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Abstract

Background: In angiosperms the transition to flowering is controlled by a complex set of interacting networks
integrating a range of developmental, physiological, and environmental factors optimizing transition time for
maximal reproductive efficiency. The molecular mechanisms comprising these networks have been partially
characterized and include both transcriptional and post-transcriptional regulatory pathways. Florigen, encoded by
FLOWERING LOCUS T (FT) orthologs, is a conserved central integrator of several flowering time regulatory pathways.
To characterize the molecular mechanisms involved in controlling cacao flowering time, we have characterized a
cacao candidate florigen gene, TcFLOWERING LOCUS T (TcFT). Understanding how this conserved flowering time
regulator affects cacao plant's transition to flowering could lead to strategies to accelerate cacao breeding.

Results: BLAST searches of cacao genome reference assemblies identified seven candidate members of the CENT
RORADIALIS/TERMINAL FLOWERT/SELF PRUNING gene family including a single florigen candidate. cDNA encoding the
predicted cacao florigen was cloned and functionally tested by transgenic genetic complementation in the Arabidopsis
ft-10 mutant. Transgenic expression of the candidate TcFT cDNA in late flowering Arabidopsis ft-10 partially rescues the
mutant to wild-type flowering time. Gene expression studies reveal that TcfT is spatially and temporally expressed in a
manner similar to that found in Arabidopsis, specifically, TcFT mRNA is shown to be both developmentally and diurnally
regulated in leaves and is most abundant in floral tissues. Finally, to test interspecies compatibility of florigens, we
transformed cacao tissues with AtFT resulting in the remarkable formation of flowers in tissue culture. The morphology of
these in vitro flowers is normal, and they produce pollen that germinates in vitro with high rates.

Conclusion: We have identified the cacao CETS gene family, central to developmental regulation in angiosperms. The
role of the cacao’s single FT-like gene (TcFT) as a general regulator of determinate growth in cacao was demonstrated by
functional complementation of Arabidopsis ft-10 late-flowering mutant and through gene expression analysis. In addition,
overexpression of AtFT in cacao resulted in precocious flowering in cacao tissue culture demonstrating the highly
conserved function of FT and the mechanisms controlling flowering in cacao.
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Background

Theobroma cacao is a cash crop and the sole source of
cacao beans from which the primary ingredients in
chocolate products, cocoa powder and cocoa butter, are
derived. Its unique and critical role in the chocolate
manufacturing industry makes it an important export
for developing countries in Africa, Central and South
Americas and in South Asia, where cacao is predomin-
antly cultivated. Cultivation of cacao is limited by many
factors including several fungal, oomycete and viral dis-
eases that cause global losses of 20-30% [1]. Massive
pathogenic losses make research and breeding for im-
proved disease resistance crucial for the future sustain-
ability of the crop and to improve farmer livelihoods [2].
In addition to improved disease resistance traits, cacao
breeders actively pursue avenues for the improvement of
cocoa quality traits such as flavor, health beneficial me-
tabolites, climate resiliency and improved yield. How-
ever, progress in breeding programs is severely limited
by cacao’s juvenile longevity and high costs of breeding
typical of tree crop systems and thus the control of flow-
ering time is of scientific and practical interest.

Native to tropical Mesoamerica [3], cacao is an under-
story tree principally grown in rainforest areas within
20° latitude of the equator around the world. Cacao,
similar to most trees, has three primary growth phases
with respect to reproductive development: Phase 1. The
juvenile phase of cacao tree growth is upright and ortho-
tropic with all aerial organs having radially phyllotaxy
arising from the shoot apical meristem. The initial
orthotropic growth defines the main trunk of the future
tree [4]. Phase 2. After approximately 2 years, phase
change occurs during which the plant transitions to the
adult phase [5]. The shoot apex is consumed, and in its
place arise 3—5 plagiotropic (lateral) shoot meristems [4]
that give rise to branches with alternate phyllotaxy (jor-
quetting). Plagiotropic branches of the jorquetted tree
comprise the crown of an adult cacao tree. Jorquetted
cacao trees are believed to have reached competency for
reproduction. Phase 3. Shortly after jorquetting, cacao
transitions to reproductive Development. cacao is cauli-
florous with flowers borne from the trunk and main
branches initiated from dormant axillary meristems in
the axils of abscised leaves. Morphological and anatom-
ical studies of cacao floral development have demon-
strated that it shares highly conserved regulatory
pathways and genes with the model plant Arabidopsis
[6]. This study extends the knowledge of the mecha-
nisms controlling the transition of cacao meristems from
vegetative to floral by characterizing the function of
genes encoding key regulatory proteins involved in
phase-change dependent floral induction.

