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Abstract

Background: Lodging is one of the important factors causing maize yield. Plant height is an important factor in
determining plant architecture in maize (Zea mays L.), which is closely related to lodging resistance under high
planting density. Coronatine (COR), which is a phytotoxin and produced by the pathogen Pseudomonas syringae, is
a functional and structural analogue of jasmonic acid (JA).

Results: In this study, we found COR, as a new plant growth regulator, could effectively reduce plant height and
ear height of both hybrids (ZD958 and XY335) and inbred (B73) maize by inhibiting internode growth during
elongation, thus improve maize lodging resistance. To study gene expression changes in internode after COR
treatment, we collected spatio-temporal transcriptome of inbred B73 internode under normal condition and COR
treatment, including the three different regions of internode (fixed, meristem and elongation regions) at three
different developmental stages. The gene expression levels of the three regions at normal condition were described
and then compared with that upon COR treatment. In total, 8605 COR-responsive genes (COR-RGs) were found,
consist of 802 genes specifically expressed in internode. For these COR-RGs, 614, 870, 2123 of which showed
expression changes in only fixed, meristem and elongation region, respectively. Both the number and function
were significantly changed for COR-RGs identified in different regions, indicating genes with different functions
were regulated at the three regions. Besides, we found more than 80% genes of gibberellin and jasmonic acid were
changed under COR treatment.
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regulation mechanism based on plant height.

Conclusions: These data provide a gene expression profiling in different regions of internode development and
molecular mechanism of COR affecting internode elongation. A putative schematic of the internode response to
COR treatment is proposed which shows the basic process of COR affecting internode elongation. This research
provides a useful resource for studying maize internode development and improves our understanding of the COR
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Background

Maize, one of the three major food crops in the
world, is consumed vast. However, the usable area for
maize cultivation is gradually decreased every year.
Facing the conflict, the major solution is to improve
the yield per unit area, which can be realized by cul-
tivating new varieties, increasing planting density and
improving the farming condition. Among these ap-
proaches, the easiest way is to increase the planting
density, but it brings the problem of lodging. Moder-
ately reducing plant height is an effective strategy for
improving lodging resistance in maize grown at high
density. Meanwhile, the heavy rain and the strong
winds, lead directly to the maize plants becoming
flooded or lodged. Lodging leads to multiple adverse
impacts, including the reduce of yield by 15-18%,
later maturing, quality reduction, harvest difficulty,
aggravation in diseases, pests and rats [66, 106].

The plant height is generally positively correlated with
lodging rate. Study the growth mechanism and plant
height regulation of maize has great significance for im-
proving lodging tolerance [107]. The plant height of
maize is mainly determined by internode number and
length particularly the 7th to 9th internodes, which are
the usual occurrence of the stalk lodging for maize [68].
The internode can be divided into three parts during the
elongation stage, including meristem region, elongation
region, and fixed region [120].

The lower end of the elongating internode is the meri-
stem, the region with active cell division. The elongation
region is located above the meristem, where the cell ex-
pansion and primary cell walls formed [51, 95]. The
fixed region, also known as the maturation region, is lo-
cated at the upper end of the internode, in which the ex-
tended growth of cells is stopped and the deposition of
secondary wall is main process [51]. Gene activity is
closely associated with specific biological processes in
these three type regions. It has been showed that the
genes, which were related to gibberellin (GA) and auxin,
mainly expressed in internode elongation region, such as
dwarfl, dwarf3 and brachytic2 [12, 54, 102]. And NACs
and CAD genes which involve in regulating the second-
ary cell wall synthesis are mainly expressed in fixed re-
gions [15, 39]. Nevertheless, information on the

transcriptional differences between meristem, elongation
and fixed regions is far from clear.

The genes related to many hormones have been
showed to be involved in the plant height, such as genes
participated in biosynthesis, transport and signaling
pathways of GA and jasmonic acid (JA) [16, 55, 97].
Some genes affect plant height by regulating GA synthe-
sis and transduction, such as dwarfl, dwarf3, GA20oxs,
GA3oxs, CPS, dwarf plant 8 and dwarf plant 9 [7, 73, 81,
83, 101, 102, 108]. JA affects plant height mainly via
complex phytohormone crosstalk with GA and auxin.
Studies showed that JA can affect the formation and dis-
tribution of auxin by inducing the ASAI expression and
regulating the PINs and PLETHORA [98], thereby af-
fecting cell elongation. In addition, DELLAs, GA signal
reverse regulation factor, can interact with the JA path-
way to coordinate normal growth and defense to biotic
stresses [110]. Therefore, phytohormones are of great
significance to control internode development. However,
the high production cost and the instability of molecular
structure in the vitro environment make direct applica-
tion of phytohormones very difficult in yield. Plant
growth regulators, which are compounds with similar ef-
fects to phytohormones, overcome these difficulties
[105, 112]. Currently, the main component of plant
growth regulators used in agriculture is 1,1-dimethyl-
piperidinium chloride (DPC) or ethephon [70, 121].
However, maize is not sensitive to DPC and the ethe-
phon decreases grain yield of maize [52, 71]. With the
increase of planting density and mechanization level, a
more efficient and safe new plant growth regulator is ur-
gently needed.

Coronatine (COR), secreted by Pseudomonas syingae
pathovars, is a phytotoxin [46, 50, 76], with similar func-
tion as JA [36, 115]. It has been showed that the COR is
an analog of JA [100], and is 1000 times more active
than JAs [93]. The COR can lead to adverse effects for
plants, such as leaf chlorosis and disease symptoms [94].
However, COR of low concentrations can increase the
abiotic stress resistance [40, 104, 124]. At present, COR
can be produced by microbial fermentation, and has the
advantages of lower environmental pollution and chem-
ical residues. Therefore, as a new environmentally
friendly plant growth regulator, COR is expected to be
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widely used in agriculture. Previous researches have
shown that COR can inhibit the elongation of maize
root, hypocotyl and mesocotyls [62]. Our previous stud-
ies have showed that COR had certain effect on reducing
plant height [85, 99], while the molecular mechanism of
COR in reducing plant height of maize is not well
known.

