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Marker-trait association analysis for drought
tolerance in smooth bromegrass
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Abstract

Background: Little information is available on the application of marker-trait association (MTA) analysis for traits
related to drought tolerance in smooth bromegrass. The objectives of this study were to identify marker loci associated
with important agronomic traits and drought tolerance indices as well as fining stable associations in a diverse panel of
polycross derived genotypes of smooth bromegrass. Phenotypic evaluations were performed at two irrigation regimes
(normal and deficit irrigation) during 2 years; and association analysis was done with 626 SRAP markers.

Results: The results of population structure analysis identified three main subpopulations possessing significant genetic
differences. Under normal irrigation, 68 and 57 marker-trait associations were identified using general linear model
(GLM) and mixed linear mode1 (MLM), respectively. While under deficit irrigation, 61 and 54 markers were associated
with the genes controlling the studied traits, based on these two models, respectively. Some of the markers were
associated with more than one trait. It was revealed that markers Me1/Em5–11, Me1/Em3–15, and Me5/Em4–7 were
consistently linked with drought-tolerance indices.

Conclusion: Following marker validation, the MTAs reported in this panel could be useful tools to initiate marker-
assisted selection (MAS) and targeted trait introgression of smooth bromegrass under normal and deficit irrigation
regimes, and possibly fine mapping and cloning of the underlying genes and QTLs.

Keywords: Association analysis, Population structure, Sequence-related amplified polymorphism, Smooth
bromegrass, Water deficit

Background
Smooth bromegrass (Bromus inermis Leyss.) is a long-
lived and cool-season grass species [1, 2] which is adapted
to dry regions and grown mostly for hay, pasture and soil
conservation [1].
Drought is the major abiotic constraint affecting

growth and productivity of crops worldwide [3, 4].
Development of suitable cultivars with more drought
tolerance is crucial for enhancing sustainable production
of plants and provides a strategy for alleviation of the
effects of climate change [5]. However, drought tolerance is
a complex and quantitative trait, including several meta-
bolic pathways. A promising strategy to facilitate selection

for drought tolerance is to identify and select for genetic
markers linked to the traits related to drought tolerance
(marker assisted selection; MAS). The main prerequisite for
MAS is the availability of markers that are tightly linked to
genes or quantitative trait loci (QTLs) which can be used to
select for traits that are difficult to measure or dependent
on the developmental stage [6, 7].
The application of molecular markers allows locating

the genes of interest in the genome, thus avoiding the
time and the space needed in breeding programs [8].
Sequence-related amplified polymorphism (SRAP) is a
PCR-based molecular marker technique which can be
used for a variety of purposes, including genetic diversity
analysis, map construction, gene tagging, genomic and
cDNA fingerprinting, and map based cloning [9, 10].
Moreover, it is an advanced molecular marker for
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genetic research in grass and forage species, which uses
from two primers with an arbitrary nucleotide sequence
and therefore can detect nucleotide sequence polymor-
phisms [11]. Analysis of SRAP data has frequently been
used for the construction of linkage maps [12, 13] and
identification of QTLs [14, 15]. However, the utilization
of SRAP for grass and forage researches such as associ-
ation analysis in smooth bromegrass is rare.
The first step towards MAS, as an important tool for

accelerating varietal improvement and rate of genetic
gain, is to dissect marker-trait associations (MTAs) [16].
Two approaches which can be used for dissection of
quantitative complex traits are association mapping and
linkage analysis [17, 18]. However, QTL mapping has a
low resolution and requires a lot of time and resources
[19, 20]. Genome-wide association studies (GWAS) or
association mapping have recently become a popular
alternative to QTL mapping for identifying MTAs in
plant populations [21, 22]. Compared to linkage map-
ping, GWAS overcomes several of the drawbacks of
QTL mapping. It offers higher mapping resolution, is
less time consuming and requires fewer resources, and
evaluates a wide range of alleles rapidly [23, 24].
In order to avoid identifying spurious associations

between markers and traits and also to avoid of both
types of error (types I and II) in association analysis, it is
necessary to evaluate the population structure and use
from a mixed-model approach [6, 25, 26]. Two models
of general linear model (GLM) and mixed linear model
(MLM) are used for association analysis. In MLM, both
the kinship matrix (K) and population structure (Q) are
merged, whereas in the GLM, only population structure
information is utilized as a covariate [6].
In recent years, the application of association analysis

in forage grasses is discussed in several reports. In
perennial ryegrass (Lolium perenne) the application of
association mapping for some traits such as flowering
time, leaf length, carbohydrate content, submergence
tolerance, salinity and drought tolerance has been evalu-
ated [27–31]. In tall fescue (Festuca arundinacea), SSR
loci related to agronomic traits [32] and heat-tolerance-
related traits [33] have been detected. Kempf et al.
(2017) applied SRAP and SSR markers in marker–trait
association analysis for agronomic and compositional
traits of sainfoin (Onobrychis viciifolia) [7]. In orchard-
grass, studies have been carried out for detection of the
loci related to drought tolerance, seed yield, forage yield
[34], rust resistance [35], and heading date [36]. Such
studies have demonstrated that GWAS is an efficient
method for identifying genomic regions associated with
complex quantitative traits. However, in smooth brome-
grass the application of association mapping in identifying
links between genes or markers with complex quantitative
traits such as drought tolerance is still in its infancy. This

study was conducted to: i) identify genetic loci associated
with the key agronomic traits and drought tolerance,
under normal and water deficit conditions using SRAP
markers; and ii) discover stable marker loci linked to the
agronomic and drought tolerance related traits.