The transition of meristems from vegetative to
floral development is controlled by the coincidence of
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developmental, physiological, and environmental stim-
uli cascading through a complex set of interacting
networks integrating these signals. Initial studies into
the mechanisms of floral transition demonstrated the
existence of a conserved mobile signal, florigen, pro-
duced in leaves and transmitted to shoot meristems
in response to photoperiod [7-9]. Florigen became
the long-sought ‘holy grail’ of plant physiology until
the current century when Eliezer Lifschitz and co-authors
demonstrated a 1:1 genetic relationship between florigen
and tomato FLOWERING LOCUS T (FT) ortholog, SING
LE FLOWER TRUSS (SFT) [10]. In an impressive set of
experiments the authors demonstrated SFT produces a
graft-transmissible stimulus that promotes flowering in
addition to other pleotropic effects in both photoperiodic
and day-neutral species thereby substituting for a diverse
set of environmental stimuli. Importantly, the authors
could detect SFT protein but not transgenic SFT mRNA
in receptor tissues. Following studies demonstrated the
vascular movement of FT ortholog proteins from syn-
thetic leaf tissue to functional apical tissue (flowering) in
model plant Arabidopsis (AtFT) [11-13] and in rice [14].
This demonstrated that FT orthologs are florigens,
conserved mobile signals regulating flowering time in re-
sponse to photoperiod in flowering plants.

FLOWERING LOCUS T (FT) is a member of the
CENTRORADIALIS/TERMINAL FLOWERI1/SELF PRU
NING (CETS) gene family in plants [10]. In addition to
its florigenic role in the photoperiodic control of flower-
ing time, FT is an important integrator of several path-
ways known to cause the transition to reproductive
growth including the ambient temperature, autonomous
and vernalization pathways [15]. FT has also been shown
to have pleiotropic activity and was recently defined as a
general growth regulator that harmonizes plant develop-
mental processes [10, 16].

Extensive studies confirming FT’s control of flowering
time have led to biotechnological and agronomic ap-
proaches to accelerate and control flower development
and fruit set [17]. For example, ectopic overexpression
of the FT gene in transgenic long-generation plants has
been used to accelerate flowering to shorten generation
times to aid breeding programs. Strategies including
overexpression, inducible expression and virus-based
expression of FT have been shown to promote early
flowering in several species including trees such as
poplar, cotton, and apple [18-23].

Here, we describe our work to identify cacao’s CETS
gene candidates and characterize cacao’s candidate FT'
gene (Tc05v2_g009810). We demonstrate that cacao’s
candidate TcFT can partially rescue the late-flowering
phenotype in the Arabidopsis f-10 mutant. Gene expres-
sion analysis suggests that TcFT’s leaf expression is both
developmentally and diurnally regulated in a manner
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similar to the expression of florigenic orthologs in
several species. In our analysis, we also find that similar
to expression in Arabidopsis, TcFT mRNA is most abun-
dant in tissues formed post-transition to flowering sug-
gesting that TcFT stabilizes reproductive development in
cacao. Finally, cacao somatic embryos stably expressing
AtFT were able to develop flowers in in vitro culture.
Together our results provide evidence that the major
mechanisms regulating flowering are highly conserved
and inter-compatible between the model plant Arabi-
dopsis and cacao, species estimated to have diverged
approx. 90 million years ago [24, 25].

Results

Identifying the cacao CETS gene family

Using Arabidopsis FT, TFL1 and CENTRORADIALIS
(ATC) protein sequences as queries, we identified seven
cacao CETS genes with e-values less than 5x 10™'¢ in
BLASTp searches in Theobroma cacao Belizian Criollo
B97-61/B2 v2 (Criollo) genome ([26, 27]; Table S1), and
six putative CETS genes in Matinal-6 genome ([28, 29];
Table S2).

The predicted full-length polypeptides of the candidate
cacao CETS proteins were phylogenetically analyzed
alongside CETS proteins from Arabidopsis, cotton, to-
mato, and moss (protein names and IDs in Table S3).
Consistent with previous analyses of CETS proteins in
other species, cacao CETS assort into three distinct
clades: MOTHER OF FT AND TFL1- LIKE (MFT-L),
FLOWERING LOCUS T-LIKE (FT-L) and TERMINAL
FLOWER 1/SELF PRUNING-LIKE (TFL1/SP-L) (Fig. 1)
[30-33]. The Criollo genome contains three putative
CETS, Tc03v2_g003780, Tc06v2_g016620 and Tc06v2_
2016640, grouped within the MFT-L subgroup of the
family. A single putative protein, Tc05v2_g009810, des-
ignated TcFT, comprises the FT-L subgroup in cacao
and shares 76.4% amino acid sequence identity with
AtFT (Fig. 2). Three cacao CETS are grouped in the
TFL1/SP-L clade. One candidate TcTFL1, Tc05v2_
g007510, shares 71.1% amino acid sequence identity with
AtTFLI1. Tc09v2_g023800, candidate TcSP, is sub-grouped
within the TFL1/SP group with SISP and Arabidopsis ATC
and shares 80% sequence identity with ATC (Fig. 1 and
Table S1). Candidate TcBFT, Tc03v2_g014270, is the final
TFL1/SP-L cacao CETS and resides in a subgroup of this
group alongside Arabidopsis BROTHER OF FT AND
TELI (Fig. 1).

CETS proteins contain two domains, a highly con-
served anion-binding site and an external loop (exon 4
segment B), shown to be critical to function [34, 35].
Our multiple sequence alignment (Fig. 2a) demonstrates
that each of the seven identified Criollo CETS predicted
polypeptide sequences retain both functionally import-
ant domains and retain conservation of the conserved
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short DPDxP and GxHR motifs [36] within these do-
mains. In addition, candidate TcFT (Tc05v2_g009810) is
the only cacao CETS conserved in the Tyr-85 and exon
4 segments B and D defined to be essential for FT func-
tion [34].