In our study, the plant height of ZD958 and XY335,
two wildly cultivated maize hybrids, could be signifi-
cantly decreased under COR treatment via reducing
internode length and thus improve lodging resistance.
To research the underlying gene different expression
that drive the responses of internode to COR, spatio-
temporal transcriptome of inbred B73 internode were
produced under control and COR treatment, containing
the maturation, meristem and elongation regions of
internode. The differences in transcription levels of the
three regions at normal condition were displayed and
then were compared with that upon COR treatment. In
total, 8605 COR-responsive genes (COR-RGs) were re-
ported, and internode specific genes accounted for 9.3%
(802 genes). For these COR-RGs, 614, 870, 2123 of
which showed expression changes in only fixed, meri-
stem and elongation region, respectively. Gene ontology
enrichment analysis indicated that different genes in the
three regions control their growth. Moreover, we found
that 84% of GA related gens and 80% of JA related genes
were significant affected under COR treatment. In sum-
mary, the differential expression map of gene expression
response in internode to COR provides a theoretical
support for future study of the molecular mechanism of
plant height decreased by COR.

Results

The plant height of maize is significantly decreased under
COR treatment

We found that the plant height of ZD958 and XY335,
two wildly cultivated maize hybrids, were significantly
decreased under the treatment of exogenous COR
(10 uM) at the stage with nine leaves, which average de-
crease of about 5cm (Fig. 1a; Additional Fig. 1 A and
Additional Data Sets 1). The grain weight per plant dis-
played no significant change but the yield can be in-
creased due to lower lodging rate under COR treatment
as compared with untreated controls in the field (Fig. 1b,
¢; Additional Fig. 2 A and Additional Data Sets 1). To
explore the mechanism of decrease of plant height of
maize under COR treatment, we performed the COR
treatment at the ninth leaf stage for B73 inbred, which
the reference genome was available [48] growing in the
greenhouse. The length of 7th internode was not af-
fected due to it was elongated completely before COR
treatment, but the elongation of 9th internode was sig-
nificantly inhibited in 2 days later after COR treatment
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(Fig. 1d; Additional Fig. 1 B and Additional Data Sets 1).
Finally, the length of 9th internode was decreased about
8.1% (average from 13.96 + 1.75cm to 12.83 + 1.50 cm)
(Fig. 1e; Additional Data Sets 1). At maturity, the plant
height was decreased from 205+ 16.56cm to 1884 +
14.31cm and ear height was decreased from 93.85 +
1121 cm to 84.10+10.10 cm, respectively, for B73 in-
bred treated by COR (Fig. 1g, h and i; Additional Data
Sets 1). Besides, we found the fracture resistance of the
9th internode was significantly increased under COR
treatment (average from 459 + 9.63 N to 520.3 + 11.44 N)
(Fig. 1f; Additional Data Sets 1), which might due to
more lateral cell number in the internode cortex (Add-
itional Fig. 2 B). Taken together, COR was a new plant
growth regulator which could effectively reduce plant
height and ear height of maize by inhibiting cell elong-
ation during internode elongation stage, thus beneficial
to improve maize lodging resistance.

The generation of spatio-temporal transcriptomes of
maize internode under normal conditions and COR
treatment
To explore the mechanism of plant height reduction of
maize under COR treatment, we used the RNA-seq to
study the transcription level of genes of the fixed region
(F) of 7th internode, and the meristem region (M) and
elongation region (E) of 9th internode collected in 1st,
2nd, and 4th day after COR treatment (at the stage with
nine leaves) (Fig. 2a). For the convenience of subsequent
description, which were named as F1_T (treatment), F2_
T, FA_T, M1_T, M2_T, M4_T and E1_T, E2_T, E4_T,
respectively. Corresponding control which were col-
lected at normal growth conditions were named as F1_C
(control), F2_C, F4 C, M1_C, M2_C, M4 _C and E1_C,
E2_C, E4_C, respectively. In totally, 3.24 billion reads
were obtained by the Illumina sequencer, and average
92.41% (Additional Table 1) of which could be uniquely
mapped to the maize reference genome of B73 (RefGen_
V4) [48] by Hisat2 [53]. The normalized gene expression
value was descripted by calculating the fragments per
kilobase of transcript per million mapped reads (FPKM)
on the strength of uniquely mapped reads. The expres-
sion level of each sample is descripted by the average
FPKM values of two biological replicates because the
correlation coefficient of them was high (average value
of R* was more than 0.93, Additional Fig. 3). To reduce
the error caused by transcription noise, here only genes
which FPKM values were larger than 1 were defined as
expressed genes. In total, the expressed genes were 24,
048 (including 1400 transcription factors (TFs)), which
had expression in at least one of the 18 samples (Add-
itional Data Sets 2).

The principal component analysis (PCA) result
showed that the 18 samples were generally grouped into
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Fig. 1 The decrease of plant height of maize under COR treatment. a Comparison of the plant height of ZD958 and XY335 with and without
COR treatment. The data were presented as means + SE (n=15). Error bars indicate SE. **: 0.001 < p-value < 0.01; ***: p-value < 0.001. b
Comparison of the grains weight per plant of ZD958 and XY335 with and without COR treatment. No significant change was observed. The data
were presented as means + SE (n=124). Error bars indicate SE. ¢ Comparison of the lodging rate of ZD958 and XY335 with and without COR
treatment. This experiment uses four biological replicate designs for the two maize hybrids. At least 33 plants were collected in each replicate. *:
0.01 < p-value < 0.05; ***: p-value < 0.001. d Comparison of the length of 7th internode and 9th internode of B73 with and without at the three
time points. The data were presented as means + SE (n = 3). Error bars indicate SE. *: 0.01 < p-value < 0.05; **: 0.001 < p-value < 0.01. @ Comparison
of the finally length of 9th internode of B73 with and without COR treatment. The data were presented as means + SE (n > 23). SE is represented
by error bars. *: 0.01 < p-value < 0.05. f Comparison of the fracture resistance of 9th internode of B73 with and without COR treatment. The data
were presented as means + SE (n = 3). Error bars indicate SE. **: 0.001 < p-value < 0.01. g Gross morphologies of B73 with and without COR
treatment. Scale bars, 30 cm. h Comparison of plant height of B73 with and without COR treatment. The data were presented as means + SE
(n>15). SE is represented by error bars. **: 0.001 < p-value < 0.01. i Comparison of ear height of B73 with and without COR treatment. The data
were presented as means + SE (n > 15). SE is represented by error bars. *: 0.01 < p-value < 0.05.
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three categories, with each category corresponding to a
specific internode region, and the COR treated and un-
treated samples can be separated well (Fig. 2b). In order
to further increase the credibility of transcriptional re-
sults we obtained, we checked the expression patterns of
12 marker genes, which their expression regions were

