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Genome-wide association study reveals the
genetic basis of yield- and quality-related
traits in wheat
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Abstract

Background: Identifying the loci and dissecting the genetic architecture underlying wheat yield- and quality-
related traits are essential for wheat breeding. A genome-wide association study was conducted using a high-
density 90 K SNP array to analyze the yield- and quality-related traits of 543 bread wheat varieties.

Results: A total of 11,140 polymorphic SNPs were distributed on 21 chromosomes, including 270 significant SNPs
associated with 25 yield- and quality-related traits. Additionally, 638 putative candidate genes were detected near
the significant SNPs based on BLUP data, including three (TraesCS7A01G482000, TraesCS4B01G343700, and
TraesCS6B01G295400) related to spikelet number per spike, diameter of the first internode, and grain volume. The
three candidate genes were further analyzed using stage- and tissue- specific gene expression data derived from an
RNA-seq analysis. These genes are promising candidates for enhancing yield- and quality-related traits in wheat.

Conclusions: The results of this study provide a new insight to understand the genetic basis of wheat yield and
quality. Furthermore, the markers detected in this study may be applicable for marker-assisted selection in wheat
breeding programs.
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Background
Bread wheat (Triticum aestivum L.), which is a widely
cultivated cereal crop that is highly adaptable, provides
approximately 21% of the total calories and 23% of pro-
tein in the human diet (www.fao.org/faostat/en). As a
staple food for about 35–40% of the global population,
wheat is a good source of nutrients and has unique glu-
ten properties, making it useful for producing diverse
food products [1]. The increasing global population and
improvements in the standard of living for many people
worldwide have forced breeders to continually aim to
produce new high-quality and high-yielding wheat var-
ieties [2].

Yield and quality are complex traits. Additionally, the
limited genetic diversity of bread wheat has resulted in
breeding bottlenecks, and the application of traditional
breeding methods has led to gradual increases in wheat
yield and quality [3]. Genome sequencing and high-
throughput chip-based genotyping platforms are critical
for clarifying the mechanisms regulating the wheat yield
potential and quality as well as for enhancing breeding
methods [4]. Several SNP arrays (e.g., 9 K, 35 K, 90 K,
660 K, and 820 K) have recently been developed. They
have been used to analyze bi-parental populations and
identify loci (QTLs) controlling yield- and quality-
related traits [5–9]. However, traditional QTL mapping
methods are usually based on specific characteristics of
parental populations, and are time-consuming and la-
borious [10].
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GWAS are common in breeding programs because
they are more efficient and require less effort in analyz-
ing complex traits under various environmental condi-
tions than other research methods [11]. Specifically,
GWASs have been useful for detecting yield-associated
loci in wheat, including plant height (PH), kernel num-
ber per spike (KNPS) and thousand grain weight (TGW)
[12, 13]. However, because of the need for many seeds
and the substantial time required to assess some quality
traits, there have been relatively few GWASs regarding
wheat quality traits such as wet gluten content (WGC)
and grain protein content (GPC) [14, 15]. Moreover,
there are few reports describing a GWAS conducted to
investigate lodging resistance, which is an important fac-
tor influencing wheat yield and quality.
For a GWAS, the size and diversity of the panel are

important because a small panel and large linkage dis-
equilibrium (LD) blocks may lead to the identification of
false positive associations [16]. Regarding wheat, only a
few GWAS for yield and quality traits have involved
large natural populations and SNP chips. Furthermore,
wheat has been cultivated in China for more than 4000
years and has now been cultivated in 10 major agro-
ecological zones [17]. Due to the long evolutionary
period, Chinese wheat germplasms have been artificially
selected in different regions and have regional genetic
characteristics [18, 19]. Accordingly, the objectives and
requirements for improving wheat varieties differ con-
siderably among these regions. Thus, we performed a
GWAS of wheat yield and quality involving 543 repre-
sentative bread wheat cultivars, including 531 Chinese
wheat cultivars from 10 provinces, and a wheat 90 K
SNP array following phenotypic analyses in six
environments.
The aim of this study was to identify the stable loci

and candidate genes significantly associated with wheat
yield and quality. The results described herein may be
useful for revealing the genetic basis of yield and quality.
The corresponding SNP markers that were identified
may ultimately facilitate the breeding of new high-
quality and high-yielding wheat varieties.