Expression of TcFT is developmentally regulated in cacao

leaves

In order to characterize the gene expression profile of
the candidate TcFT, we used RT-qPCR to measure
transcript levels in multiple tissues of vegetative (1.5
year-old) and flowering (2.5-3.5years-old) Scavina-6
trees including: leaves at developmental stages A, C, and
E (defined in [37]), roots, orthotropic and plagiotropic
axillary buds, plagiotropic shoot apices, floral buds and
open flowers. Candidate Tc¢FT is expressed in all six leaf
tissue types assayed in both vegetative and flowering
plants (Fig. 3). Expression was observed to be signifi-
cantly higher in mature leaves (stage E) of both vegeta-
tive and flowering trees than in young (stage A) and
developing leaves (stage C) of these trees. Specifically, in
vegetative trees the expression in E leaves was 172-fold
and 166-fold higher than expression in A and C leaves,
respectively, while in adult trees, expression in E leaves
was 25-fold and 7.5-fold higher than A and C leaves,
respectively (p > 0.05, Fig. 3). These results suggest that
cacao’s candidate FT gene expression levels increase
with leaf age, similar to reports of tomato’s florigen [10].
These results are consistent with the hypothesis that
candidate Tc¢FT is cacao’s florigen ortholog.

TcFT expression is highest in floral tissues

Comparison among all tissues assayed revealed floral
tissues accumulated TcFT mRNA at the highest levels.
We detected higher expression in floral tissue com-
pared to vegetative and flowering tree apical tissue
(terminal and axillary; Fig. 3b). TcFT was expressed in
all tested bud, apex, and floral tissues except plagio-
tropic axillary buds of vegetative trees and plagiotro-
pic terminal apices of flowering trees, where it was
not detectable. Floral bud expression was 96-fold and
27-fold higher than orthotropic and plagiotropic axil-
lary buds of flowering trees and 136-fold higher than
plagiotropic terminal apices (p>0.05), respectively,
(Fig. 3). In addition, floral bud expression was ob-
served to be 10-fold — 1500-fold higher than in any
of the tested lead tissues (p >0.01 or p >1.001, Fig. 3).
Extensive studies of FT in Arabidopsis and other spe-
cies have revealed pleiotropic effects of FT expression.
Notably, floral and fruit AtFT expression has been
demonstrated to participate in stabilizing reproductive
growth post-fertilization through reversion-blocking
maintenance of recently developed inflorescence
meristems [38]. Our results demonstrate that, similar
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(eudicot, rosid), 6 Arabidopsis (eudicot, Brassicaceae), 16 cotton (eudicot, Brassicale-Malvales), and 7 cacao (eudicot, Brassicale-Malvales) were used
to infer the evolutionary history of cacao CETS. The phylogenetic test used was the Bootstrap by N-J method. Dendrogram branches are labeled
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to Arabidopsis, Tc¢FT expression is higher in repro-
ductive tissues compared with growing buds. This ob-
servation suggests that TcFT may also act to stabilize
floral development in cacao.

TcFT is diurnally regulated in mature cacao leaves

In order to characterize the expression of TcFT in leaves
in more depth, we examined its expression in fully
mature (stage E), Scavina-6 leaves relative to the diurnal
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(See figure on previous page.)

Fig. 2 Multiple sequence alignment of CETS proteins. a Amino acid alignment of the CETS proteins from Physcomiterella patens (Pp), Arabidopsis
thaliana (At), Solanum lycoperscium (SI), Gossypium hirsutum (Gh), and Theobroma cacao (Tc) is displayed. The red asterisk indicates the important His-
88/Tyr-85 residue critical for determining floral activating or repressive activity. The black asterisks mark residues shown to interact with 14-3-3
proteins. Red boxes highlight the conserved DPDxP, GxHR and L/IYN motifs, respectively. A black box marks the external loop portion of the ligand
binding domain. Segments A-D of exon 4 as defined in (34) are underlined and labeled. Protein, species, and accession numbers for aligned
sequences are listed in Supplemental Table 3 (Table S3). b DNA coding sequence (cds) alignment of T. cacao Criollo FT (Tc05v2_g009810, reference
genome) and Scavina6 FT (study genotype). Scavina6 FT coding sequence is a consensus of alignment of cloning sequencing results (4 clones) to

Criollo FT. Clone sequences had 100% identity to both the consensus and (as pictured) Criollo’s FT coding sequencing (data not shown)

cycle. Stage E leaves were collected from greenhouse-
grown, flowering trees every 4 h over a 24-h period.
While expression of TcFT was generally low in these
leaves, a significant spike in expression was seen 8h
post-dawn (p > 0.0001 to every other time point mean in
one-way ANOVA) followed by a return to pre-spike ex-
pression levels throughout the remainder of the day until
the next dawn. Expression at 12h post-dawn was also
significantly higher than at dawn (p < 0.05) and 4 h post-
dawn (p <0.01), but lower than at 8 h post-dawn (p <
0.05, Fig. 4). This result is similar to FT expression in
several species that comprise FT orthologs having diur-
nal expression patterns. TcFT expression pattern peaks
at midday in contrast to Arabidopsis where FT reaches
peak expression before dusk followed by a return to
baseline expression through the night [13, 39-43].