previously reported. Zmincwl, ZmNACI109, ZmMYB32,
and ZmIRX9 are genes involved in sugar transport, and
lignin synthesis process, and were shown to be highly
expressed in the fixed region [17, 42, 69, 120, 121] (Fig.
2¢). ZmGSL1, ZmGRFTF1, ZmCslAl, and ZmEXPA2, re-
lated to cell division and cell wall biosynthesis, were
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shown to have highly expression in

the meristem re-

gion [65, 117, 125] (Fig. 2d). ZmUXS (UDP-xylose
synthase), ZmNST4, ZmCesA8, and ZmCesA2, in-
volved in cell wall biosynthesis, were highly expressed
in the elongation regions [2, 103, 117] (Fig. 2e). The

preference of the expressions of these 12 marker
genes in our results were consistent with previously
reports, which indicated that the fixed region, meri-
stem region and elongation region samples were col-

lected well.
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In addition, we found that ZmPAL2, ZmPAL3,
ZmPAL5, and ZmPOX1, four genes related to defense
processes in maize [26, 82], and ZmAOS2a, ZmLOX3,
ZmLOXI1 and ZmOPR6, involved in JA signaling path-
way [30, 93], showed significant differentially expression
after COR treatment (Fig. 2f, g). This was in line with
that COR is not only a phytotoxin by P. syringae but also
an analog of JA. In total, our spatio-temporal transcrip-
tomes, which generated for maize internode with or
without COR treatment, is high quality and accuracy.

Expression profiling of internode under normal

conditions

The spatio-temporal transcriptomes generated here pro-
vided us a good opportunity to character the specific ex-
pression features of fixed, meristem and elongation
regions of maize internode before exploring the effect of
COR on transcription of internode.

Totally, 23,349 expressed genes were detected in inter-
node tissues collected in normal condition, including
1357 (5.81%) TFs (Fig. 3a; Additional Data Sets 3). These
genes were classified into 14 co-expression types by the
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k-means clustering algorithm. The genes (9776 genes,
including 472 TFs) in four modules of which were found
with expression at more than one of the three regions of
internode (Fig. 3a) indicating the common functional
processes in different tissue types of internode regions.
Interestingly, there were 58% (13,573) of genes (belonged
to eleven modules) mainly expressed at only one of the
three different tissues of internode, reflecting the big dif-
ference among the fixed, meristem and elongation re-
gions of internode.

Genes mainly expressed in the fixed region (F)

The fixed region of internode was best represented by
7777 expressed genes, including 616 TFs in the module
E-I to F-V (Fig. 3a; Additional Data Sets 3). The genes of
module F-I (961 genes, 66 TFs), F-II (855 genes, 46
TFs), and F-III (855 genes, 54 TFs) were mainly
expressed at 1st, 2nd, 4th day, respectively, and the
genes in module F-IV (1509 genes, 188 TFs) were mainly
expressed at 1st and 4th but not in 2nd day, reflecting
the transcriptional dynamic during the development of
fixed tissue. In addition, there were 3597 genes
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(including 262 TFs) in module F-V showed continuity
expression at the three points of fixed tissue develop-
ment. Gene annotation analysis showed that these fixed
regions associated modules were mainly overrepresented
with genes involved in protein kinase activity, amino
acid phosphorylation, ATP binding etc. (Fig. 3b). A re-
cent study showed that the increase of ethylene level
could favor cell wall synthesis and deposition at fixed re-
gion of mature internodes [120, 121]. Consistent with
this, there were 17 ethylene pathway genes were highly
expressed in the module F-I, including 11 ethylene-
responsive element binding protein (EREBP) transcrip-
tion factors (ZmEREB23, ZmEREB54, ZmEREB97,
ZmEREB104 et al), one l-aminocyclopropane-1-carb-
oxylate oxidase (ZmACCO20), two ethylene receptors
(ZmERS14 and ZmETR40), one gene encoding 1-
aminocyclopropane-1-carboxylate synthase (ZmACS6),
one tasseled gene (Zm7TS6) and one bHLH transcription
factor (Zmpco106446).

Genes mainly expressed in the meristem region (M)

The 4124 expressed genes in module M-I to M-III,
including 160 TFs, were best show the gene expres-
sion pattern of internode meristem region (Fig. 3a;
Additional Data Sets 3). The most typical characteris-
tic of meristem region is with vigorous cell division.
According to this, the module M-II genes (1670 genes
including 65 TFs) were mainly involved in division re-
lated processes, including microtubule motor activity,
microtubule-based movement, nucleosome assembly,
nucleotide binding, helicase activity, DNA replication
and repair (Fig. 3b). For example, genes encoding
RAD51D and SPO11 family proteins, which were re-
lated to DNA replication process [58, 72], and genes
encoding cyclin family proteins (such as cyclin D1),
which were related to G2 phases of cell division [41],
were included in module M-IL. In addition, the 591
genes of module M-I, including 24 TFs, were mainly
expressed in meristem region at 1st day. ZmRAFI, a
gene can increase the Rubisco content, and ZmPPD1I
and ZmYCF3, two genes can increase the photosyn-
thesis capacity of maize [74, 111], were included in
module M-I. This might reveal the need of large
amount of organic material synthesis in meristem be-
fore entering into stage with vigorous cell division.
The genes of module M-III (1863 genes, 71 TFs) were
expressed in meristem at all three time points. The
genes related to energy and hormone signal transduc-
tion were found in this module. Such as ZmTIDP3692
and ZmZIM20 play roles in glycolytic pathway and
cell number. They play an important role in energy
supply and cell division, respectively [1, 79] might
play an indispensable role in the meristem.
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Genes mainly expressed in the elongation region (E)