Results
Phenotyping
Significant differences were observed between irrigation
regimes for most of the measured traits. Except for flag
leaf length (FLL), flag leaf width (FLW), panicle length
(PL), and winter growth vigor (WGV), the magnitude of
mean performance was significantly decreased for all of
the evaluated traits, under water-deficit condition. Dry
matter yield (DMY) was decreased by deficit irrigation
42% on average (Table 1).
Phenotypic coefficient of variation (PCV) showed a

range from 4.89% for plant height (PH) to 23.77% for
number of stems per plant (NS) under normal irrigation
and from 6.89% for days to anthesis (DA) to 27.42% for
NS under deficit irrigation (Table 1). Genetic coefficient
of variation (GCV) ranged from 6.08% for PH to 27.32%
for NS under normal irrigation and from 7.07% for DA
to 30.87% for NS under deficit irrigation. Except for
crown diameter (CD), the values of genetic variation
under deficit irrigation were higher than the ones for
normal irrigation (Table 1).
The estimates of broad-sense heritability for each irri-

gation regime are given in Table 1. Moderate to high
values of heritability estimates were observed for all of
the evaluated traits, under both irrigation regimes. The
range of this parameter was from 61.33% for WGV to
94.05% for DA under normal irrigation and from 66.01%
for DMY to 95.13% for days to panicle emergence (DPE)
under deficit irrigation regime. For all traits, estimates of
heritability were higher under normal irrigation than
deficit irrigation (Table 1).

Genotyping
In total, 959 bands were created from 30 SRAP primer
combinations, of which 626 bands were polymorphic
(Table 2). The range of total number of bands scored
per primer combination was from 13 (Me3/Em3) to 28
(Me4/Em2), with an average of 21 bands. The percent-
age of polymorphic bands ranged from 55.17% (Me4/
Em3) to 85.19% (Me3/Em4) with an average of 69.85%.
The relative informativeness of each marker can be eval-
uated based on its PIC value. In the present study, PIC
value ranged from 0.35 (Me1/Em5) to 0.50 (Me2/Em4,
Me3/Em4, and Me5/Em3), with the average of 0.45. The
highest and lowest MI values were 12.60 (Me4/Em2)
and 5.85 (Me3/Em3), respectively. Markers Me4/Em2
and Me3/Em1 showed the highest and lowest RP values,
respectively (Table 2).
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Population structure and association analysis
The maximum likelihood and DK were used to calculate
the optimum number of subpopulations (K). The max-
imum value of DK obtained at K = 3, suggested that
there were three subpopulations in the smooth brome-
grass panel (Table 3; Figs. 1 and 2). Each of these three
subpopulations had its own characteristics. Subpopula-
tion 1 contained seven genotypes of G30, G31, G32,
G33, G34, G35, and G36 (Fig. 2). All of these genotypes
were belonged to Hungary, and had higher persistence
than other genotypes. Subpopulation 2 included geno-
types G11, G15, G21, G26, and G28, which all of them
were belonged to Hungary except for G15 (Iranian geno-
type). Genotypes of this subpopulation were early flow-
ering and had lower productivity than other genotypes.
The remaining genotypes were located in the third sub-
population (Fig. 2). This subpopulation showed late
flowering and had higher productivity than other ones.
All of the genotypes of this subpopulation were Iranian
except for G12, G13, and G25 (Hungarian genotypes).
As observed, structure analysis was able to separate
genotypes based on geographical or ecological data.
Association analysis between SRAP markers and the

phenotypic mean of traits (over years and irrigation re-
gimes) was separately conducted based on both GLM
and MLM models. Under normal irrigation, based on
the GLM model (P values < 0.01 and a cut-off value of
0.05 for the FDR) 68 SRAP markers showed significant
associations with means of the studied traits, at the 0.01
probability level (Table S1). The percentage of pheno-
typic variation (coefficient of determination, R2) of an
individual trait explained ranged from 11.75 to 31.32%
(Table S1). Under deficit irrigation, 61 markers had sig-
nificant associations with the studied traits, at the 0.01

probability level (Table S1). The percentage of pheno-
typic variation (R2) of a trait explained varied from 9.89
to 26.28% (Table S1). However, in the MLM model, kin-
ship or relatedness matrix was considered as a factor,
and the number of significant markers decreased as
compared to GLM model. So that, under normal irriga-
tion 57 markers and under deficit irrigation 54 markers
indicated significant associations at the 0.01 probability
level (Table 4). In this model, the percentage of pheno-
typic variation, under normal irrigation ranged from
7.71 to 20.89% and under deficit irrigation varied from
6.76 to 17.61% (Table 4). Moreover, association analysis
was also done for drought tolerance and susceptibility
indices. Results revealed that 19 and 20 markers showed
significant associations with the calculated indices based
on GLM and MLM model, respectively (Tables 5 and S2).
Based on the results of GLM and MLM models, some

markers were associated with more than one trait at the
same time. For example, under normal and deficit irriga-
tion regimes, marker Me1/Em6–7 showed simultan-
eously significant associations with DA, PH, FLL, and
FLW, based on both GLM and MLM models. Marker
Me2/Em5–21 had concurrently significant associations
with DA, PH, and FLL, under both irrigation regimes
and in both GLM and MLM models (Tables 4 and S1).
In addition, under normal irrigation, marker Me2/Em1–
14 showed significant associations with DPE, DA, PH,
FLL, and FLW, based on GLM model; and showed sig-
nificant associations with the traits of DPE, DA, PH, and
FLL based on MLM model. However, under deficit irri-
gation this marker had significant associations with DA
and PH based on both models (Tables 4 and S1). Based
on MLM model, marker Me1/Em5–11 showed associa-
tions with DMY and WGV under both normal and