Transgenic complementation of the Arabidopsis mutant,
ft-10 with the candidate TcFT gene

To determine whether candidate T¢FT shares a highly
conserved function in flowering time regulation we con-
ducted transgenic complementation of the Arabidopsis

late flowering mutant, ft-10 (Loss-of-function of FT),
which is extremely delayed in phase transition under
long-day conditions. In contrast to wild-type Col-0 that
flowers after development of ~ 15 leaves, ft-10 flowering
begins after > 40 rosette leaves have formed [44]. Mutant
plants were transformed separately with a binary vector
containing the coding sequence of the candidate TcFT
driven by the E12-Q modified CaMV 35S constitutive
promoter [45] and with a backbone vector control (VC).
Multiple independent lines of transgenic plants were
identified by antibiotic resistance screening and evalu-
ated for flowering time traits.

Grown in 16-hday/8-h night photoperiodicity, ft-10,
and the VC transformants flowered ~ 16 days later than
wild-type Col-0 and generated 3-fold more rosette and
cauline leaves and 2-times fewer secondary inflores-
cences in comparison to wild-type Col-0 plants (Fig. 5a-
d). Arabidopsis ft-10 mutants, expressing high levels of
TcFT, flowered 12 to 13 days earlier than f¢-10 and T,
control vector plants, respectively, but 4 days later than
wild-type plants (Fig. 5a and b). This is consistent with
the hypothesis that TcFT encodes a protein that is a
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Fig. 3 Expression of TcFT in various tissues of vegetative and flowering Scavina-6 trees. Bar charts illustrate the relative expression level of TcfT in
leaves, roots, buds, apices, and floral tissues. The geometric mean of control genes TcTUBIT, TcCULLIN, and TcSUMO expression was used to
normalize TcFT expression. The log of expression values is shown and was scaled to the sample having minimum expression. V = vegetative, F =
Flowering, LA = Stage A (young) leaf, LC = Stage C (intermediate) leaf, LE = Stage E (mature) leaf, RT = root, OAB = orthotropic (main trunk) axillary
bud, PAB = plagiotropic (lateral crown branch) axillary bud, PTA = plagiotropic terminal apex, FB = floral bud and OF = open flower. A one-way
ANOVA comparing each group mean to every other group mean was used to evaluate the datasets. A Tukey's post-hoc test was used to correct
for multiple comparisons. *=p < 0.05, ** =p <001, and ***=p < 0.001
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functional ortholog of AtFT and can interact with other
proteins in Arabidopsis tissues to induce the transition
from vegetative to floral development.

On average, E-12.Q:TcFT transgenic plants had 13
and 15 fewer total leaves than ft-10 and control vector
plants, respectively, and 3 more leaves than wild-type
(Fig. 5a and c). Expression of E-12 Q:TcFT also altered
the branching architecture in the ft-10 background.
While ft-10 and control vector lines failed to produce
secondary inflorescences, both E-12 Q:TcFT and wild-
type generated an average of 3 secondary inflorescences
arising from the axillary buds of rosette leaves (Fig. 5a
and d). Interestingly, independent T; E-12 Q::AtFT lines
showed a much stronger phenotype, flowering 8 days
and 8 leaves earlier than WT. These results suggest that
TcFT is either less potent in its positive regulation of
floral transition or functioned sub-optimally in the
heterologous environment. We have observed this par-
tial transgenic complementation with several other cacao
genes we have functionally characterized heterologously
in Arabidopsis [46-49]. Together, these data establish
that TcFT promoted reproductive development at levels
comparable to endogenous AtFT in WT but its overex-
pression in the Arabidopsis ft-10 mutant was less potent
than that of AtFT. Taken together, our results strongly
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support the conclusion that the cacao locus Tc05v2_
g009810 encodes a functional ortholog of AtFT that
exists as a single copy in the cacao genome.

Stable transformation of cacao with AtFT causes early
flowering in somatic embryos

Having demonstrated the orthologous nature of Tc¢FT
and AtFT through phylogenetic, functional and gene ex-
pression analyses, we next transformed cotyledons from
cacao secondary somatic embryos [50] with either E-
12.Q:TcFT or E-12 Q:AtFT overexpression constructs.
Transformations with both overexpression constructs re-
sulted in regeneration of several abnormal embryos that
were delayed in growth and had arrested growth without
developing roots or shoots (data not shown). Only one
transformation event with E-12.Q:AtFT resulted in
regeneration of five transgenic embryos that appeared
normal during early development. The cotyledons of
these embryos were excised and cultured in tissue cul-
ture to regenerate additional embryos and establish a
transgenic line. To generate more embryos, regeneration
was initiated from transgenic E-12 Q::A¢tFT cotyledons
multiple times. Approximately, 1 year after the original
transformation, 15 transgenic embryos began to flower
in tissue culture after the production of one or more
true leaves. Single flowers or floral clusters were primar-
ily produced at the shoot apex of transgenic plants
(Fig. 6a-c), but flowers were occasionally observed to
form in the axils of leaves (not shown). Shortly after
floral production, transgenic embryos ceased growth and
all shoot and root tissues died.