The genes of module E-I and E-II represents the specific
gene transcription level of the internode elongation re-
gion (Fig. 3a; Additional Data Sets 3). Genes in module
E-1 (654 genes, including 41 TFs) and E-II (1018 genes,
including 68 TFs), were mainly expressed in the elong-
ation region at 1st and 4th day, respectively. ZmROP2
and ZmROP9, which are involved in early phase of direc-
tional cell expansion [28], ZmCAS5P9, which is related to
cell elongation [4, 28, 122], and ZmABI20, a B3 domain-
containing protein might associated with the stem elong-
ation through affecting GA synthesis [38], were also
found in module E-I. The module E-II are overrepre-
sented with genes related to lipid transport, lipid bind-
ing, fatty acid biosynthetic process, transferase activity,
xyloglucosyl transferase activity, cellular glucan meta-
bolic process and copper ion binding (Fig. 3b). Three
beta-expansin genes (ZmEXPBS5, ZmEXPB6 and
ZmEXPB?7), which is associated with the synthesis of the
primary wall [57], and four cellulose synthase genes
(ZmCesAl, ZmCesA2, ZmCesA4 and ZmCesA9) [117]
were included in module E-II. Taken together, these re-
sults suggested that the genes in module E-I and E-II
were closely associated with vigorous cell elongation in
the elongation region of internode. In addition, some
NACs and MYBs related to cell wall biosynthesis were
specifically expressed in this module, such as ZmNAC92,
ZmNAC86, ZmMYB23 and ZmMYB27 [120, 121].

Transcriptional disturbance of internode under COR
treatment

To identify genes exhibiting responses to the COR
treatment, each of nine COR treated samples were
compared with their corresponding control samples
without COR. Finally, a total of 8605 genes including
490 TFs were found with significantly different ex-
pression between at least one of the 9 sample pairs at
the threshold of the 5% false discovery rate (FDR)
and more than 2 fold changes, and were designated
as COR-responsive genes (COR-RGs) (Additional Data
Sets 4). For these COR-RGs, 3165, 5226 and 6664 of
which were identified in the fixed, meristem and
elongation regions, respectively. These genes were
classified using Venn diagram (Fig. 4), which showed
that there were 614, 870, 2123 COR-RGs specifically
found in the fixed, meristem and elongation regions,
respectively, and only 1452 (16.9% of all COR-RGs)
showed different expression in all three type regions
of internode. These results reflected the varied effect
of COR on different tissue types. Relatively more ser-
ious influence of COR on non-fixed tissues, especially
for elongation region, was consistent with the obser-
vation of plant height decrease under COR treatment.
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Fig. 4 Analysis of COR-RGs identified in different regions of
internode. Venn diagram of the 8605 COR-RGs detected among
fixed, meristem and elongation regions

COR-RGs specifically identified in fixed region of internode
The COR-RGs specifically identified in fixed region were
categorized into two groups: up-regulated on fixed re-
gions (F-up COR-RGs) and down-regulated on fixed re-
gions (F-down COR-RGs), which contained 327 genes
(including 15 TFs) and 287 genes (including 27 TFs), re-
spectively (Fig. 5a; Additional Data Sets 4). Gene ontol-
ogy (GO) enrichment analysis indicated that genes
involved in iron ion binding, lipid metabolic process
and oxidation reduction were overrepresented in F-up
COR-RGs, while genes involved in protein kinase ac-
tivity and amino acid phosphorylation were overrepre-
sented in F-down COR-RGs (Fig. 5b), including many
stress tolerance related genes. Up-regulation of JA sig-
nal pathway related genes was associated with en-
hancement of stress tolerance in maize as reported
recently [10, 34]. And we found ZmLOX5, ZmLOX6,
ZmLOX10, ZmAOS1, ZmAOS3, which were related to
lipid metabolic process and response to JA [13, 14,
30] were up-regulated in fixed region after COR treat-
ment. ZmPSEI7 is a gene encoding cysteine proteinase in-
hibitor, which the expression can improves the maize
insect resistance [10, 49, 80], was also up-regulated in
fixed region after COR treatment. In addition, we found
the expression of ZmPOX3 and ZmCYP11, which are two
genes related to tetrapyrrole pathway and their high ex-
pression is not conducive for plant resistance to biotic
stress [27, 37, 84], were down-related in fixed region after
COR treatment.
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COR-RGs specifically identified in meristem region of
internode

The COR-RGs specifically identified in meristem region
were contained by 328 up-regulated genes (M-up COR-
RGs, including 23 TFs) and 542 down-regulated genes
(M-down COR-RGs, genes, including 42 TFs) (Fig. 5a;
Additional Data Sets 4). The M-up COR-RGs were
mainly related to cell cycle, such as regulation of cell
cycle and cell cycle checkpoint. ZmCKI4 encodes a
cyclin-dependent kinase inhibitor which can inhibit the
cell division [31], and ZmKRPI is a cyclin-dependent
kinase inhibitor which can inhibit the cell size number
and cell division [77]. Up-regulation of these two genes
suggested that the activity of cell division was generally
reduced in meristem region of internode, consistent with
the decrease of plant height with COR treatment. Ac-
cording to the reduction of activity of cell division, the
genes related to cellulose biosynthetic process, mem-
brane and transmembrane transport were down-
regulated in meristem region (Fig. 5b). For example,
many CesA family genes, including ZmCesA1, ZmCesA4,
ZmCesA6, ZmCesA7 and ZmCesA9, which are closely
associated with cellulose synthesis of cell walls and can
affect cell elongation, were identified as M-down COR-
RGs. In addition, ZmTRPS1, a gene which can decrease
cell division through altered cell wall structure [2, 29,
54], and ZmBR?2, a green revolution gene which affects
the transmembrane transporter activity and its low ex-
pression can lead to decrease of plant height [64], was
also down-regulated in meristem region of internode
after COR treatment. Overall, there results reflected an
inhibitory effect of COR effect on cell division in meri-
stem regions.