Table 1 Mean performance, phenotypic coefficient of variation (PCV), genotypic coefficient of variation (GCV), and broad- sense
heritability (h2b) of traits recorded under normal and water deficit conditions in smooth bromegrass genotypes

Traits Mean ± SD Change
(%)

PCV (%) GCV (%) h2b (%)

Normal Stress Normal Stress Normal Stress Combined Normal Stress

DPE (day) 58.89 ± 7.62 56.61 ± 6.84 3.87a 9.37 10.49 8.95 10.24 95.32 91.27 95.13

DA (day) 80.36 ± 6.83 77.83 ± 6.17 3.15a 6.55 7.07 6.35 6.89 95.60 94.05 95.06

PH (cm) 96.57 ± 16.22 75.55 ± 13.69 21.77b 6.08 12.41 4.89 11.68 73.05 64.72 88.59

FLL (mm) 141.62 ± 28.40 152.54 ± 29.96 −7.71a 10.36 11.50 8.88 10.26 84.73 73.46 79.62

FLW (mm) 6.99 ± 1.33 7.18 ± 1.73 −2.72n.s 12.25 14.39 11.76 13.46 92.73 92.17 87.51

PL (cm) 16.03 ± 2.13 16.00 ± 2.34 0.19n.s 9.14 10.21 8.42 9.42 89.08 84.92 85.17

NS (No. plant−1) 187.58 ± 78.75 149.57 ± 68.14 20.26b 27.32 30.87 23.77 27.42 86.40 75.75 78.89

DMY (g/plant) 99.25 ± 46.61 57.12 ± 28.75 42.45b 23.13 27.45 19.09 22.30 77.99 68.13 66.01

CD (cm) 25.76 ± 5.25 23.28 ± 4.19 9.63b 14.54 12.97 13.74 12.02 89.66 89.34 85.89

WGV 2.47 ± 0.97 3.58 ± 1.35 −44.94b 20.66 19.88 16.18 16.84 75.19 61.33 71.80

GCV Genotypic coefficient of variation, PCV Phenotypic coefficient of variation, SD Standard deviation
CD Crown diameter, DA Days to anthesis, DMY Dry matter yield, DPE Days to panicle emergence, FLL Flag leaf length, FLW Flag leaf width, NS Number of stems
per plant, PH Plant height, PL Panicle length, WGV Winter growth vigor
a, b, and c significant at the 0.05, 0.01, and 0.001 probability levels, respectively; ns: not significant
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Table 2 Information and diversity statistics for sequence related amplified polymorphism (SRAP) markers used for association
analysis in smooth bromegrass