Nine flowers produced by the tissue culture plants
were dissected to assess morphological integrity (Fig. 6).
All flowers observed contained the normal complement
of floral organs, with 4 whorls as follows: an outer whorl
having five sepals, a whorl of 5 petals, a whorl of 5 sta-
mens and 5 staminodes, and a whorl containing 5 fused
carpels. All AtFT transgenic flowers observed had repro-
ductive structures (stamens, and carpels, of the inner-
most whorls) that were darker in appearance (brown vs.
white) compared to the reproductive structures of
flowers from of greenhouse grown PSU-Sca6 trees, the
genotype used for the transformation (Fig. 6d-e). To
determine if the precocious flowers were capable of pro-
ducing viable pollen grains, the viability of pollen from
AtFT transgenic flowers (7 =2) was evaluated alongside
pollen from greenhouse grown PSU-Sca6 control
flowers. Pollen from transgenic flowers, one tested at an-
thesis and one tested 1 day post-anthesis, exhibited
greatly diverse germination rates (68.6 and 4.7%, respect-
ively) with an average rate of 36.6%. This result is similar
for PSU-Sca6 control flowers tested under similar
experimental conditions: (Fig. 7a-d and Table S4). The
highest germination rates for control pollen were
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recorded when flowers were incubated at 28 °C for 4h
pre-test and pollen was in vitro germinated at 26°C
(Table S4, Fig. 7a and e). Although these results demon-
strated that the precocious flowers produced as a result
of over-expression of AtFT in cacao somatic embryos
produced viable pollen, we were unable to successfully
pollinate flowers of greenhouse grown plants in several
attempts (data not shown).

Discussion

FT is a member of the CETS gene family, an ancient
gene family with extant members found in all forms of
life. In angiosperms, the complexity of this gene family
varies widely. Close relatives to 7. cacao, Arabidopsis
and cotton comprise a relatively small family structure
of six and eight members, respectively, while monocots
Zea mays and wheat have expanded family structures of
23 and 19 CETS genes, respectively [10, 23, 31, 32]. In
the present study, we identified seven highly conserved
candidate family members of the Theobroma cacao
CETS gene family, which is similar to the number of

genes found in the closest relatives previously studied.
Similar to cotton, cacao’s nearest living relative with a
completed reference genome, cacao comprises just one
functional florigen ortholog, while Arabidopsis contains
two functional florigens (AtFT and AtTSF) [11-13, 51].
Furthermore, while the TFL1/SP-L clade has expanded
in cotton to comprise five members, in cacao, this clade
contains only three members, TcTFL1, TcSP, and
TcBFT. Both cotton and cacao contain multiple MFT-L
genes showing a duplication that could have occurred
before the divergence of these species. In addition to the
two shared MFT genes, cacao’s genome contains a third
truncated MFT-L gene, TcMFT-L3, encoding a trun-
cated small peptide comprised of the most critical resi-
dues necessary for CETS functionality.

In order to assess the role of TcFT in flowering time
regulation, we overexpressed its coding sequence in late
flowering ft-10 Arabidopsis mutant where it restored
flowering time and branching architecture to wild-type
phenotype demonstrating T¢FT to be a functional ortho-
log of AtFT. FT orthologs from numerous species
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Fig. 6 Early flowering of transgenic cacao overexpressing AtFT. a and b Floral buds (red arrows) and open flowers (black arrows) produced at the
shoot apex of the shoots of E12-Q:AtFT transgenic cacao in culture plates. ¢ Close-up of (b) showing 5 total floral buds in a terminal cluster. d
Dissected transgenic floral buds demonstrating morphologically complete flower. e ‘Control' PSU-Sca6 flower from greenhouse grown tree for
comparison. S = sepal, A =anther, St = staminode, C =fused carpels. Red scale bars =5 mm. White scale bars=1mm

overexpressed in Arabidopsis and crop species have re-
sulted in early flowering.

In general, the expression of the TcFT is similar to the
expression of AtFT [13, 38, 52]. Namely, the expression
in both species is both developmentally and diurnally
regulated. FT is a major integrator of several signal
transduction pathways responsible for the induction of
an angiosperm’s transition to reproductive growth [15,
53]. Comprehensive studies have shown that this role is
conserved among many species, including photoperiodic
and day-neutral plants. We find that TcFT expression in-
creased with leaf maturity in a similar fashion to that of
AtFT and well-studied tomato florigen, SFT [10]. This
leaf expression pattern is consistent with FT’s role as a
general accelerator of determinate growth or promoter
to floral transitioning.

The Tc¢FT gene was expressed in floral tissues, consist-
ent with its demonstrated expression in Arabidopsis [54,
55]. As previously discussed, AtFT floral tissue expres-
sion was linked to stabilization of nearby inflorescence
and floral meristems [38]. Cacao flowers initiate in axils
of abscised leaves on the main branches and trunk of
adult cacao trees. Inflorescences arise iteratively from
the same spot on branches and eventually form floral
cushion comprised of many compressed cincinnal cymes
[56]. A survey of auxin concentrations in cacao cultivars
having varied cushion density (number of flowers/cush-
ion) showed a negative correlation between floral density
and floral auxin concentrations [57]. In the same study,

exogenous auxin application was positively linked to in-
creased flower and fruit retention in incompatible polli-
nations leading the authors to conclude that hormonal
levels control cacao self-incompatibility through a un-
specified genetic factor. Our results demonstrating con-
servation of gene expression patterning with Arabidopsis
FT suggests that TcFT might similarly stabilize cacao re-
productive development by signaling nearby meristems
to produce reproductive structures and that TcFT ex-
pression in floral tissues could impact cushion density.
Additional studies conclusively linking Tc¢FT floral ex-
pression changes in clones with contrasting cushion
density phenotypes and/or endogenous auxin content
could reveal an elusive link between FT and auxin in
addition to discovering the genetic link to the hormonal
control of cacao self-incompatibility.