Results
Phenotypic variation and correlation analysis
The phenotypic data for the 543 wheat lines character-
ized regarding growth- and development-related traits,
yield-related traits, and quality-related traits in six envi-
ronments are listed in Table S1. The phenotypic varia-
tions among genotypes were determined based on the
heritability, range, mean, standard deviation, and the co-
efficient of variation. There were obvious variations for
all traits, especially the coefficient of variation for thrust
(TH) (49.28%) in the E5 environment. Table S2 provides
the estimated correlation coefficients for this combined

analysis. The broad-sense heritability (h2) for most traits
was approximately 0.80, with the highest and lowest her-
itabilities detected for PH (0.92) and PET (0.70). Accord-
ingly, most traits were stable and largely determined by
genetic factors. The correlation coefficient was highest
(0.970) between wet gluten content (WGC) and grain
protein content (GPC), but was also relatively high be-
tween TGW and GPR (0.919), wet gluten content
(WGC) and flour content (FC) (0.842).

Genome-wide association study
The 90 K wheat iSelect SNP array with 81,587 SNPs was
used for genotyping. After a quality control step, 11,140
SNP markers remained for the association mapping [20].
A total of 270 significant SNP loci associated with yield
and quality traits were identified (Table S3, Fig. S1).
These SNPs were located on 21 chromosomes and
accounted for 1.27–8.47% of the phenotypic variation.
Moreover, 94, 139, and 37 SNPs were in the A, B, and D
subgenomes, respectively (Table S3). Of these SNPs, 42
pleiotropic loci associated with two or more traits were
detected on chromosomes 1B, 2A, 2B, 2D, 3A, 3B, 3D,
4B, 4D, 5B, 5D, 6B, 6D, 7A, and 7B based on the com-
mon loci (Table 1).

Growth and development-related traits
A total of 28 significant SNP loci for the flag leaf length
(FLL) were detected on chromosomes 1B, 1D, 2A, 2B,
2D, 3A, 3B, 4B, 5A, 5B, 5D, 6B, 6D, 7A, and 7B, ac-
counting for 2.44–4.12% of the phenotypic variation. Re-
garding the flag leaf width (FLW), 33 significant SNP
loci were detected on 13 chromosomes (1B, 2B, 2D, 3A,
3B, 4A, 4B, 5B, 5D, 6B, 6D, 7A, and 7B) and explained
about 2.52–6.92% of the phenotypic variation. For the
flag leaf area (FLA), the 40 significant SNP loci identified
across six environments were detected on 16 chromo-
somes (1B, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4B, 4D, 5B, 5D,
6B, 6D, 7A, and 7B) and explained about 2.58–6.37% of
the phenotypic variation. For the flag leaf angle (FA), 13
significant SNP loci were detected on nine chromosomes
(1B, 2B, 3A, 3B, 4B, 4D, 5A, 6A, and 6D), accounting for
about 2.06–3.35% of the phenotypic variation. Of the 68
SNPs identified for the flag leaf-associated traits, 11
pleiotropic loci were associated with three traits.
For the maximum tiller number (MTN), 37 significant

SNP loci were detected on 14 chromosomes (1A, 1B, 2B,
2D, 3A, 3B, 4B, 4D, 5B, 5D, 6B, 6D, 7A, and 7B) and ex-
plained about 1.80–5.32% of the phenotypic variation.
Five significant SNP loci for the heading date (HD) were
distributed on chromosomes 2A and 5A, accounting for
2.73–5.94% of the phenotypic variation. Seven significant
SNP loci for the mature period (MP) were detected on
chromosomes 2B, 3B, 6A, and 7B and accounted for
2.70–3.75% of the phenotypic variation. The seven
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Table 1 SNP sites detected in two or more traits