No. Oligo name Oligo sequence 5′→ 3′ NPB/NB PPB PIC MI RP

1 Me1/Em1 TGAGTCCAAACCGGTTG
GACTGCGTACGAATTTGC

24/33 72.73 0.47 11.28 23.94

2 Me1/Em2 TGAGTCCAAACCGGTTG
GACTGCGTACGAATTACG

26/36 72.22 0.43 11.18 24.61

3 Me1/Em3 TGAGTCCAAACCGGTTG
GACTGCGTACGAATTTAG

23/32 71.88 0.49 11.27 20.06

4 Me1/Em4 TGAGTCCAAACCGGTTG
GACTGCGTACGAATTCAG

19/27 70.37 0.44 8.36 19.78

5 Me1/Em5 TGAGTCCAAACCGGTTG
GACTGCGTACGAATTCGA

24/37 64.86 0.35 8.40 25.83

6 Me1/Em6 TGAGTCCAAACCGGTTG
GACTGCGTACGAATTTGA

25/37 67.57 0.37 9.25 26.72

7 Me2/Em1 TGAGTCCAAACCGGTGT
GACTGCGTACGAATTTGC

20/31 64.52 0.49 9.80 23.00

8 Me2/Em2 TGAGTCCAAACCGGTGT
GACTGCGTACGAATTACG

19/27 70.37 0.49 9.31 22.22

9 Me2/Em3 TGAGTCCAAACCGGTGT
GACTGCGTACGAATTTAG

22/31 70.97 0.38 8.36 21.50

10 Me2/Em4 TGAGTCCAAACCGGTGT
GACTGCGTACGAATTCAG

26/34 76.47 0.46 11.96 27.50

11 Me2/Em5 TGAGTCCAAACCGGTGT
GACTGCGTACGAATTCGA

24/37 64.86 0.48 11.52 29.17

12 Me2/Em6 TGAGTCCAAACCGGTGT
GACTGCGTACGAATTTGA

18/25 72.00 0.50 9.00 17.00

13 Me3/Em1 TGAGTCCAAACCGGATA
GACTGCGTACGAATTTGC

14/19 73.68 0.46 6.44 12.50

14 Me3/Em2 TGAGTCCAAACCGGATA
GACTGCGTACGAATTACG

18/22 81.82 0.49 8.82 22.80

15 Me3/Em3 TGAGTCCAAACCGGATA
GACTGCGTACGAATTTAG

13/16 81.25 0.45 5.85 16.70

16 Me3/Em4 TGAGTCCAAACCGGATA
GACTGCGTACGAATTCAG

23/27 85.19 0.50 11.50 26.90

17 Me3/Em5 TGAGTCCAAACCGGATA
GACTGCGTACGAATTCGA

16/21 76.19 0.46 7.36 19.70

18 Me3/Em6 TGAGTCCAAACCGGATA
GACTGCGTACGAATTTGA

15/19 78.95 0.41 6.15 18.60

19 Me4/Em1 TGAGTCCAAACCGGAGC
GACTGCGTACGAATTTGC

19/30 63.33 0.44 8.36 20.00

20 Me4/Em2 TGAGTCCAAACCGGAGC
GACTGCGTACGAATTACG

28/45 62.22 0.45 12.60 31.61

21 Me4/Em3 TGAGTCCAAACCGGAGC
GACTGCGTACGAATTTAG

16/29 55.17 0.45 7.20 18.17

22 Me4/Em4 TGAGTCCAAACCGGAGC
GACTGCGTACGAATTCAG

23/34 67.65 0.43 9.89 26.00

23 Me4/Em5 TGAGTCCAAACCGGAGC
GACTGCGTACGAATTCGA

20/29 68.97 0.39 7.80 20.94

24 Me4/Em6 TGAGTCCAAACCGGAGC
GACTGCGTACGAATTTGA

23/39 58.97 0.47 10.81 28.22

25 Me5/Em1 TGAGTCCAAACCGGTGC
GACTGCGTACGAATTTGC

25/37 67.57 0.46 11.50 26.44

26 Me5/Em2 TGAGTCCAAACCGGTGC
GACTGCGTACGAATTACG

21/30 70.00 0.47 9.87 15.78

27 Me5/Em3 TGAGTCCAAACCGGTGC 23/33 69.70 0.50 11.50 22.33
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deficit irrigation regimes (Table 4). Moreover, markers
Me1/Em5–11 and Me1/Em3–15 showed significant as-
sociations with MP, GMP, and STI, based on both GLM
and MLM models (Tables 5 and S2).
To assess stable associations, association analysis was

conducted in each irrigation regime, separately. In total,
30 and 21 MTAs showed adequately stable expression
across irrigation regimes, based on GLM and MLM
models, respectively. For instance, in GLM model,
markers Me1/Em6–7, Me2/Em1–14, Me2/Em2–13,
Me4/Em6–22, Me2/Em5–21, Me2/Em3–19, Me2/Em1–
12, and Me1/Em6–16 showed significant and stable as-
sociations in both irrigation regimes with DA. Similarly,
markers Me1/Em5–11, Me1/Em5–24, Me2/Em6–16,
Me5/Em2–20, and Me1/Em2–19 displayed significant
and constant associations in both irrigation regimes with
WGV (Table S1). In MLM model, markers Me1/Em6–7,
Me2/Em1–14, Me2/Em2–13, Me4/Em6–22, and Me2/
Em5–21 had significant and stable associations in both
irrigation regimes with DA. Also, markers Me4/Em4–14,
Me4/Em6–2, Me5/Em2–1, Me1/Em2–21, and Me1/
Em1–13 were constantly associated with FLW in both
moisture conditions. In the same way, marker Me1/
Em5–11 was associated with DMY (Table 4).

Discussion
Significant genetic variations among genotypes in terms
of all of the evaluated traits demonstrate the difference
in genes controlling yield, its components, and drought-
tolerance. Moreover, the non-static performance of
genotypes in two irrigation regimes emphasizes the im-
portance of marker-trait association analysis in the two
moisture environments, separately.
Most of the evaluated traits were significantly affected

by water deficit due to decreased water potential of the
soil and decline in net assimilation and photosynthesis
of leaves [37, 38]. Similar results were reported in other
researches [39, 40]. Wide genetic variation observed for
all of the evaluated traits is promising genetic progress
for these genotypes. Moreover, higher estimates for PCV
and GCV under the deficit irrigation regime compared
with normal irrigation indicate that water deficit have in-
creased genetic variation for most of the studied traits
and therefore, selection under deficit irrigation would be
more effective. Our findings in this case are consistent
with the reports of Abtahi et al. [41] and Saeidnia et al.
[42]. However, some researchers stated that the genetic
advance through selection is higher under normal irrigation
[39, 43]. Moderate to high heritability estimates observed

Table 2 Information and diversity statistics for sequence related amplified polymorphism (SRAP) markers used for association
analysis in smooth bromegrass (Continued)

No. Oligo name Oligo sequence 5′→ 3′ NPB/NB PPB PIC MI RP

GACTGCGTACGAATTTAG

28 Me5/Em4 TGAGTCCAAACCGGTGC
GACTGCGTACGAATTCAG

24/33 72.73 0.40 9.60 23.50

29 Me5/Em5 TGAGTCCAAACCGGTGC
GACTGCGTACGAATTCGA

19/32 59.38 0.49 9.31 21.83

30 Me5/Em6 TGAGTCCAAACCGGTGC
GACTGCGTACGAATTTGA

16/25 64.00 0.48 7.68 13.06

MI Marker index, NB No. of bands, NPB No. of polymorphic bands, PIC Polymorphic information content, PPB Percentage of polymorphic bands, RP Resolving power