COR-RGs specifically identified in elongation region of
internode

The COR-RGs specifically identified in elongation region
of internode, which contained 1281 up-regulated genes
(E-up COR-RGs, including 23 TFs) and 842 down-
regulated genes (E-down COR-RGs, genes, including 80
TFs) (Fig. 5a; Additional Data Sets 4), was far more than
that specifically identified in fixed or meristem regions
of internode. The E-up COR-RGs were enriched with
genes related to the regulatory activity (e.g., catalytic ac-
tivity, nucleotide and RNA binding, and RNA process-
ing), translation (e.g., ribosome, translational elongation)
and cell structure establishment (e.g., nucleosome as-
sembly) (Fig. 5b). Previous studies showed that
ZmGRASI9 and ZmGRAS58 can disturb cell elongation
through affecting the formation of secondary walls, cell
proliferation and cell differentiation [56], and
ZmDCL101, ZmDCL104 and ZmDCLI105, which encode
DCL family proteins, are related to defense process and
plant height [19, 89], and ZmGST10, ZmGST16 and
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ZmGST22, which encode the glutathione transferases,
are related plant defense process [21]. Here we found all
these eight genes were grouped in grounded E-up COR-
RGs. In addition, we found some genes which expressions
were positively associated with cell elongation were down-
regulated in elongation region of internode. For example,
ZmCesA10, ZmCesA12 and ZmCesA13, three cellulose syn-
thase genes which the reduce of expression can inhibited
cell elongation [2, 24], were down-regulated. In addition,
we found that genes related to response to GA, such as
ZmGID1 and ZmGID2 [123], were also down-regulated
after COR treatment, consistent with the inhibit of cell
elongation. Overall, the indicating the defense process was
activated and the vegetative growth was inhibited for elong-
ation region of internode after COR treatment.

COR-RGs identified in more than one of the three regions of
internode

Besides genes with repose specific in fixed, meristem or
elongation regions of internode, there also have a lot of
genes (4998, 58.1% of total COR-RGs) showed repose in
more than one of the three type regions after COR treat-
ment (Additional Fig. 4). A mainly category is genes
(2447) with repose in both meristem and elongation re-
gions but not in fixed regions, in line with the close as-
sociation of meristem and elongation regions with
internode length. There were 1245 genes (including 53
TFs) up-regulated in meristem and elongation regions,
which mainly related to cell division, such as nucleo-
some assembly, helicase activity, nucleosome, DNA rep-
lication and microtubule motor activity (Additional Fig.
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4B), and 1202 genes (including 95 TFs) down-regulated
in meristem and elongation regions, which are mainly
involved in protein kinase activity, lipid metabolic
process, glycosyl groups transferase activity, transcrip-
tion regulator activity and transferase activity, transfer-
ring acyl groups other than aminoacyl groups
(Additional Fig. 4B). According to inhibit of cell divide
in meristem region and cell elongation in elongation re-
gion, the expressions of ZmTHX43 and ZmIRX15 which
are associated with xylan biosynthesis andZmCesA8 a
constituent of secondary cellulose synthase complexes
responsible for cellulose synthesis after cell expansion
completion [5, 9, 22, 25], were down-regulated. In
addition, we found some genes involved in the auxin-
activated signaling pathway, such as ZmARF7 and
ZmlIAA1l [67], were also down-regulated in meristem
and elongation regions.

Internode specific genes with response after COR
treatment

The spatio-temporal transcriptome data generated here
gave us a good opportunity to identified internode spe-
cific genes via combined with the promulgated RNA-seq
data of different maize tissues, including leaf, tassel, root,
cob, silks, endosperm, pericarp, seed, ear, embryo, and
anthers [18, 23, 59, 63, 96]. Totally, we identified 1376
genes (including 70 TFs) with specific expression in
internode (Additional Fig. 5; Additional Data Sets 5). In
these internode specific genes, 58.3% of which (802
genes, including 37 TFs) were belonged to COR-RGs
(Additional Data Sets 6), significantly higher than the
proportion of total expressed genes accounted by COR-
RGs (35.8%), indicating the overrepresentation of inter-
node specific genes in COR_RGs. For these COR-RGs
specifically expressed in internode, 427 of which were
up-regulated and 375 of which were down-regulated.
Grouping according to the regions with expression
change, we found 200 internode specific COR_RGs, tak-
ing 24.94% of total, were up-regulated in all the three
type regions of internode. These F + M + E-up internode
specific COR_RGs were enriched with genes related to
triose-phosphate isomerase activity (Additional Fig. 6A,
B), such as ZmTpil and ZmIPS1 (Inositol-3-phosphate
synthase) which the expression can initiate the defense
mode of plant [47, 61]. In addition, ZmSDH (succinate
dehydrogenase) and ZmTH 1, which are related to the in-
duction of oxidative stress [6, 92] are also identified as
F + M + E-up internode specific COR_RGs. These results
suggested that some defensive reactions were common
among the three type regions of internode after COR-
treatment. In addition, we found internode specific
genes ZmPGP9 which can promote inhibits auxin trans-
port [32], ZmARR7 which the reduce of expression is
benefit for improving the defense ability of maize [45],

Page 10 of 18

and ZmABI32 which the reduce of expression is favor
for drought resistance of plants [78], were specifically
down-regulated in fixed, meristem and elongation re-
gion, respectively. And the ZmIAA4I genes which re-
lated to the auxin signal was down-regulated in both
fixed and elongation regions, consistent with the report
that the reduce of its expressions can inhibit cell expan-
sion and lead to plant dwarfing [109, 118].

Differential expression of phytohormone-related genes
under COR treatment

The plant growth and development are regulated by a
complex plant hormone crosstalk, while ABA, TAA, GA
and JA are critical components in these processes [35,
75]. We first studied the regulation of COR on ABA,
IAA, GA and JA related genes. Totally, we found 34
ABA related genes were expressed in our data and the
expression of 47% (16) genes could be significantly af-
fected by COR. In this research, 169 IAA related genes
were expressed and the expression level of 52% (88)
genes could be significantly affected by COR. 74 GA re-
lated genes were expressed in this research and the ex-
pression value of 84% (62) genes could be significantly
affected by COR. And 35 JA related genes were
expressed in this article, the expression of 80% (28)
genes were significantly affected by COR. The results
showed that the COR-RGs proportion of GA (84%) and
JA (80%) were significantly greater than those of ABA
(47%), IAA (52%) and all genes (36%) (Additional Fig.
7). Then we focused on the regulation of COR on GA
and JA related genes.