SNP Trait Environment Chromosome Position -log10p R2(%)

RAC875_rep_c111906_144 FLL/FLA E2 2A 27,967,266 4.45–4.95 2.84–3.23

Tdurum_contig19022_1524 FLL/FLA E2 7B 530,376,060 4.13–4.24 2.61–2.68

wsnp_CAP11_c2435_1256981 FLL/FLA/FLW E2E5 7A 655,447,518 5.76–7.74 3.79–5.32

GENE-0035_150 FLL/FLA/FLW/MTN E2E5 1B 465,098,532 4.22–6.73 2.65–4.55

GENE-0993_47 FLL/FLA/FLW/MTN E2E5 2B 55,691,934 4.68–7.52 2.99–5.16

Tdurum_contig73039_241 FLL/FLA/FLW/MTN E2E5 3B 527,296,306 5.03–7.47 3.25–5.12

Tdurum_contig4974_355 FLL/FLA/FLW/MTN E2E5 4B 95,708,069 4.71–7.29 3.01–4.98

Ku_c7989_781 FLL/FLA/FLW/MTN E2E5 5B 253,378,428 4.28–5.77 2.7–3.82

D_contig73483_655 FLL/FLA/FLW/MTN E2E5 5D 100,546,173 4.7–7.93 3.01–5.47

GENE-3803_329 FLL/FLA/FLW/MTN E2E5 6B 556,487,785 4.14–5.61 2.59–4.37

BobWhite_c36864_159 FLL/FLA/FLW/MTN E2E5 7B 131,745,465 4.19–6.86 2.63–4.85

Tdurum_contig41918_2469 FLL/FLA/FLW/MTN E2E5 7B 628,465,395 4.74–7.57 3.03–5.20

Tdurum_contig42029_1151 FLL/FLA/FLW/MTN E2E5 7B 660,237,019 4.78–7.64 3.07–5.25

BS00099128_51 FLW/MTN E2E5 2D 470,217,019 4.27–4.73 2.91–3.23

Tdurum_contig17320_458 FLW/MTN E2E5 3A 170,784,653 4.12–6.46 2.80–4.61

Excalibur_c43604_751 FLW/MTN E2E5 3B 807,286,509 4.16–6.97 2.83–5.02

Tdurum_contig100205_499 FLW/MTN E2E5 4B 78,818,313 4.38–6.7 3–4.8

wsnp_Ex_c402_791233 FLA/FLW E2E5 1B 548,623,447 5.51–6.37 3.87–4.34

Excalibur_c89155_115 FLA/FLW E5 6B 619,483,986 4.1–4.36 2.78–2.8

GENE-1343_878 FLA/FLW/MTN E2E5 2D 13,440,948 5.10–6.4 3.47–4.3

D_F1BEJMU01DOWJ3_176 FLA/FLW/MTN E2E5 2D 138,694,869 5.49–6.38 3.66–4.46

GENE-0826_51 FLA/FLW/MTN E2E5 3A 32,151,249 4.94–6.07 3.23–4.09

Tdurum_contig16643_466 FLA/FLW/MTN E2E5 3A 549,267,983 4.49–5.85 2.89–4.12

D_GBF1XID01CVZMX_132 FLA/FLW/MTN E2E5 5D 483,515,041 4.89–6.97 3.2–5.02

IACX1201 FLA/FLW/MTN E2E5 6B 219,580,396 4.06–5.96 2.65–4.2

D_contig38762_578 FLA/FLW/MTN E2E5 6D 67,378,176 5.39–6.66 3.75–4.49

RAC875_c48208_304 FLA/FLW/MTN E2E5 7B 3,505,857 5.28–6.17 3.49–4.13

GENE-4534_455 FLA/FLW/MTN E2E5 7B 152,051,848 5.33–6.43 3.52–4.32

Tdurum_contig42179_1562 PET/MTN E2E5 3A 266,433,409 4.71–7.27 3.19–5.26

D_contig26931_415 PET/MTN E2E5 5D 283,010,539 4.12–7.34 2.74–5.32

wsnp_Ex_c14654_22713386 PET/MTN E2E5 7A 11,098,761 4.53–7.07 3.05–5.1

BS00044895_51 PET/MTN E2E5 7A 211,733,339 4.35–7.05 2.91–5.08

Tdurum_contig19022_1524 PET/MTN E2E5 7B 530,376,060 4.6–5.51 3.13–3.85

Kukri_c56333_138 MTN/FC BLUP 1B 670,176,213 4.50–4.75 1.80–2.77

