Arabidopsis thaliana

-

defined as the early fruit development stage. The early
fruit development stage completes in about 10 days after
pollination (DAP) and directly determines the size, shape
and quality of fruit [37]. In addition, previous transcrip-
tome and qRT-PCR analysis results demonstrated that
kinesin family genes participated in the regulation of
early fruit development in Malus domestica and Cucu-
mis sativus [15, 17]. Therefore, to identify potential roles
of kinesin family genes in the process of watermelon
early fruit development, qRT-PCR was performed using
c¢DNA prepared from the fruits at -1, 0, 1, 2, 3,5, 7, 9,
10, 12, 34 days after pollination (DAP). Hierarchical
clustering and heatmap analysis were executed and gave
a visual analysis of kinesin gene expression. From the
overview of the kinesin expression profiles, the tran-
scripts of all CIKINs genes tested could be detected in
the fruit at different development stages, with different
transcription levels at specific stage of fruit development
(Fig. 7). Among them, 21 CIKINs showed high transcrip-
tion levels in the fruits at 34 days DAP, which is at

maturation and ripening development phase. A total of
27 CIKINs exhibited different expression levels in the
fruits at-1, 0, 1, 2, 3,5, 7, 9, 10, 12 days DAP, which is at
the early fruit development stage. Further detailed ana-
lysis revealed that 14 kinesins (Cla022645, Cla013925,
Cla010272, Cla009301, Cla019890, Cla007599,
Cla014608,  Cla014076,  Cla000622,  Cla018908,
Cla014106, Cla015441, Cla022444 and Cla008965)
showed specifically or abundantly expressed in the early
developing fruits. Moreover, the major edible sections of
watermelon fruit develop and differentiate from the pistil
tissue. In consequence, comparative analysis of expres-
sion levels between the early fruit and the pistil tissue
demonstrated that 5 kinesin CIKINs genes (Cla022645,
Cla013925, Cla019890, Cla007599 and Cla018908)
showed relatively specific or highest expression level
simultaneously both in the early developmental fruit and
pistil. To better associate the functions of kinesin gene
family in the early fruit development, we also examined
the expression levels of 5 CIKINs genes in Chinese
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watermelon 97,103 which is round and medium-size
fruit shape comparing to watermelon YL with the long
and big fruit shape by qRT-PCR. The results indicated
that 5 CIKINs genes abundantly expressed in the early
fruit development stage, especially in the fruits at 1 DAP
(Fig. 8). The expression of 5 CIKINs genes were further

analyzed in seeds at different DAP. And 5 CIKINs genes
showed different expression levels in seeds. Especially,
CIKIN7D and CIKINI2D showed higher expression
levels in seeds at 6 and 8 days after pollination (Figure
S4). The results suggested that 5 CIKINs genes
(CIKIN7D, CIKIN7K, CIKIN10B, CIKINI2D and
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Fig. 7 Expression profiles analysis of CIKINs genes during the early fruit development in watermelon. a The morphological characteristics of the
watermelon fruits at different days after pollination. -1,0,1,4,5,8,10 respectively displays the days after pollination. b Expression patterns of CIKINs
genes during the fruit development. Log,-transformed data were used for the cluster analysis (n = 3). The inset shows the colour legend used in
the cluster representation (Log, ratios). A red box indicates the higher expression level, whereas the purple box indicates the lower expression
level. CIACTIN gene was used for normalization of quantitative gRT-PCR results. ¢ The dynamic changes of expression levels analysis from the 5
CIKINs genes specifically or abundantly expressed in the early fruit development. The standard deviations of three biological replicates are

CIKIN14M) are involved in fruits/seed development dur-
ing the early fruit development.

In order to accurately examine CIKINs genes tissue ex-
pression patterns and verify genes functions, 3 of the
above 5 genes (CIKINIOB, CIKINI2D and CIKINI4M)
were selected for further verification by in situ
hybridization assay. Detailed analysis showed that
CIKINI0B, CIKINI2D and CIKINI4M have strong ex-
pression in early fruit/seeds development (Fig. 9). All
these data indicated that the different kinesin members
displayed diverse expression patterns and may have
stage-specific roles during watermelon fruit/seed

development. Especially, the 3 kinesin genes tested may
function in the process of watermelon early fruit/seed
development.