Table 3 Calculated statistics to detect optimum number of subpopulations (K) in structure analysis of smooth bromegrass
genotypes using the STRUCTURE program

K Reps. Mean LnP (K) Stdev. LnP (K) Ln′ (K) Ln′′ (K) ΔK

2 5 −15,785.10 8.81 – – –

3* 5 −15,648.70 18.45 136.40 4616.68 250.19

4 5 −20,128.98 5968.36 − 4480.28 5961.88 1.00

5 5 −18,647.38 4062.75 1481.60 1102.94 0.27

6 5 −18,268.72 2143.97 378.66 5471.46 2.55

7 5 −23,361.52 5990.88 − 5092.80 3066.18 0.51

8 5 −25,388.14 5288.39 − 2026.62 8905.46 1.68

9 5 −36,320.22 8671.94 −10,932.08 15,386.38 1.77

10 5 −31,865.92 4503.99 4454.30 – –

Mean LnP (K), mean of LnP(D) of repetitions for each K; Stdev. LnP (K), standard deviation of repetitions; Ln′ (K), Ln (K) n – Ln (K) n – 1; Ln′′ (K), Ln′ (K) n – Ln′ (K) n
– 1; DK, |Ln′′ (K)|/stdev LnP (K). *, K-value with largest DK
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for all of the evaluated traits indicates that the improvement
of these traits would be possible through selection and also
emphasizes that detecting of marker–trait associations is
possible for these traits [44].
The high percentage of polymorphism indicated that

SRAP markers used in the present research could be
used as powerful tools for discriminating of smooth
bromegrass genotypes. Results of this study also revealed
that the primer combination Me4/Em2 with the highest
polymorphism percentage and high values of PIC, MI,
and RP indices is informative and powerful enough for
identification and discrimination of smooth bromegrass
genotypes.
Population structure analysis identified three groups of

genotypes in the studied panel of smooth bromegrass.
As expected, structure analysis was able to separate
genotypes based on their origin. Based on the results of
association analysis of different traits under normal and
deficit irrigations, the number of significant MTAs was
lower in the MLM than GLM model. SRAP markers
identified based on the results of MLM model can be

considered as the most interesting candidates for future
studies using MAS. It is stated that the combination of
Q and K matrices strongly reduces the coefficient of
determination and likely provides the best correction for
population structure [45].
Marker-trait associations were mostly different in nor-

mal and deficit irrigation regimes. The results showed
that a greater number of genes were probably involved
in controlling traits at deficit irrigation regime than nor-
mal one. The percentage of variation which is explained
by identified associations was low (7.71–20.89% under
normal irrigation and 6.76–17.61% under water-deficit
irrigation). This low R2 value for each trait may be at-
tributed to the role of many minor genes controlling the
trait, outcrossing nature of smooth bromegrass, markers
exhibiting minor quantitative effect, rare alleles, and
complex allelic interactions [46, 47]. These results are in
agreement with the findings of Lou et al. [32] and Sun
et al. [33] in tall fescue.
Based on the results of GLM and MLM models, some

markers had simultaneously significant associations with

Fig. 1 Population structure analysis in a diverse germplasm of smooth bromegrass (The optimum number of subpopulations was determined
using Δk in the Bayesian clustering method)

Fig. 2 The results of genetic association analysis of smooth bromegrass genotypes performed by STRUCTURE software version 2.3.4. The
membership coefficients of genotypes are given on the y-axis. Each of the three identified subpopulations is shown by a different color
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Table 4 Association of SRAP markers with phenological, morphological, and agronomic traits of smooth bromegrass genotypes
under normal and water deficit conditions based on mixed linear model (MLM)

Traits Normal irrigation Deficit irrigation

Marker P value R2 (%) Marker P value R2 (%)