Effect of COR on genes of GA pathway

GA, a phytohormones of tetracyclic diterpenoid, plays
essential roles during plant growth process. Among the
62 significant differentially expressed genes under COR
treatment, most of the genes showed significant down-
regulation in the meristem region and elongation region.
It consistent that reduced GA biosynthesis and suppres-
sion of GA signaling pathways lead to reduced plant
height and internode shortening [3]. It's worth noting
that three famous green revolution genes ZmD3,
ZmGA200x2 and ZmGA200x3 [73, 102] which are af-
fecting GA biosynthesis were down-regulated in the
elongation region after COR treatment, it consistent
with that the previous researches, the mutants of these
genes were observed with a dwarfing phenotype. The
ZmGID1 and ZmGID2, F-box proteins modulate DELLA
protein degradation, were both down-regulated in the
elongation region of internode. And the ZmCPS3, ZmKS
and ZmKAO, which were related to GA biosynthesis,
were observed to be down-regulated in the elongation
region of internode (Fig. 6a). In addition, the gibberellin
stimulated-like proteins (ZmGSLI and ZmCIi22897 la)
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were identified as being up-regulated by COR in the
meristem region and elongating internode. Their homo-
log gene OsGASR3 was reported to reduce the toxicity
of Xanthomonas campestris to rice and involvement in
defense and affecting growth and development of rice
[8]. While, we also found the DELLA protein ZmGras46
which is involved in controlling GA-induced growth and
adaptability to environmental changes [44] was down-
regulated in the meristem region after COR treatment
for 4 days. These results suggested that COR could con-
trol the expression of GA metabolic and biosynthesis
genes and modulate the signal transduction for repres-
sing internode elongation. Collectively, these regulated
GA related genes might be essential for normal growth
and defense processes, according to gene function
annotation.

Effect of COR on genes of JA pathway
JAs are a small molecules compound derived from lipids
that have core position in the transition between plant
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involved in JA were differentially expressed after COR
treatment (Additional Data Sets 7). Unlike the gibberel-
lin related genes which were significantly down-
regulated in the meristem region and elongation region,
the JA related genes were most significantly up-
regulated in the fixed region (Fig. 6b). For example, in
the oxylipin biosynthesis, the ZmLOXs, as defense sig-
nals, play important roles in inducing defense genes to
work [14] most ZmLOXs were up-regulated in the fixed
region after COR treatment, included ZmLOXS,
ZmLOX6, ZmLOX9, ZmLOX10 and ZmLOX11. The
ZmAOSs (Allene oxide synthase) which are responsible
for production of JAs were up-regulated, such as
ZmAOSI and ZmAOS2 were up-regulated in the fixed
region and elongation region and ZmAQOS3 was mainly
up-regulated in the fixed region. ZmOPR6 and ZmOPRS8
encode enzymes with catalytic function that the adjacent
double bond of a, B-unsaturated aldehyde or ketone can
be reduced were up-regulated in the all regions, it con-
sistent with the previous report that ZmOPR6 and
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signaling molecules, such as JA and ethylene [116]. And
the ZmOPR7 was up-regulated in the meristem region
and elongation region. JAZ proteins as an inhibitory fac-
tor of JA signaling were also up-regulated in the fixed
region, included ZmJAZ5 and ZmJAZ6 and ZmJAZI10
(Fig. 6b).

Discussion

COR can effectively reduce maize internode length, ear
height and plant height

The prolonged cloudy and rainy days and other environ-
mental factors always result in severe lodging of maize.
Plant height is a crucial determinants of plant architec-
ture in maize and is closely related to lodging resistance
and canopy photosynthesis at high planting density.
Moderately reducing plant height is an effective strategy
for improving lodging resistance in maize grown at high
density and bad environment. In this study, we con-
firmed that COR, as a new plant growth regulator, could
effectively reduce plant height and ear height of both hy-
brids (ZD958 and XY335) and inbred (B73) maize by
inhibiting internode growth during elongation and not
cause yield per plant decline (Fig. 1). These results are a
further verification and complement to previous re-
search [85, 99].

Dynamic changes of genes in different regions during
internode development
To understand its molecular mechanism of different
internode region in response to COR treatment, we
firstly analyzed the transcriptome data of the control
group by 3 time points and constructed dynamic tran-
scriptome landscape of developmental process of inter-
node different regions (Fig. 3). The provided dynamic
transcriptome data clearly demonstrated the three key
regions of growing internode, including the fixed region,
meristem region and elongation region, which the re-
vealed occurrence regions are consistent with previously
reported researches [117, 120, 121]. 2840, 5973 and 7462
genes were observed mainly expressing in the fixed re-
gion, meristem region, and elongation region, respect-
ively, during the elongation growth of maize internode
(Fig. 3). This gene bank provides a wealth of resources
for future research, that will enhance our cognition of
the genetic basis of internode development and also
helps to understand the effect of COR on internode
elongation. Especially, we detected 1376 stem-
characteristic genes (having 70 TFs), and they will be-
come the focus in future research (Additional Fig. 5).
We found that the number of genes significantly regu-
lated by COR in M and E regions is much higher than
that in F region (Fig. 4). This showed that these two re-
gions are most affected by COR, especially E region
which is consistent with phenotypic results (Fig. 1d;
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Additional Fig. 1B). The most genes affected by COR in
the E region are related to transcription, translation and
protein metabolism. We found that the genes of second-
ary wall and defense process were up-regulated, which
has an inhibitory effect on plant height, such as
ZmGRASI19, ZmDCLIOI and ZmGST10 [21, 56, 89] (Fig.
5). In addition, the down-regulation of some cell wall
synthesis-related genes, such as ZmCesA10, ZmCesAl2
and ZmCesA13, in the E region also inhibited cell elong-
ation (Fig. 5).

COR changed pathway of GA and JA during internode
elongation

GAs and JAs, two important plant hormones, have a
vital role in controlling plant growth and development
under the different environment. GA plays essential
parts during plant developmental processes, and JA as a
regulator controls the response to stress. In our study,
we found the most gibberellin synthetic and responsive
genes were significantly inhibited in the meristem region
and elongation region, it consistent that reduced GA
biosynthesis and suppression of GA signaling pathways
lead to reduced plant height and internode shortening
[3]. We also found JA related genes were most signifi-
cantly up-regulated in the fixed region, it may be related
to that the lignin most is produced and stored in the
secondary cell walls of fixed region and the plant defense
dominated by JAs is correlated with expression of genes
of lignin synthesis [20, 43]. These results suggested that
COR treatment mainly controlled internode growth by
activating the JA pathway in fixed region and inhibiting
the GA pathway in the meristem region and elongation
region, thereby reducing plant height (Fig. 7).