Potential roles of kinesin family genes in response to
hormone treatments

To understand the possible relationship between water-
melon kinesin genes and major hormones, the relative
transcriptional levels of each kinesin gene were investi-
gated after ABA and ETH hormones treatments. The
heat map was created based on the relative expression
levels (Fig. 10). The results revealed that at least 1/3 of
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Fig. 8 Expression profiles analysis of 5 CIKINs genes during the early fruit development in Chinese watermelon line 97,103 of round and medium-
size fruit shape. a The morphological characteristics of the watermelon fruits at different days after pollination. 3, 5 and 9 DAP respectively display
the days after pollination. b The expression levels analysis from the 5 CIKINs genes specifically or abundantly expressed in the early fruit
development, especially in the fruit at 1DAP. The standard deviations of three biological replicates are represented by the error bars

kinesin genes were responsive to ABA or ETH treat-
ments. Moreover, 23 CIKINs genes were regulated by
both ABA and ETH, but showing very different expres-
sion pattern under different hormone treatment. Follow-
ing ABA treatment, the expression levels of two CIKINs
(CIKIN11A and CIKIN7G) were sharply down-regulated
(< twofold), whereas the expression levels of 21 CIKINs
significantly increased (> twofold). However, unlike ABA
treatment, most of kinesin genes (32 CIKINs) exhibited
significant up-regulation in response to ETH stimuli.
After ETH treatment, the expression levels of CIKIN7K,
CIKIN10B and CIKINI4M were not changed abruptly,
however, CIKIN7D and CIKINI2D exhibited significant
up-regulation (> twofold), and interestingly, CIKIN7D
was also sharply up-regulated (<twofold) after ABA
treatment. The results implied that CIKIN7D and
CIKINI2D potentially involved in the regulation of the

plant hormones pathway. In general, these detailed ex-
pression level analyses implied that CIKINs genes could
participate in the regulation of the plant hormones
pathway.

Discussion

Watermelon [Citrullus lanatus (Thunb.) Matsum. &
Nakai] comprises the major cucurbits and is the fifth
consumed fruit in the world. It is also one of the most
important economic crops grown worldwide. Fruit de-
velopment traits are the very important agronomic traits
in watermelon breeding. The early fruit development in
watermelon directly affects the subsequent agronomic
traits, including the fruit size, shape and quality. Kinesins
are important microtubule-based motor proteins with
conserved motor domains among all eukaryotic organ-
isms. They play critical roles in the unidirectional
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Fig. 9 RNA in situ hybridization of CIKINT0B, CIKIN12D and CIKIN14M in early fruits/seeds. Positive signals (shown in red) are clearly restricted to
the seed coat (b, c and e) and embryos (d and f) of the early fruits. When hybridized with sense probes, no signal is observed (a). The yellow

transport of vesicles and organelles, cytokinesis, signal
transduction, morphogenesis, cell division and cell
growth in the plant development [38—41]. Furthermore,
previous researches have revealed that the kinesin family
genes also participated in plant reproductive develop-
ment [29-31, 42]. Especially, kinesin family genes have
been proved to be essential for the regulation of early
fruit development in Malus domestica and Cucumis sati-
vus [15, 17]. Therefore, these works declared the urgency
of extensively investigation of kinesin family genes in
plants, especially in economic crops, with the expect-
ation to improve crop yield. However, the identification
and analysis of detailed expression characteristics and
functions of kinesin family genes in watermelon, espe-
cially in the fruit reproductive tissues, still remain elu-
sive. With the completion of the C. lanatus genome
sequence, the CIKINs genes can be systematically identi-
fied and analyzed [43]. In the present study, we have
identified 48 kinesin family genes CIKINs in the water-
melon genome and comprehensively analyzed these
genes for their phylogenetic relationships, chromosomal
locations, gene structures, conserved motif distributions,
and duplication and syntenic analysis. In addition, we

performed the extensive analysis of CIKINs expression
patterns in different tissues, at different early fruit devel-
opmental stages and in response to hormones treat-
ments. Especially, expression patterns analysis during
fruit developmental process elaborated the overall char-
acteristics and the specific dynamics of watermelon kine-
sin family genes in watermelon development.
Conclusively, our work provides clear clues to further in-
vestigation of their detailed roles in watermelon repro-
ductive development and response to hormones
influence.