BobWhite_c19617_154 GFR/TGW BLUP 2B 209,099,527 4.89–4.91 3.46–3.59

Kukri_c322_1394 FD/SD E1/BLUP 4B 520,238,759 4.64–4.8 3.07–4.07

Tdurum_contig48366_1324 FD/SD E1E2/BLUP 4B 637,387,355 4.13–4.88 2.62–5.02

Tdurum_contig50783_67 FD/SD BLUP 4B 637,387,809 4.07–4.24 2.57–3.11

RAC875_rep_c105718_585 FIL/SIL/PH E3E4E5E6/BLUP 4D 25,989,112 4.09–7.89 2.03–7.56

BS00044895_51 FIL/SIL/TH E1E2 7A 211,733,339 4.4–6.47 3.78–5.97

BS00022854_51 SIL/TH E1E5 5B 614,983,507 4.29–6.13 2.7–5.62

Ex_c52589_795 GPC/WGC E1 3D 531,375,739 4.36–4.58 2.48–2.53
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significant SNP loci for the grain-filling period (GFP)
were detected on chromosomes 2A, 2B, 2D, and 7B and
accounted for 1.37–2.99% of the phenotypic variation.
Nine significant SNP loci for the grain-filling rate (GFR)
were detected on chromosomes 1A, 1B, 2A, 2B, 4A, 4B,
and 5B, accounting for 2.39–3.59% of the phenotypic
variation. Eight significant SNP loci for TGW were de-
tected on chromosomes 1B, 2B, 3A, 3B, 4B, and 6D,
explaining 2.29–3.59% of the phenotypic variation.
For PH, 20 significant SNP loci were detected on 10

chromosomes (1A, 1B, 2B, 3A, 3B, 4A, 4B, 4D, 5A, and
6B) and explained about 1.96–4.42% of the phenotypic
variation. For the diameter of the first internode (FD),
16 significant SNP loci were detected on nine chromo-
somes (1A, 1B, 2B, 3D, 4A, 4B, 5B, 6A, and 7A) and ex-
plained about 1.53–4.85% of the phenotypic variation.
Regarding the length of the first internode (FIL), 17 sig-
nificant SNP loci were detected on eight chromosomes
(1A, 1B, 2A, 3A, 3B, 4D, 6B, and 7A) and explained
about 2.13–5.76% of the phenotypic variation. For the
diameter of the second internode (SD), the 18 significant
SNP loci identified across six environments were de-
tected on eight chromosomes (2A, 2B, 2D, 3B, 4B, 5B,
6B, and 7B), explaining about 2.15–5.02% of the pheno-
typic variation. For the length of the second internode
(SIL), 15 significant SNP loci were detected on seven
chromosomes (1A, 1D, 4B, 4D, 5B, 7A, and 7D) and ex-
plained about 2.57–5.74% of the phenotypic variation.
For TH, 45 significant SNP loci were detected on 15
chromosomes (1B, 2B, 2D, 3A, 3B, 4A, 4B, 4D, 5B, 5D,
6A, 6B, 6D, 7A, and 7B), accounting for approximately
2.5–7.13% of the phenotypic variation. Among them, it
is noteworthy that three loci on chromosome 4B are as-
sociated with FD and SD.