Here we present the first report of FT-engineered early
flowering in cacao. Our attempts to regenerate cacao
embryos transformed with Tc¢FT were unsuccessful with
a limited number of transformed embryos dying off in
early growth. It seems plausible that TcFT overexpres-
sion caused developmental abnormalities that did not
allow normal embryos to successfully develop. It is pos-
sible that with weaker or more tissue specific promoters,
we can overcome this obstacle. Interestingly, we were
able to regenerate a single transgenic somatic embryo
expressing AtFT (Fig. 6) that was used as an explant for
establishment of a transgenic line via sequential somatic
embryogenesis. Using established protocols, selected
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temperatures, respectively

mature somatic embryos were transferred to conversion
media for development into plantlets. Under conversion
conditions in tissue culture, the plantlets developed one
or more true leaves followed by development of flowers
as a single flower or cluster of terminal flowers at the
shoot apical meristem with normal morphology. It
should be noted that for 20 years our research group has
generated a large number of cacao transgenic somatic
embryos using the Agrobacterium-mediated transform-
ation method applied for this study, using the same bin-
ary vector containing various transgenes fused to E-12 Q
promoter and 35S terminator, and we have never ob-
served flower development in tissue culture or early
flower development in young somatic embryo-derived
plantlets. However, our results are similar to the ob-
served flowering in vitro of other plant species overex-
pressing FT orthologs. The first report of a juvenile
transgenic tree producing inflorescences describes
Agrobacterium-mediated transformation of male Popu-
lus tremula x tremuloides and female P. tremula stem
with 35S::PtFT1 where floral development was observed
4 weeks post-transformation. The authors reported nor-
mal floral development, but noted that only weakly ex-
pressing lines were able to be regenerated in the
greenhouse [58]. In apple, two reports described in vitro
flowering using 35S:MdAFT1 causing flowering of apple
clones 8-12 month post transformation [59, 60]. Trans-
genic apple plants were also described to have a weak
growth habit, often senescing and flowers occasionally
showing abnormal morphologies [59].

In addition to normal floral morphology, pollen from
AtFT transgenic plantlets was viable as demonstrated by
the in vitro germination assay. This result suggests that
transgenic pollen from cacao tissue culture has the po-
tential to be used as donor genetic material in crossings
that could accelerate cacao breeding dramatically. A
drawback of the current protocol is the early death of
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the transgenic embryos after initial floral production. It
is likely that constitutive A¢FT expression in these em-
bryos quickly drive all growing plant tissues to terminal
states. In species, such as apple [61] and poplar [19]
transgenic plant growth was improved by utilization of
inducible promoters, such as heat-shock promoters.
Likewise, constructs allowing for inducible/controlled
expression of FT could be beneficial for transformation
of cacao.

Conclusions

We have identified and characterized members of the
cacao CETS gene family and demonstrate that the candi-
date TcFT florigen gene is expressed in a tissue specific
profile consistent with FT gene expression in other spe-
cies. Overexpression of TcFT in a late-flowering Arabi-
dopsis mutant partially restored normal wild-type
flowering time demonstrating its potential for promoting
the transition to flowering. Furthermore, heterologous
expression of AtFT in cacao tissues resulted in the pro-
duction of flowers in cacao somatic embryos, which pro-
duced viable pollen. Collectively our results support the
conclusion that TcFT (Tc05v2_g009810) encodes an
evolutionarily conserved functional ortholog of AtFT
and that the mechanisms of floral induction control
through FT are largely conserved between cacao and
Arabidopsis.

Methods

Plant materials and growth conditions

Arabidopsis seeds were obtained from The Arabidopsis
Biological Resource Center (Columbia-0 (Col-0) and f-
10 (ABRC, stock # CS9869) and were germinated on soil
or half-strength MS medium (PhytoTechnology Labora-
tories, Lenexa, KS, USA) supplemented with 1% sucrose.
Seeds were stratified at 4 °C for 3 days and transferred to
a Conviron walk-in chamber for growth with day lengths
as indicated in the text (22/18 °C day/night) and light in-
tensity of 120-150 umol photons m™?s™ ' at leaf level.
Theobroma cacao accessions Scavina-6 and a closely re-
lated accession PSU-Sca6, were propagated as rooted
stem cuttings of greenhouse grown trees originally ob-
tained from USDA ARS Subtropical Research Station in
Mayaguez, Puerto Rico, and o. PSU-Sca6 trees used
within these studies were trees originally obtained from
USDA ARS Subtropical Research Station in Mayaguez,
Puerto Rico and clonal propagated (by rooted stem cut-
tings) trees of these trees. Sca-6 and PSU-Sca6 trees
were grown in pots in a silica sand and perlite mix (2:1)
under greenhouse conditions. Importation and growth
of these plants followed all relevant USDA guidelines
and were grown in BL-2 level greenhouses regulated by
the Penn State Office of Research Protections. Humidity
was maintained at 60%, and the photoperiod was set to
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16 h light/29°C and 8h dark/26°C. Natural light was
supplemented with 430-W high pressure sodium lamps
as needed to maintain a minimum light level of 250
mmolm™*s™' PAR, while automatically retractable
shading limited light levels to a maximum of 1000 mmol
m~*s-' PAR. Irrigation with one-tenth-strength Hoag-
land’s nutrient solution (160 ppm N) was applied daily at
multiple times to maintain adequate moisture.