Characteristics of kinesin family genes in watermelon

As described above in results section, some typical con-
served motifs for kinesin family proteins exists in most
watermelon kinesins. Kinesin motor domain is com-
prised of a Walk A ATP binding motif
“FAYGQTGSGKT” and a microtubule binding domain
[44—46]. Microtubule binding domain commonly con-
tains three microtubule binding motifs (SSRSH,
xDLAGSE and HxPYR) [32]. Highly conserved peptide
sequence “FAYGQTGSGKT” in the ATP-binding motif
could be found in all of watermelon kinesins through
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the alignments of their amino acid sequences, which is
responsible for hydrolyze ATP to produce a direct force
to travel unidirectionally along microtubule protofila-
ments and power multiple critical cellular process. The
typical microtubule binding site “SSRSH” could be de-
tected in all of kinesins, but the other two microtubule
binding motifs “xDLAGSE and HxPYR” could be found
in most of kinesins with few exceptions. In particular,
only one microtubule binding motif “SSRSH” could be
detected in two kinesins CIKIN7C and CIKIN10D, but
the other two of three microtubule binding motifs
couldn't be found. The results suggested that the micro-
tubule binding site “SSRSH” is the most conserved
microtubule binding site. However, whether CIKIN7C
and CIKIN10D proteins possess the microtubule binding
abilities with only one microtubule binding site needs
further verification.

Phylogenetic analysis based on kinesin protein se-
quences categorized the kinesin genes from watermelon,
Arabidopsis and rice into ten families [47]. Interestingly,
the number distribution tendency of all these genes from
three species was almost the same in the ten groups and
did not show distinct monocot or dicot distribution
characteristics. The analysis of the consistent tendency
showed that the kinesin-14 and kinesin-7 respectively

were the first and the second largest group. The kinesin-
14 family was one well-conserved family and played im-
portant roles in chromosome segregation at mitosis and
organelle transport [48]. The number of kinesin-14 fam-
ily members is the maximum both in animals and plants
[48, 49]. The kinesin-11 subfamily contained the mini-
mum amount of kinesin protein, which had only one
kinesin-11 protein in each of the three species. Kinesin-
11 family members function in signal transduction or di-
vergent catalytic core and are rarely found. In addition,
because the kinesin-2, 3, and 9 subfamilies are absent
from land plants, the watermelon kinesin superfamily
lacks the three subfamilies [50]. The results of phylogen-
etic analysis implied that kinesin family genes were
spatially and functionally conserved in some essential
developmental processes in different plant taxa.

Essential roles of kinesin family genes in early fruit
development

Previous microarray and expression profiling analysis
have revealed that some kinesin genes were necessary
for early fruit development in apple and cucumber [15,
17, 18, 51]. However, the exact roles of kinesin genes in
the process of early fruit development are still unknown
in most economic species, including watermelon.
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Therefore, the expression profiles of kinesin family genes
in early fruit development were comprehensively ana-
lyzed. qRT-PCR results demonstrated that the tran-
scripts of most kinesin genes could be detected in early
developmental fruits at different development stages. A
striking feature was that the expression levels of most
kinesin genes were higher in fruits at early development
stages and then sharply decreased at fruit maturation
and ripening. Studies of early fruit development in cu-
curbits showed that the early fruit growth is primarily
due to cell number increments, or in the other words,
primarily driven by cell division [52]. Moreover, the
period of rapid cell division was accompanied by in-
creased peak expression of microtubule related kinesin
genes [18]. Microtubules facilitate alignment of chromo-
somes at the spindle equator in mitosis [53]. Therefore,
the high expression level of kinesin genes in the early
fruit development stages may regulate chromosome
organization during mitosis via regulation of cytoskel-
eton and microtubule dynamics and finally caused the
change of the cell amounts or sizes [53].

Which developmental process do the watermelon
kinesin genes regulate to ultimately control the early
fruit development? This question is intriguing and needs
to be characterized in future. The watermelon fruit as
well as tomato fruit are classified as a berry fruit because
the thick pericarp encloses many seeds. The edible parts
of two kinds of fruits are either mainly composed of pla-
centas or develop and differentiate from the placenta tis-
sues  [21]. The comprehensive  tissue-specific
transcriptome analysis revealed that the kinesin gene
SpPAKRPI showed peak expression in the placenta tis-
sue during the early stage of fruit development in Sola-
num pimpinellifolium, a wild cultivated tomato [19, 20].
This suggested that the tomato kinesin gene SpPAKRPI
could be involved in the early fruit development by regu-
lating the placenta tissue development. This implies that
the watermelon kinesin genes CIKINs, specifically or
abundantly expressed in the early fruit development
stage, could also control the early fruit development via
regulating the placenta tissue development. This pro-
vided an ideal entry point to study the molecular mech-
anism of early fruit development through analyzing the
role in the placenta development. Nevertheless, the exact
roles of these kinesin genes need to be further studied
and confirmed.