Yield-related traits
For spike length (SL), nine significant SNP loci were dis-
tributed on seven chromosomes (1B, 3A, 3D, 4B, 6D,
7A, and 7B) and explained about 2.42–4.33% of the
phenotypic variation. Regarding the spikelet number per
spike (SNS), 14 significant SNP loci were detected on six
chromosomes (2A, 2B, 2D, 4B, 4D, and 7A), explaining
about 1.27–4.02% of the phenotypic variation. The nine
significant SNP loci for KNPS were detected on chromo-
somes 1A, 3A, 4A, 4B, and 5D and accounted for 2.58–
4.32% of the phenotypic variation. Regarding the per-
centage of spike-bearing tillers (PET), 11 significant SNP
loci were detected on 10 chromosomes (1A, 2A, 3A, 4D,
5B, 5D, 6B, 6D, 7A, and 7B) and explained about 2.74–
3.55% of the phenotypic variation. For the spike number
per mu (EPM), 17 significant SNP loci were detected on
eight chromosomes (1B, 2A, 4B, 4D, 5A, 5B, 7A, and 7B)
and explained about 2.33–8.47% of the phenotypic
variation.

Quality-related traits
For the grain volume (GV), 17 significant SNP loci were
detected on five chromosomes (1B, 3B, 3D, 6A, and 6B)
and explained about 2.52–5.01% of the phenotypic vari-
ation. The two significant SNP loci for GPC detected on
chromosomes 1A and 3D accounted for 2.35–2.53% of
the phenotypic variation. Two significant SNP loci for
WGC were detected on chromosomes 3D and 5D and
accounted for 2.43–2.90% of the phenotypic variation.
Ten significant SNP loci for the flour content (FC) were
detected on chromosomes 1B, 4B, 5A, 5B, 6A, and 7B,
accounting for 1.80–3.27% of the phenotypic variation.

Putative candidate gene analysis and expression data
In our study, the 200-, 380-, and 600-kb sequences
flanking the related SNPs in subgenomes A, B, and D,
respectively, were identified as potential candidate gene
regions. A total of 638 putative candidate genes detected
of the significant SNPs flanking-regions based on BLUP
data were identified by screening the annotated genes in
the recently released genome sequence (IWGSC RefSeq
v1.0) (Table S4). We performed subsequent haplotype
and expression analysis for the following three critical
traits: SNS (Fig. 1), FD (Fig. 2), and GV (Fig. 3).
Regarding the SNPs associated with SNS, an associ-

ation peak that included four significantly associated
SNPs was detected on chromosome 7A (Fig. 1a, b). On
the basis of the SNPs on chromosome 7A, three haplo-
types were identified, with the mean SNS for haplotype
II (19.57 ± 1.14) significantly lower than the correspond-
ing values for haplotypes I (19.78 ± 1.33) and III (20.31 ±
1.43) (Fig. 1c, d). One of the four significant SNPs
(BS00026622_51) was located at 942 bp in the third exon
of the gene TraesCS7A01G482000. This locus was de-
tected in four environments and in the BLUP model.
SNP (C/A) at this location in the relevant genomic re-
gions cause amino acids to change from leucine to iso-
leucine (Fig. 1e). The expression of the
TraesCS7A01G482000 candidate gene when two nodes
were detectable was significantly upregulated according
to the RNA-seq analysis of the spike (Fig. 1f).
Among the SNPs associated with FD, four similar

SNPs were distributed on chromosome 4B and all were
detected in the BLUP model and in at least one environ-
ment (Fig. 2a). These four SNPs were BS00023035_51,
Tdurum_contig48366_1324, Tdurum_contig50783_67,
and Tdurum_contig50783_285, and four SNPs were sep-
arated 470.67 kb (Fig. 2b). Because of their close genetic
relationship and significant correlation, these SNPs were
used for the subsequent haplotype analysis, which re-
vealed two distinct haplotypes (I and II). A total of 301
wheat materials were included haplotype I, with an FD
of 3.25 ± 0.48 cm, whereas 208 wheat varieties were in-
cluded haplotype II, with an FD of 3.17 ± 0.45 cm (Fig.
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2c, d). The FD of haplotype I was significantly greater
than that of haplotype II, implying lodging is less likely
for wheat varieties with haplotype I than for varieties
with haplotype II. Furthermore, three of the four signifi-
cant SNPs were detected in the CDS of
TraesCS4B01G343700. This gene contains two exons
and the CDS comprises 2450 bp. The two SNPs located

in the second exon resulted in amino acid changes from
arginine to histidine and from aspartic acid to asparagine
(Fig. 2e). The TraesCS4B01G343700 expression level in-
creased in the stem and internode during wheat growth
and development, peaking in the milk stage. This sug-
gests that this gene helps mediate wheat internode
growth and development (Fig. 2f).