During the growth process of plants, the balance be-
tween defense and growth is a mutual conversion
process, which is a necessary condition for plants to co-
ordinate the supply of resources according to various
growth clues and environmental challenges. Notably, in
our study, we found some JAZ genes, which enable
plants to shut down the JAs signaling pathway in time,
were up-regulated, while DELLA protein ZmGras46,
known as GA signal suppressor, was down-regulated in
the meristem region after 4 days of COR treatment. So
that the plant can timely from the defense state to the
normal growth and development state. These results
may explain why COR can effectively reduce plant
height, but does not affect the subsequent maize plant
growth and yield per plant.

Conclusions

In summary, our transcriptome data displays a map of
gene expression during internode development and a
difference of gene expression after COR treatment. The
biosynthesis and signal transduction of GA in cells of
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internode elongation region are affected by COR. At the
same time, genes related to cell wall and cytoskeleton in
the cells of internode elongation region are also inhib-
ited by COR, which affect the normal expansion of inter-
node cells. This may be one of the reasons for the
shortening of maize internodes and the decrease of
maize plant height after treated by COR. It provides a
solid foundation for future researches of the key factors
involved in regulating internode length through COR
and a theoretical basis for the application of COR.

Methods

Plant materials

The hybrids of maize ZD958 and XY335 were used in
our experiment which were collected from the Henan
Golddoctor Seeds Co., Ltd. and Shandong Denghai Pion-
eer Seeds Co., Ltd., respectively. The inbred of maize
B73 was used in our experiment which were collected
from the National Maize Improvement Center of China.
The COR was purified by the Centre for Crop Chemical
Control, College of Agriculture, China Agricultural Uni-
versity. The ZD958 and XY335 were cultivated in Jinan
(36°40'N, 117°00°E), Shandong Province, China, during
the summer of 2018. The maize B73 was cultivated in
the greenhouse characterized by 16 h /8 h photoperiod,
25°C /18 °C day/night temperature.

The COR treatment

Coronatine was purified by the Centre for Crop Chem-
ical Control, China Agricultural University. Coronatine
purity was >99%, measured with high performance li-
quid chromatography (Milford, MA, USA). COR was
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dissolved in 10 folds (m/v) methanol and then diluted
with water before foliar spraying. The time of treating
with COR is the third day after the 9th leaf is fully de-
ployed. The concentration of COR is 10 umol-L™" and
the total amount of liquid is 7 ml-plant™* [60, 85, 86].
The maize treated with water, which was added the
same amount of methanol as the experimental group, is
control.

Determination of phenotyping

In the field experiments, we confirmed observation of
the plant height, grain weight per plant and yield. We
measured plant height by ruler in a separate experiment
at late stage of filling, which included two treatments
(COR or water) in a design of completely randomized.
After harvesting, the yield and grain weight per plant are
measured.

In the greenhouse, the length of 7th and 9th internode
was measured at three time points (1st, 2nd, and 4th day
after treatment, Fig. 2a). In addition, the length of 9th
internode of B73 was measured by ruler and after meas-
uring the height of plant and ear at late stage of filling.
And the fracture resistance was tested by stem strength
tester YYD-1 (Zhejiang TOP instrument Co., Ltd,
Hangzhou, China). Finally, significance analysis of these
data was conducted by t test using the software Graph-
Pad Prism 8 [90].

Microstructural observation of internode

On the late stage of filling after COR treatment, the
middle region of the 9th internode was collected from
the stem of maize. The samples were processed in Car-
noy’s solution (75% ethanol and 25% acetic acid mixed
in equal volume) for 10h, and then saved in 70% etha-
nol. Cross sections were produced from the 9th inter-
node by double-edge razor blades and then treated with
safranin. The stem microstructure was observed using
Olympus BX51 microscope (Olympus China Co., Ltd,,
Beijing, China) basing on the methods of Xu et al. [105].

Experiment design

Our experiment comprised two factors in the completely
randomized factorial design. In this experiment two rep-
licates were designed. The specific information of experi-
ment as follows: (a) COR factor with two levels (control
of water and treating with 10 umol-L™* COR) and (b) re-
gion of sampling a segment of approximately 4 mm in
the top 0—1 cm region of 7th internode (F), a segment of
approximately 4 mm in the base 0—1cm region of 9th
internode (M) and a segment of approximately 4 mm in
the base 1-2 cm region of 9th internode (E) with three
time points (1st, 2nd and 4th day after treating with
10 umol-L™' COR) [119] (Additional Fig. 2).Thirty-six
samples were taken for RNA extraction. Each sample
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was collected form at least three plants with the scalpel,
collected in a 50 ml tube, immediately placed in liquid
nitrogen, and finally stored in an ultra-low temperature
refrigerator (- 80 °C). Each time a sample was taken, the
scalpel was rinsed with Milli Q water.

RNA extraction and preparing library

Total RNA from all the samples was extracted using the
Trizol (produced by Invitrogen) basing on the manual
Then the total RNA was purified by magnetic stand
(Invitrogen). The Aliquots of total RNA purified were
stored in the - 80°C refrigerator. The libraries of se-
quencing were constructed by 5 pug total RNA using the
TruSeq™ RNA sample preparation Kit (Illumina Inc., San
Diego, USA) following the instructions of manufacturer.
According to the protocol of library construction (Illu-
mina), synthetic ¢cDNA was treated with end-repair,
phosphorylation and ‘A’ base addition. After PCR treated
by NEB’s Phusion DNA polymerase for 15 cycles, selec-
tion of size was performed for target fragments of cDNA
on 2% Agarose of Low Range Ultra (Bio-Rad). The size
of cDNA target fragments is 200-300 bp. Then the li-
braries were quantitated with TBS380 Picogreen (Invi-
trogen). All libraries of paired-end sequencing were
sequenced using the HiSeq xten (2 x 150 bp read length)
(Ilumina Inc., San Diego, USA).