Potential roles of kinesin family genes in response to
hormones treatments

Plant hormones are a group of small signal molecules
which have been approved to play essential roles in dif-
ferent processes of plant growth and development. The
expression levels of a larger number of genes are known
to regulated by different plant hormones. Previous
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studies have discovered the contribution of hormones
such as ethylene (ETH) in sex determination and devel-
opment of sex-specific floral organs in the Cucurbitaceae
[54, 55]. In addition, study has indicated that kinesin-4
gene OsGDDI11 is involved in the signaling pathways of
plant hormone [27]. More importantly, in cucurbits
crops, pollination was believed to be the key process to
release hormonal enzymes, most specifically auxin,
which in turns to stimulate fruit enlargement [23]. Early
studies demonstrated that plant hormones have been
implicated to facilitate early fruit development in cucur-
bits, although there is debate as to which hormones are
most critical [23, 56]. Mitotic kinesins play important
roles in chromosome organization during mitosis in de-
veloping cucurbits cucumber fruits [17, 53]. These stud-
ies implied that there is a connection between plant
hormones and kinesins. The fact has been first verified
in rice, in which kinesin protein gene BC12/GDDI1 medi-
ated cell elongation by regulating the hormone GA bio-
synthesis pathway [27]. In order to further explore the
relationships between plant hormones and kinesins in
watermelon, in our present work, the relative expression
levels of kinesin genes after hormones treatments were
investigated. The results showed that the transcription
levels of most kinesin genes changed after hormones
treatments, indicating their critical roles in response to
different hormones. Although some genes could respond
to the same hormones, some other members of kinesin
family genes showed their roles differentially in response
to certain hormones. Interestingly, CIKIN7E and
CIKIN7G were down-regulated after ABA treatment,
which is quite different from other kinesin genes, imply-
ing their unique roles in response to ABA hormone
treatment. Taken together, the data provided useful
clues for the further investigations of molecular mechan-
ism of kinesins in response to plant hormones during
the plant development process.

Conclusions

In conclusion, 48 CIKINs genes were identified in C.
lanatus at the whole-genome level. These genes were
categorized into 10 subfamilies. The chromosomal loca-
tions, exon/intron structures, conserved motif distribu-
tions, and syntenic analysis of kinesin family members in
C. lanatus were determined. Comprehensive analysis
and expression profiling of CIKINs genes were per-
formed to determine the potential functions in early fruit
development and in response to hormones stimuli. Fur-
thermore, detailed expression analysis revealed the
tissue-specific and highly expression pattern of CIKINs
genes. Finally, 5 CIKINs genes, including CIKIN7D,
CIKIN7K, CIKINIOB, CIKINI2D and CIKINI4M, dem-
onstrated relatively specifically and highest expression
level simultaneously in the early fruit developmental,
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indicating their important roles in the early fruit
developmental.

Methods

Identification of kinesin gene family in Citrullus lanatus
All BLAST searches were conducted in the watermelon
genome database (Cucurbit Genomics Database, http://
www.icugi.org/) by using three motor domain sequences
from the KHC (N-terminus motor in human), KIF2 (in-
ternal motor in mouse), and KCBP (C-terminus motor
in Arabidopsis) as queries. Sixty-three candidate genes
generated by using an E-value cut-off of 1, which con-
tained kinesins and some unrelated proteins. In addition,
Hidden Markov Model (HMM) profiles of the motor do-
main (PF00225) was downloaded from the Pfam data-
base (http://pfam.xfam.org/). Then HMMER 3.0
software was used to search for kinesins. Motor domain
analysis in SMART (http://smart.embl-heidelberg.de/)
and INTERPROSCAN (http://www.ebi.ac.uk/interpro/)
were performed and the proteins without conserved
motor domain were deleted. Finally, the candidate kine-
sin genes in watermelon were further analyzed with the
online tools ExPASY (http://www.expasy.org/tools/) to
predict the isoelectric point (PI) and molecular weight
(MW).