Fig. 1 Genome-wide association study results for SNS and an analysis of the peak on chromosome 7A. a Manhattan plots for SNS. The horizontal
line represents the significance threshold. The arrows indicate the location of the main peaks studied. b Genomic locations of four SNP loci and
the LD based on paired R2 values between SNPs on chromosome 7A. c Haplotypes detected in 543 accessions based on the four SNPs. d
Differences in the SNS among three haplotypes. e Structure of the TraesCS7A01G482000 gene. f Transcriptomic analysis of TraesCS7A01G482000 in
the spike during different developmental stages. Gene expression was based on the fragments per kilobase of transcript per million mapped
reads (FPKM) value
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The changes in GV were highly correlated with a
set of SNPs in a 1.95 Mb genomic region (528.62–
530.57 Mb) on chromosome 6B (Fig. 3a, b). These
loci were detected in multiallelic and BLUP contexts.
Three haplotypes were detected in 407 wheat lines
on the basis of genotyping results. More specifically,
haplotypes I, II, and III were detected in 339, 40,
and 28 accessions, respectively. The mean GV of

haplotype II (789.88 ± 8.58) was significantly lower
than that of haplotypes I (798.50 ± 8.29) and III
(799.19 ± 4.60) (Fig. 3c, d). Moreover, one of the four
significant SNPs (Excalibur_c11245_880) was de-
tected at 3315 bp in the TraesCS6B01G295400 cod-
ing sequence (CDS). The SNP (G/A) leads to
changes in amino acids from arginine to histidine
(Fig. 3e). The RNA-seq data revealed that this gene

Fig. 2 Genome-wide association study results for FD and an analysis of the peak on chromosome 4B. a Manhattan plots for FD. The horizontal
line represents the significance threshold. The arrows indicate the location of the main peaks studied. b Genomic locations of four SNP loci and
the LD based on paired R2 values between SNPs on chromosome 4B. c Haplotypes detected in 543 accessions based on the four SNPs. d
Differences in the FD between two haplotypes. e Structure of the TraesCS4B01G343700 gene. f Transcriptomic analysis of TraesCS4B01G343700 in
different tissues and stages. Gene expression was based on the fragments per kilobase of transcript per million mapped reads (FPKM) value
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was highly expressed in developing seeds at 6 days
post-anthesis (Fig. 3f).

Discussion
GWAS have been conducted to analyze the yield and
quality of various crops, including rice [21], soybean
[22], cotton [23], and sorghum [24]. The size of the
study population is closely related to the accuracy of the
association analysis. Long et al. [25] reported that in-
creasing the population size increases the number of in-
dividuals with rare alleles, thereby increasing the
accuracy and efficiency of the positioning of rare alleles.
Therefore, our GWAS for yield- and quality-related
traits involved a wheat 90 K SNP array for 543 wheat ac-
cessions in multiple environments.
We completed a broad-scale comparison of the results

of our study and those of previous investigations. For PH,
a locus (RAC875_rep_c105718_585) on chromosome 4D

identified in four environments based on BLUP data is
about one LD from a QTL (QPH.caas-4DS) described by
Li et al. [26], This previously identified QTL was also sta-
bly identified in two Chinese bread wheat populations. A
QTL (QKNS.caas-4AL) for KNPS between markers
Kukri_rep_c106490_583 and RAC875_c29282_566 on
chromosome 4A was detected earlier in four environ-
ments by Gao et al. [13]. Two sites (Excalibur_c9370_966
and wsnp_Ra_rep_c70233_67968353) related to KNPS re-
vealed in our study are located within this QTL. Gao et al.
also reported a stable QTL (QTKW.caas-4BS.1) for TGW
between markers BobWhite_c162_145 and Kukri_
c66885_230 on chromosome 4B. In the present investiga-
tion, a predicted TGW-associated SNP locus (Tdurum_
contig97386_207) was detected between two markers on
chromosome 4B. Additionally, TaAPO-A1/WAPO-A1
(TraesCS7A02G481600) was identified as a candidate gene
for SNS through map-based cloning [27–29]. Two loci