Phylogenetic analyses

Cacao CETS genes were identified by BLASTp searches
against two Theobroma cacao genomes: the Criollo
B97-61/B2 v2 ([26, 27]; E-value cutoff 1E-10) and
Matinal-6 v1.1 ([28, 29]; E-value cutoff 1E-05) genomes
using Arabidopsis FT (AT1G65480.1), TFL1 (AT5G03840.1)
and ATC (AT2G27550) protein sequences as queries
[26, 28]. Functionally critical domains of predicted
CETS polypeptide sequences from 7. cacao were
aligned with the corresponding domains of CETS pro-
teins from Arabidopsis (A. thaliana), tomato (Sola-
num lycopersicum), cotton (Gossypium hirsutum), and
moss (Physcomitrella patens) using MUSCLE 3.8.425
implemented in Geneious Prime 2019.2.1 [62, 63]. A
phylogenetic tree based on the multiple sequence
alignment was constructed using the bootstrap test by
the neighbor-joining method in Mega 7 [64, 65]. The
optimal tree with the sum branch length = 5.57896991
is shown (Fig. 1). The percentage of replicate trees in
which the associated taxa clustered together in the
bootstrap test (1000 replicates) are indicated next to
the branches [66]. The evolutionary distances were
computed using the JTT matrix-based method and
are in the units of the number of amino acid substi-
tutions per site [67]. The analysis involved 43 amino
acid sequences. All ambiguous positions were re-
moved for each sequence pair. There was a total of
237 positions in the final dataset. The phylogenetic
tree was rooted with MFT-L sequences from the dis-
tantly related moss Physcomitrella patens. Accession
numbers for all protein sequences used in the ana-
lyses are listed in Supplementary Table 3 (Table S3).

Vector construction

Cloning was by common molecular biology techniques
[68]. Restriction endonucleases were from New England
Biolabs (NEB, Ipswich, MA, USA). Oligonucleotides
were synthesized by IDT (Coralville, IA, USA). All con-
structs were analyzed by restriction digest (NEB) and
DNA sequence verification (Penn State Nucleic Acid
Facility, University Park, PA, USA).

Total RNA was isolated from mature leaves of T. ca-
cao Scavina-6 (100 mg) and from rosette leaves Arabi-
dopsis Columbia-0 (100 mg), using Purelink Plant RNA
Reagent (Life Technologies, Carlsbad, CA, USA) with
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minor alterations as follows: 1 mL of plant reagent was
added to frozen ground tissue, 0.2 mL of 5 M NaCl was
added to samples prior to chloroform extraction, 0.6 mL
of chloroform was used in a first chloroform extraction,
a second chloroform extraction was performed with
equal volume of chloroform to aqueous layer, and all
centrifugations were performed at 16,000g. To obtain
the coding sequences of TcFT and AtFT, 1ug of total
RNA from each plant species was treated with DNasel
(Thermo Fisher Scientific, Waltham, MA, USA) and re-
verse transcribed using an oligo dT,3 primer and M-
MLV RT (Promega, Madison, WI, USA). Corresponding
fragments were PCR-amplified using Phusion polymer-
ase (NEB) and primers TcFT_Spel_f: 5'-CGA CTA GTA
TGC CTA GAG AAA GAG ACC CCT TG-3' and
TcFT_Hpal_r: 5'-CGG TTA ACT CAT CGC CTC
CGG CCT CC-3" or AtFT_Spel f: 5'-CGA CTA GTA
TGT CTA TAA ATA TAA GAG ACC-3" and AtFT_
Hpal_r: 5'-CGG TTA ACC TAA AGT CTT CCT CC-
3’. PCR products were blunt cloned into cloning vector
pMiniT2.0 (NEB) and transformed in chemically compe-
tent 10-beta E. coli cells according to manufactures in-
structions (give the kit and manufacture info here).
Coding sequences from both species were released by
Spel/Hpal digestion and cloned into the same sites be-
hind the E12-Q promoter in binary vector pGZ12.0501
(GenBank: KF871320.1) to create E12-Qpro:TcFT vector
pGSp18.0102 (Fig. S1, GenBank MN856144) and E12-
Qpro:AtFT vector pGSpl8.0129 (Fig. S2, GenBank
MN856143).