Chromosome localization analysis of watermelon kinesin
genes

The chromosome locations information of all CIKINs
genes were downloaded from watermelon genomics
database. The information, including localizations and
length of the chromosomes, were visualized by Map-
Chart online software.

Phylogenetic analysis of kinesin genes

Kinesin amino acid sequences from C. lanatus with A.
thaliana, O. sativa and Solanum lycopersicum were
aligned using the software Muscle with the default mul-
tiple alignment parameters. The phylogenetic trees were
constructed via MEGA 6.06 using the neighbor joining
method. The bootstrap replicates test value was set as
1000.

Gene structures and conserved motifs analysis of kinesin
proteins

The CIKINs gene structures were visualized by using the
program GSDS2.0 (Gene Structure Display Server,
http://gsds.cbi.pku.edu.cn/). The conserved motifs in C.
lanatus kinesin proteins were identified by using the
program MEME (Multiple Em for Motif Elicitation,
http://meme-suite.org/tools/meme). The  maximum
number of motifs was set to 7 and the others were
default.
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Syntenic analysis of watermelon CIKINs genes

The homolog pairs between C. lanatus and A. thaliana
were identified using the BLASTp program. GFF files
serves as input documents for MCScanX to analyze the
synteny relationship [57]. The analysis result was visual-
ized using the software CIRCOS (http://circos.ca/).

Plant materials and hormones treatments

97,103 is an inbred line provided by Dr. Yong Xu from
Beijing Key Laboratory of Vegetable Germplasm Im-
provement. YL watermelon materials were collected
from the desert area in Yulin, Shaanxi Province, China.
Under normal conditions, various tissues including root,
stem, leaf, female flower, male flower and fruits at differ-
ent days after pollination of C. lanatus were collected
for RNA extraction. The watermelon plants were grown
under natural light with temperatures of 28-35 °C/16—
20 °C (day/night) in a greenhouse in spring. For hor-
mones treatments, four-week-old seedlings after sowing
were used phytohormones treatments. The leaves of the
seedlings were sprayed with 100 pM Abscisic acid
(ABA) [58] and 10 mM Ethephon (ETH) [59] and col-
lected after 12 h treatments. The control seedlings were
sprayed with the same solutions except for correspond-
ing hormones. The taken samples with three biological
replicates were immediately frozen in liquid nitrogen
and stored at -80 °C before RNA extraction.

RNA extraction and qRT-PCR

The total RNA of virous tissues were extracted using the
Quick RNA isolation kit (Huayueyang Biotechnologies
Co. Ltd, Beijing, China) according to the manufacturer’s
instructions. The first-strand ¢cDNA was synthesized
with 1 pg total RNA using SuperScript III transcriptase
(Invitrogen).

Quantitative reverse transcription PCR (qRT-PCR)
was conducted on an ABI StepOnePlus machine using
SYBR Premix Ex Taq™ (TaKaRa). Three independent
biological repeats were performed for each CIKIN gene.
Specific primers for all CIKINs genes were designed
using Primer3Plus online software (http://www.
bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi)
and listed in Supplementary Table S2. The relative ex-
pression levels of CIKINs genes were normalized against
that of the watermelon ACTIN gene (gene ID:
Cla007792) transcript.

RNA in situ hybridization

To analyze the tissue expression patterns of kinesin
genes in fruits at the early fruit development stage, 2-, 3-
and 5-DAP fruits of watermelon YL line were used for
RNA in situ hybridization as described in our previous
work [42]. The fruits were fixed for 16 h in 4% parafor-
maldehyde solution with 0.1% Triton X-100 and 0.1%
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Tween 20 in PBS. After dehydration using graded etha-
nol and vitrification by dimethylbenzene, the samples
were embedded in paraffin. The paraffin blocks were cut
into 8 um thick sections. The reaction results of in situ
hybridization signals were detected as purple red color
by adding the substrates nitroblue tetrazolium/5-bromo-
4-chloro-3-indolyl-phosphate (NBT/BCIP). The
hybridization signals were observed and photographed
with an Axio imager M2 microscope (Zeiss).
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(MW958207), CIKINT4E (MW958208), CIKINT4F (MW958209), CIKINT4G
(MW958210), CIKINT4H (MW958211), CIKIN14l (MW958212), CIKIN14J
(MW958213), CIKINT4K (MW958214), CIKINT4L (MW958215), CIKINT4M
(MW958216).
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