Fig. 3 Genome-wide association study results for GV and an analysis of the peak on chromosome 6B. a Manhattan plots for GV. The horizontal
line represents the significance threshold. The arrows indicate the location of the main peaks studied. b Genomic locations of five SNP loci and
the LD based on paired R2 values between SNPs on chromosome 6B. c Haplotypes detected in 543 accessions based on the five SNPs. d
Differences in the GV among three haplotypes. e Structure of the TraesCS6B01G295400 gene. f Transcriptomic analysis of TraesCS6B01G295400 in
different tissues and stages. Gene expression was based on the fragments per kilobase of transcript per million mapped reads (FPKM) value
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related to SNS (BS00026622_51 and RAC875_c19111_
628) on chromosome 7A identified in four environments
based on BLUP data are within one LD of TaAPO-A1.
Dobrovolskaya et al. [30] cloned a WFZP (WHEAT
FRIZZY PANICLE) gene related to SNS on chromosome
2D. This gene is within one LD of a stable SNS-related
locus (GENE-0787_85) revealed in the current study. For
the quality-related traits, our GPC locus (GENE-0411_
807) overlaps the GPC QTL mapped to chromosome 1A
by Kumar et al. [31]. Li et al. [32] identified a locus
(IWB41869) related to starch granules on chromosome
7B, which is close to the FC locus (RAC875_c26057_370)
we detected on the same chromosome.
In addition, we have also identified new stable SNPs

that affect specific genes and have been detected in mul-
tiple environments. For example, TraesCS7A01G482000,
which is related to SNS, was predicted to encode a
haloacid dehalogenase (HAD)-like hydrolase domain-
containing protein. In rice, the overexpression of
OsHAD1 reportedly leads to enhanced phosphatase ac-
tivity and increased total and soluble P contents in Pi-
deficient transgenic seedlings during the early panicle
development stage. Increasing the P uptake rate can pro-
mote spikelet formation [33, 34]. The RNA-seq data
available in an online wheat gene expression database in-
dicated this gene is highly expressed when two nodes
are detectable, which coincides with a key period for
wheat spikelet development.
Lodging resistance is another important yield-

related trait. Four significant SNPs for internode
diameter were identified on chromosome 4B. These
SNPs were detected within TraesCS4B01G343700. In
Arabidopsis, AtVPS25 (vacuolar protein sorting-
associated protein) regulates auxin biosynthesis via its
effects on the expression of specific auxin-related
genes. An increase in the auxin content of wheat
plants may lead to increased stalk diameters and en-
hanced lodging resistance [35–37]. A transcriptome-
level analysis of TraesCS4B01G343700 in different tis-
sues and developmental stages proved that this gene
is highly expressed during the stem and internode de-
velopment stage. The expression level peaked in the
milk grain stage, implying the changes occurring in
this stage have important implications for the lodging
resistance of wheat plants.
Regarding the quality-related trait GV, we identified

TraesCS6B01G295400, which encodes a LisH domain-
like protein, as a candidate gene. In rice, OsLIS-L1 (lis-
sencephaly type-1-like 1 protein) is important for male
gametophyte formation, with mutations to this gene
resulting in abnormal development. Additionally, the
protein encoded by this gene influences grain character-
istics and is closely related to the floral development and
grain-filling stages [38]. An analysis of publicly available

wheat RNA-seq data revealed that this gene is highly
expressed in developing seeds, specifically in the starchy
endosperm from day 6 to day 14 post-anthesis and
showed a gradually decreasing trend. Accordingly, this
gene is important for the early grain-filling stage.