DPE Me1/Em4–13a 0.0054 10.08 Me4/Em1–5a 0.0047 9.52

Me3/Em1–13 0.0058 9.94 Me4/Em2–11 0.0049 9.46

Me2/Em1–14 0.0059 9.88 Me2/Em4–7 0.0062 9.01

Me2/Em2–13 0.0067 9.61 Me1/Em4–13a 0.0080 8.52

Me4/Em1–5a 0.0070 9.54

Me1/Em3–10 0.0098 8.82

DA Me1/Em6–7a 0.0012 11.20 Me1/Em6–7a 0.0001 12.79

Me2/Em1–14a 0.0013 10.99 Me2/Em1–14a 0.0004 11.33

Me1/Em4–13 0.0017 10.56 Me2/Em1–12 0.0011 9.87

Me2/Em2–13a 0.0032 9.53 Me4/Em6–22a 0.0017 9.23

Me4/Em6–22a 0.0051 8.70 Me2/Em5–21a 0.0043 7.82

Me3/Em1–13 0.0069 8.15 Me5/Em3–3 0.0085 6.78

Me2/Em5–21a 0.0088 7.71 Me2/Em2–13a 0.0086 6.76

PH Me1/Em6–7a 0.0008 20.89 Me1/Em6–7a 0.0016 18.83

Me2/Em1–14 0.0013 19.40 Me2/Em5–21a 0.0024 17.61

Me2/Em5–21a 0.0014 19.20 Me5/Em5–15 0.0046 15.68

Me5/Em3–10 0.0046 15.59 Me1/Em2–2 0.0067 14.51

Me5/Em6–1 0.0060 14.79 Me4/Em2–11 0.0070 14.35

Me4/Em3–14 0.0062 14.67

Me2/Em4–2 0.0072 14.21

Me2/Em5–22 0.0084 13.75

FLL Me2/Em5–21 0.0011 16.46 Me1/Em6–7a 0.0027 14.97

Me1/Em6–7a 0.0015 15.62 Me2/Em5–8 0.0029 14.86

Me5/Em6–11 0.0025 14.46 Me3/Em1–6 0.0047 13.53

Me5/Em3–3 0.0045 12.96 Me2/Em1–20 0.0061 12.83

Me2/Em1–14 0.0054 12.47 Me2/Em2–4 0.0063 12.74

Me1/Em6–16 0.0075 11.62 Me2/Em4–23 0.0077 12.19

Me5/Em1–21 0.0078 12.17

Me4/Em3–13 0.0087 11.85

FLW Me4/Em4–14a 0.0011 14.76 Me1/Em2–21a 0.0011 14.70

Me4/Em6–2a 0.0012 14.51 Me4/Em6–2a 0.0023 13.12

Me5/Em2–1a 0.0014 14.09 Me4/Em4–14a 0.0029 12.59

Me1/Em2–21a 0.0042 11.73 Me5/Em2–1a 0.0047 11.52

Me1/Em6–7 0.0042 11.71 Me4/Em1–14 0.0068 10.65

Me5/Em5–7 0.0072 10.48 Me1/Em1–13a 0.0093 9.93

Me1/Em1–13a 0.0079 10.27

PL Me2/Em3–5 0.0049 13.64 Me5/Em2–13 0.0015 15.49

Me4/Em1–9 0.0084 12.13 Me2/Em2–18 0.0043 12.93

Me2/Em2–12 0.0075 11.53

Me1/Em1–6 0.0088 11.12

NS Me2/Em2–16 0.0033 16.43 Me5/Em4–10 0.0027 17.56

Me2/Em6–18 0.0039 15.98 Me4/Em2–24 0.0030 17.26
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more than one trait. These markers may be effectively
used to improve several traits, concurrently [33, 34].
Multi-association between different traits could be at-
tributed to the co-expression mediated by expression of
quantitative trait loci or e-QTLs [48]. For instance,
marker Me1/Em6–7 showed simultaneously significant
associations with DA, PH, FLL, and FLW, under both irri-
gation regimes and based on both GLM and MLM
models. Similarly, marker Me2/Em5–21 concurrently
showed significant associations with DA, PH, and FLL. In
addition, under normal irrigation, marker Me2/Em1–14
showed significant associations with DPE, DA, PH, FLL,
and FLW, based on GLM model; and also showed signifi-
cant associations with DPE, DA, PH, and FLL based on
MLM model. At deficit irrigation, this marker had signifi-
cant associations with DA and PH based on both models.
These simultaneous associations of markers with multiple
traits may be attributed to pleiotropic effects or to several
tightly linked genes that affect multiple traits [33, 49].
Determination of the genetic basis of drought toler-

ance requires correlating the occurrence of molecular
markers with phenotypic scores for prediction of DNA

genomic regions which involves effective factors on the
response of plants [50]. Marker–trait association analysis
identified 19 and 20 loci related with drought tolerance
and susceptibility indices based on GLM and MLM
models, respectively. Among these, SRAP markers Me1/
Em5–11 and Me1/Em3–15 showed significant associa-
tions with MP, GMP, and STI, based on both GLM and
MLM models. Moreover, in both models, markers Me5/
Em5–9 and Me5/Em3–10 showed a significant associ-
ation with DSI. If the effectiveness of these regions in
the genetic control of drought tolerance is confirmed,
these markers could be potentially used for the improve-
ment of drought tolerance in smooth bromegrass.
Most of the MTAs were different under normal and def-

icit irrigations, indicating that the environmental factors
have affected these associations [51]. These results showed
that different genes may be effective on the same trait in
different environments [52] or there might be a change in
the expression level of the same gene between the two envi-
ronments [48]. In the present study, 21 markers showed
stable associations with different traits under both irrigation
regimes. Diapari et al. [53] stated that associated markers

Table 4 Association of SRAP markers with phenological, morphological, and agronomic traits of smooth bromegrass genotypes
under normal and water deficit conditions based on mixed linear model (MLM) (Continued)

Traits Normal irrigation Deficit irrigation

Marker P value R2 (%) Marker P value R2 (%)