Arabidopsis transformations and phenotypic analysis
Binary vectors were introduced into Agrobacterium strain
AGLI1 by electroporation. The Arabidopsis f-10 mutant
(ABRC stock # CS9869) was transformed with pGSh17.0404
(backbone vector control, GenBank MN856142), pGSp
18.0102 (E12-Qpro:TcFT), or pGSpl8.0129 (E12-Qpro:
AtFT) via the floral dip method (Clough and Bent, 1998),
and transformants were selected using kanamycin (100 mg
1I""). Transformed plants were analyzed in T1 generation.
Post selection, T1 plants were transferred to soil and grown
in 16/8 day/night conditions. Plants were phenotyped for
time of flowering and architectural traits as previously de-
scribed [69].

Expression analyses

For spatiotemporal expression analysis, leaf tissue was
harvested from 1.5year-old (vegetative) and 2.5-3.5
year-old (flowering) Scavina-6 greenhouse grown plants
between 11am — 1pm and flash frozen in liquid nitro-
gen. Three biological replicates of each tissue type were
analyzed. Tissue was homogenized using mortar and
pestle and total RNA was isolated using Purelink Plant
RNA Reagent (Life Technologies) with minor modifications
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as described above. RNA samples were treated with DNase
I (Thermo Fisher Scientific). 1.6 ug of RNA was used for
c¢DNA synthesis using SuperScript IV Reverse Transcript-
ase (Thermo Fisher Scientific). To study the diurnal expres-
sion of Tc¢FT, Scavina-6 mature (Stage E) leaf tissue was
harvested from trees every four hours over a 24-h time
course. Four biological replicates were harvested for each
time point. Tissue was homogenized and RNA extracted as
described above. 1.4 pug of RNA was used for cDNA synthe-
sis using SuperScript IV Reverse Transcriptase (Invitrogen).
All qRT-PCR reactions were performed using an ABI 7300
StepOnePlus Real-Time PCR system (Applied Biosystems,
Foster City, CA) and SYBR Premix Ex Taq reagents
(Takara Bio USA, Mountain View, CA) using the oligonu-
cleotides indicated in Supplementary Table 5 (Table S5).
Reactions were performed in 10 uL volumes with final pri-
mer concentrations of 0.4 puM. qPCR cycling parameters
were: 95 °C for 10 min, 40 cycles of 95 °C for 15, 60 °C for
30s, 72°C for 40s then dissociation curve analysis. Reac-
tions were performed in technical triplicate. Quantitative
RT-PCR data analysis including reference gene stability,
AACY, and statistical analysis were conducted using gbase+
software, version 3.2 [70].

Cacao stable transformation

In order to examine the functionality of FT within the ca-
cao system, we transformed secondary PSU-Sca6 somatic
embryo cotyledons as previously described [74] and with
modification detailed below, separately, with Agrobacter-
ium tumefaciens strain AGL1 containing one of vectors
pGSh17.0404, pGSp18.0102, or pGSp18.0129. Transform-
ation protocol modifications include: Bacterial cultures
were grown at 28°C overnight and optical density was
measured for at 600 nm; 523 media (10 g/L sucrose, 8 g/L
casein enzymatic hydrolysate, 4 g/L yeast extract, 2 g/L
K,PO,, and 0.15g/L MgSO,4) was used for induction of
the bacterial cultures; 30-35 cacao cotyledon explants
were added to 50 mL Falcon containing agrobacterial cul-
tures in 523 media; all sonication steps were performed
for 100 s; explant infection was performed by shaking the
Falcon tubes on their sides at 50 rpm and 28 °C for 20
min, followed by aspiration of bacterial culture before
transferring the explants to solid tissue culture medium;
co-cultivation of explants with A. tumefaciens on solid
medium was performed for 72 h. Cultures were first ob-
served at 4 weeks post culture initiation, followed by ob-
servations every other week as previously described [50].
The transgenic embryo expressing reporter gene eGFP
was cultured and multiplied through de novo regeneration
as previously described [50].

Transgenic and control pollen in vitro germination
Flowers from transgenic embryos growing at 25 °C were
excised immediately prior to the start of in vitro
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germination. Freshly-opened PSU-Sca6 (control) flowers
from greenhouse trees grown (as described above) were
harvested from 8 to 9 am and incubated in parafilm-sealed
glass tissue culture jars for 4 h at one of four pre-
incubation environments: room temperature (23 °C), 28 °C
incubator, 37 °C incubator, or greenhouse (26 °C). Pollen
from transgenic in vitro and control greenhouse flowers
was germinated in vitro as previously described [75, 76]
with modifications: 10 uL. drops of liquid media was pre-
pared onto glass micro slides. Three anthers were brushed
onto the media drop to sow pollen. Test slides were incu-
bated overnight sealed in moistened filter paper-lined
100 x 15 petri dishes. Transgenic pollen was evaluated
only at 23 °C, while control pollen was evaluated at both
23°C and in greenhouse conditions (26 °C) to determine
optimal conditions. Media composition for evaluating
pollen germination: 10% sucrose, 100 ppm boric acid, 300
ppm calcium nitrate, 200 ppm magnesium sulfate. Pollen
from control flowers was also cultured on media with
varied osmolytes: 20 or 30% sucrose and 0% or 15%
PEG4000. Germination was determined by pollen tube ex-
pansion viewed at 20x magnification using a Reishart
Microstar IV compound light microscope. Images were
captured using Camera Control Pro 2 software (Nikon,
USA) and a microscope-attached camera.
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