Conclusions
In summary, we conducted a GWAS based on the wheat
90 K SNP array to investigate the yield- and quality-
related traits in 543 major wheat accessions. The result-
ing data were analyzed to identify relevant SNP loci and
candidate genes. We are currently developing Kompeti-
tive Allele-Specific PCR markers for the significant loci.
These markers will enable researchers and breeders to
efficiently transfer alleles into elite wheat genotypes [39].
Additionally, a more thorough characterization of the
candidate genes described herein may enhance our un-
derstanding of the molecular mechanisms regulating
wheat yield and quality.

Methods
Plant materials and experimental design
A bread wheat panel of 543 genotypes including culti-
vars, regional test lines, and introduced parental lines
was used, the details have been published in our previ-
ous paper [20]. During the two growing seasons, wheat
plants grow in three places in Hebei Province. The loca-
tions were Baoding (115.5°48′E, 38°85′N), Cangzhou
(116°80′E, 38°58′N), and Xingtai (118°9′E, 39°42′N).
The six environments were designated as follows: 2016
Baoding (E1), 2016 Cangzhou (E2), 2016 Xingtai (E3),
2017 Baoding (E4), 2017 Cangzhou (E5), and 2017 Xing-
tai (E6). The field trial was completed using a completely
randomized design. Each plot contained three 1.5 m
rows with 0.25 m between rows. The plant spacing is
about 2.5 cm. Wheat plants were cultivated following
normal local practices.

Phenotypic evaluation
Twenty-five phenotypic traits were measured, including
growth and development-related traits (FLL, FLW, FLA,
FA, MTN, HD, MP, GFP, GFR, TGW, PH, FD, FIL, SD,
SIL, and TH), yield-related traits (SL, SNS, KNPS, PET,
and EPM), and quality-related traits (GV, GPC, WGC,
and FC). The data recorded for each trait are summa-
rized in Table S1. The phenotypic traits were assessed in
all six environments. The phenotypic data for each en-
vironment and the BLUP data were used for the
genome-wide association analysis.

Phenotypic data analysis
The descriptive statistical analysis and correlation ana-
lysis for the phenotypic data were completed using the
SPSS 25.0 software. Pearson’s correlation coefficients
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were calculated to evaluate the correlations among the
traits.

SNP genotyping
The wheat 90 K Illumina Infinium SNP array was used
to genotype the association panel containing 543 acces-
sions. The SNP data were clustered and automatically
called using the Illumina BeadStudio genotyping soft-
ware (Illumina, San Diego, CA, USA). The data were fil-
tered to remove alleles with a detection rate less than
0.1 and a minor allele frequency less than 0.05 [12].
Additionally, samples with a loss rate greater than 10%
and a heterozygosity frequency greater than 20% were
eliminated.

Genome-wide association analysis
The population structure, relative kinship, and LD were
analyzed in a previous study [20]. In the current study,
we completed a GWAS using the GAPIT package [40]
in the R software. A mixed linear model program (Q +
K) [41], with the population stratification results and
kinship as covariates, was used to minimize false posi-
tives [40]. The P value threshold was calculated based
on the number of markers (P = 1/n, n = total number of
SNPs used) as described by Li et al. [42]. Regarding the
GWAS results, a P value of 1/11,140 (−log10P = 4.05)
was used as the criterion for identifying significant
SNPs.

Prediction of candidate genes and expression analysis
The ‘Chinese Spring’ Genome database (IWGSC RefSeq
v1.0, http: //www.wheatgenome.org/) was used for pre-
dicting candidate genes for the significant sites revealed
by the genome-wide association analysis. Specifically,
candidate genes around the significant sites were identi-
fied according to the differences in the LD decay dis-
tance among chromosomal groups. The expression
profiles of putative candidate genes were analyzed using
a wheat gene expression database available online
(http://www.wheat-expression.com/). This database,
which includes 850 wheat RNA-sequencing samples and
an annotated genome, reveals the similarities and differ-
ences between homoeolog expression levels in diverse
tissues, developmental stages, and cultivars [33, 43].
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