Me5/Em4–7a 0.0041 15.83 Me5/Em4–7a 0.0034 16.92

Me5/Em4–11 0.0049 15.23 Me5/Em2–20 0.0048 15.79

Me2/Em6–10 0.0084 13.57 Me4/Em6–20 0.0096 13.59

Me4/Em3–11 0.0094 13.25

DMY Me1/Em3–15 0.0030 14.42 Me1/Em5–11a 0.0028 14.14

Me4/Em2–12 0.0061 12.61 Me1/Em5–23 0.0033 13.75

Me4/Em1–17 0.0081 11.84 Me2/Em4–16 0.0098 10.93

Me1/Em5–11a 0.0094 11.43

CD Me4/Em2–12 0.0004 20.20 Me5/Em4–22a 0.0040 13.52

Me5/Em4–11 0.0049 13.87 Me1/Em5–11 0.0050 12.95

Me5/Em4–22a 0.0095 12.00 Me2/Em4–16 0.0095 11.24

WGV Me1/Em5–11a 0.0011 19.30 Me2/Em4–7 0.0024 17.21

Me5/Em4–21 0.0015 18.42 Me1/Em5–11a 0.0032 16.35

Me5/Em3–5 0.0028 16.69 Me5/Em5–18 0.0040 15.70

Me5/Em2–20a 0.0036 15.98 Me2/Em6–16a 0.0046 15.32

Me1/Em5–24 0.0045 15.31 Me5/Em2–20a 0.0046 15.30

Me5/Em1–4 0.0047 15.14 Me1/Em5–3 0.0048 15.16

Me2/Em6–16a 0.0094 13.04 Me1/Em2–19 0.0058 14.59

Me2/Em2–1 0.0099 12.86 Me2/Em5–5 0.0074 13.84

Me1/Em3–15 0.0089 13.27

CD Crown diameter, DA Days to anthesis, DMY Dry matter yield, DPE Days to panicle emergence, FLL Flag leaf length, FLW Flag leaf width, NS Number of stems
per plant, PH Plant height, PL Panicle length, WGV Winter growth vigor
a Stable markers under normal and water deficit conditions
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which were detected in two or more different environments
are more reliable than those present in only one
environment.

Conclusion
In conclusion, the efficiency of association analysis
approach as a powerful tool for identifying and detecting
genes and markers linked to complex traits of agricultural
and economic importance was illustrated. Satisfactory
levels of polymorphism were observed for the studied traits
in the polycrossed population. Three subpopulations were
identified in smooth bromegrass genotypes; and 90 signifi-
cant MTAs were detected using GLM and MLM models,
under contrasting water conditions. Among these, three
MTAs were identified for drought tolerance. Moreover, it
was demonstrated that SRAP markers can be used in the
future breeding programs to enhance drought tolerance of
smooth bromegrass. Some SRAP markers were associated
with the key agronomic traits of this species. Environmen-
tal specificity of MTAs shows that genotype × environment
interactions are effective on association analysis; neverthe-
less, 30 and 21 MTAs showed significantly stable expres-
sion across two irrigation regimes based on GLM and
MLM models, respectively. The markers identified in the

present study are useful genomic resources for MAS in the
future breeding programs of smooth bromegrass.

Methods
Plant materials and field experiment
A replicated nursery of smooth bromegrass (containing
1000 samples) was established at Isfahan University of
Technology Research Farm in 2006. Some of these plant
materials were provided by the Hungarian Institute for
Agrobotany (HIFA), Tapioszele, Hungary. The Iranian
ecotypes were natural ecotypes collected from wide geo-
graphical areas of Iran by a team which are specialist in
the field of grass species. These samples were evaluated
at first in the research center of Fozveh, Isfahan, Iran.
After formal identification and verification of them,
these ecotypes were used for research projects of Isfahan
University of Technology (IUT).
Genotype panel used for the present study consisted

of 216 clones randomly selected from a large nursery,
comprised of 1800 single spaced-plant polycrossed pro-
genies resulting from 36 parental ecotypes of smooth
bromegrass (Bromus inermis). These 36 genotypes were
randomly selected from polycross progenies of a set of
25 parental genotypes (Table 6). The parental genotypes
were randomly chosen from the above mentioned nur-
sery. For the present study, 216 clones were propagated
in a greenhouse during the winter of 2012 and then were
space-planted (50-cm grid) in the field according to a
RCBD with six replications. Genotypes were evaluated
under two levels of irrigation including a normal and a
water deficit condition for 2014–2015. Under normal
and water deficit conditions, irrigation was done when
50 and 90% of the total available soil water was
exhausted from the root zone, respectively [54].
This experiment was carried out in the field at

Research Farm of Isfahan University of Technology, situ-
ated in Lavark, Najaf-Abad, Isfahan, Iran (32° 30′ N, 51°
20′ E, 1630 m amsl) during 2 years. This region has a
mean annual temperature of 14.6 °C and mean annual
precipitation of 141 mm, generally without rain during
the summer, making supplemental irrigation necessary
for growing crops during this period.

Phenotyping
During the year that plants were established (2013) no
data was recorded. Days to panicle emergence (DPE),
days to anthesis (DA), plant height (PH), and winter
growth vigor (WGV) were measured as mentioned in
our previous studies [39, 55]. Flag leaf length (FLL), flag
leaf width (FLW), panicle length (PL), and number of
stems per plant (NS) were measured at the pollination
stage. After the complete flowering (about early
summer), the produced forage of each genotype was har-
vested by cutting the grass from 5 cm above the ground

Table 5 Association of SRAP markers with drought tolerance
and susceptibility indices of smooth bromegrass genotypes
based on mixed linear model (MLM)

Indices Marker P value R2 (%)