RNA-seq data analysis

In order to align the reads of paired-end and control the
quality of reads, we trimmed the paired-end reads and
filtered the illumina reads with the SeqPrep (https://
github.com/jstjohn/SeqPrep) and Sickle (https://github.
com/najoshi/sickle), respectively. Then, the mapping of
reads to the reference genome of maize (from the Mai-
zeGDB) is performed using the Hisat2 [53]. The unique
mapped reads were processed using the Cufflinks
(V2.2.0) software [33]. PFKM was used to indicate the
gene expression level. The R? between biological repli-
cates was calculated. And correlation pictures were
made through the prcomp function of R software [87]
with initial settings to be convenient for graphic descrip-
tion of correlation among all samples with log, (FPKM+
1).

The prcomp function in R software was used for PCA
analysis [87] with original parameters to be easy to
graphic display of relatedness among all samples. The
log,(FPKM+ 1) of the genes were used for the analysis of
PCA by R (V 3.6.1).

Gene coexpression analysis

Using the k-means algorithm of MeV (V4.9) software for
the co-expression analysis for 9 different no-treatment
samples [87]. The normalized expression of genes was
operated by dividing their expression level at all samples
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with their maximum FPKM. The optimal cluster number
was determined by the Figure of merit [113].

Differential expression analysis

In order to discover COR-RGs between two different
samples, following the method of FPKM, each tran-
script’s expression level of was calculated. Then the dif-
ferentially expressed genes were calculated by using
Cuffdiff, a part of the Cufflinks package (http://cufflinks.
cbcb.umd.edu/) [91].

Functional enrichment analysis

Then using the function annotation module in MapMan
(v3.6.0) [88] for evaluating functional category enrich-
ment with each co-expression module. After choosing
the representative protein (which was the longest protein
of each gene) and running the Mercator with default set-
tings, we conducted the MapMan annotation. Whether
there are too many functional categories for a given
module was tested by Fisher’s exact test. The Benja-
mini—Hochberg correction was used to result p-values
were adjusted to Q values, and 5% fault tolerance rate
was applied.

Screening expression of stem-specific gene

For screening of stem-specific genes, 18 stem samples col-
lected from our study and 19 non-stem transcriptome
data [18, 23, 59, 63, 96] collected from the NCBI (http://
www.ncbinlm.nih.gov/) were used. We used an already
reported method [11, 114]. Firstly, the normalization of
the expression values of all samples was performed with
log,(FPKM+ 0.01). Secondly, the z-scores of the genes col-
lected in different stem tissues compared with the non-
stem tissues using the normalized expression value was
performed. If one gene had a z-score greater than 3 in at
least one of the samples of stem, this gene was determined
to be stem specifically expressed. Then, combining the dif-
ferentially expressed genes from the transcriptome data
that we generated, we further explored the effects of COR
for genes expression by performing co-expression analysis
using the MeV (V4.9) software.

Abbreviations

COR: Coronatine; JA: Jasmonate; COR-RGs: COR-responsive gene;

GA: Gibberellin; DPC: 1,1-dimethyl-piperidinium chloride; FPKM: Fragments
per kilobase of transcript per million mapped reads; TF: Transcription factor;
PCA: Principal component analysis; F: Fixed region; M: Meristem region;

E: Elongation region; FDR: False discovery rate; EREBP: Ethylene-responsive
element binding protein

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/512870-021-02962-2.

Additional file 1: Fig. S1 The effects of COR for ZD958, XY335 and the
internode of B73. (A) Gross morphologies of ZD958 and XY335 with and



https://github.com/jstjohn/SeqPrep
https://github.com/jstjohn/SeqPrep
https://github.com/najoshi/sickle
https://github.com/najoshi/sickle
http://cufflinks.cbcb.umd.edu/
http://cufflinks.cbcb.umd.edu/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
https://doi.org/10.1186/s12870-021-02962-2
https://doi.org/10.1186/s12870-021-02962-2

Ren et al. BMC Plant Biology (2021) 21:202

without COR treatment. Scale bars, 30 cm. (B) Gross morphologies of 7th
and 9th internode with and without COR treatment at three points after
COR treatment. Scale bars, 1 cm.

Additional file 2: Fig. S2 The effects of COR for maize yield and
microstructure of the 9th internode. (A) The yield of two maize hybrids
was significantly increased by COR treatment. The data were presented
as means + SE (n=4). SE is represented by error bars. ***: p-value < 0.001.
(B) Microstructure of the cross section of the 9th internode. The bar is
500 pm.

Additional file 3: Fig. S3 Correlation between biological replicates of
samples for RNA-seq. The calculation of the correlation coefficient is car-
ried out using normalized values of log, (FPKM value + 1).

Additional file 4: Fig. S4 The gene differential expression modules and
functional enrichment analysis. (A) The genes, which were differential
expressed in more than one region by COR, were display in here. The
FPKM values of each gene were divided by the maximum value in all CK
samples for normalization. (B) Function classification enrichment of genes
in different modules is performed using MapMan. Only items of FDR less
than 0.05 are displayed.

Additional file 5: Fig. S5 Expression maps of internode-specific genes.
Expression maps of stem-specific genes in each region. The FPKM values
of each gene were divided by the maximum value in all CK samples for
normalization.

Additional file 6: Fig. S6 The differential expression module and
functional enrichment analysis of COR-RGs in the stem-specific expression
gene. (A) Differential expression modules of stem-specific genes in differ-
ent internode regions after COR treatment. The FPKM values of each
gene were divided by the maximum value in all CK samples for
normalization. (B) Function classification enrichment of genes in different
modules is performed using MapMan. Only items of FDR less than 0.05
are displayed.

Additional file 7: Fig. S7 Effect of COR on Genes in GA, JA, IAA and
ABA.

Additional file 8: Table S1. Statistics of reads in all samples.

Additional file 9: Table S2. The number of JA, GA, ABA and IAA genes
affected by COR.

Additional file 10: Table S3. GenBank ID of all genes mentioned in this
study.

Additional file 11: Data Sets 1. Determination of phenotyping.

Additional file 12: Data Sets 2. Expression pattern of genes and TFs in
all samples.

Additional file 13: Data Sets 3. Expression pattern of genes and TFs in
control samples.

Additional file 14: Data Sets 4. DEGs and TFs of DEGs in this study.

Additional file 15: Data Sets 5. Information of stem-specific expressed
genes in this study.

Additional file 16: Data Sets 6. Information of DEGs in stem-specific
expression genes.

Additional file 17: Data Sets 7. Information of DEGs in the GA and JA
pathway.
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