TOL Me5/Em5–16 0.0009 19.96

Me1/Em2–1 0.0013 19.00

Me2/Em6–8 0.0013 18.94

Me2/Em4–16 0.0032 16.37

Me4/Em2–12 0.0049 15.10

Me1/Em2–6 0.0062 14.38

Me5/Em6–3 0.0064 14.27

Me2/Em6–9 0.0098 12.98

MP Me1/Em5–11 0.0024 14.67

Me1/Em3–15 0.0044 13.17

GMP Me1/Em5–11 0.0022 15.04

Me1/Em3–15 0.0063 12.28

Me5/Em4–7 0.0088 11.41

DSI Me5/Em5–16 0.0016 18.11

Me5/Em5–9 0.0062 14.16

Me1/Em2–6 0.0064 14.05

Me5/Em3–10 0.0064 14.03

STI Me1/Em5–11 0.0015 17.10

Me5/Em4–7 0.0055 13.61

Me1/Em3–15 0.0097 11.98

DSI Drought susceptibility index, GMP Geometric mean productivity, MP Mean
productivity, STI Stress tolerance index, TOL Tolerance index
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in late spring, late summer, and late autumn. The har-
vested materials were then dried at 75 °C for 48 h and
weighed to obtain dry matter yield (DMY). The average
forage weight (g per plant) from the three cuts was used
for analysis. The width of plant basal cover remained
after the first harvest was considered as crown diameter
(CD).
Five selection indices including tolerance index

(TOL) [56], mean productivity (MP) [56], geometric

mean productivity (GMP) [57], drought susceptibility
index (DSI) [58], and stress tolerance index (STI) [57]
were calculated based on the dry matter yield under
normal and water deficit irrigations, according to the
following formulations:

TOL ¼ Ypi − Ysi

MP ¼ Ypi þ Ysi
� �

=2

GMP ¼ Ypi � Ysi
� �0:5

DSI ¼ 1 − Ysi=Ypi
� �� �

= 1 − Yms=Ymp
� �� �

STI ¼ Ypi � Ysi
� �

= Ymp
� �2h i

where Ysi designates the yield of the ith genotype
grown under deficit irrigation, Ypi designates that of the
ith genotype grown under normal irrigation, Yms is the
yield mean over all genotypes grown under deficit irriga-
tion, and Ymp is the yield mean over all genotypes grown
under normal irrigation.

Genotyping
Genomic DNA was extracted from young leaf tissues ac-
cording to the modified method of Murray and Thomp-
son [59]. The quality and concentration of extracted
DNA were determined by electrophoresis in 1% agarose
gel. Genotyping using SRAP markers was performed
following the method of Li and Quiros [9]. Among the
SRAP markers available, 30 primer combinations were
screened by polymerase chain reaction (PCR). PCR
reactions were conducted in volumes of 10 μL, using a
BIO-RAD thermocycler. Each PCR reaction was con-
sisted of 1.5 μL of DNA, 1 μL of forward primer, 1 μL of
reverse primer, 5 μL of master mix (Amplicon), and 1.5
μL of distilled water. In SRAP analysis, samples were
exposed to the following thermic profile: the first five
cycles were run at 94 °C for 1 min (denaturing), 35 °C for
1 min (annealing), and 72 °C for 1 min (extension). Then
the annealing temperature was raised to 50 °C for
another 35 cycles, followed by another extension step of
10 min at 72 °C. Electrophoresis on 12% non-denatured
polyacrylamide gels was used for separation of amplified
products; and then the products were stained by AgNO3
solution [60].

Statistical analyses
Phenotypic data analysis
Data were tested for normality by Kolmogorov–Smirnov
test and homogeneity of variance was tested by Bartlett
test. Analysis of variance was performed for the normal
and water-deficit irrigations separately, based on the
split-plot in time (year) model, using Proc GLM of SAS
release 9.4 [61]. Components of variance were calculated

Table 6 Information on the genetic materials used in this study

Genotype Population code Origin

1 2000/50 Iran, Isfahan- Fozve

2 2000/50 Iran, Isfahan- Fozve

3 2000/50 Iran, Isfahan- Fozve

4 2000/24 Iran, Isfahan- Fozve

5 2000/T-9 Iran, Hamedan

6 2000/T-9 Iran, Hamedan

7 2000/24 Iran, Isfahan- Fozve

8 2000/T-9 Iran, Hamedan

9 2000/18–2 Iran, Isfahan- Fozve

10 2000/18–2 Iran, Isfahan- Fozve

11 RCAT042134 Hungary

12 RCAT042134 Hungary

13 RCAT064839 Hungary

14 2000/36 Iran, Isfahan- Fozve

15 2000/36 Iran, Isfahan- Fozve

16 2000/36 Iran, Isfahan- Fozve

17 2000/36 Iran, Isfahan- Fozve

18 2000/T-9 Iran, Hamedan

19 2000/18 Iran, Isfahan- Fozve

20 2000/18 Iran, Isfahan- Fozve

21 RCAT041861 Hungary

22 2000/40 Iran, Isfahan- Semirom

23 2000/4 Iran, Isfahan- Fozve

24 2000/30 Iran, Isfahan- Fozve

25 RCAT042133 Hungary

26 RCAT042133 Hungary

27 2000/10 Iran, Kordestan

28 RCAT041861 Hungary

29 2000/10 Iran, Kordestan

30 RCAT064835 Hungary

31 RCAT064835 Hungary

32 RCAT064835 Hungary

33 RCAT064835 Hungary

34 RCAT064837 Hungary

35 RCAT064837 Hungary

36 RCAT064837 Hungary
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for each irrigation regimes, according to the method of
Steel and Torrie [62]. Broad-sense heritability (h2b) was
estimated for both irrigation regimes as described by
Nguyen and Sleper [63]:

h2 ¼ σ2g= σ2g þ σ2gy=y þ σ2gr=rþ σ2e=ry
� �

In which, σ2g is the genotype, σ2gy is the genotype ×
year, σ2rg is the genotype × rep, and σ2e is the residual
variance, y is the number of years, and r is the number
of replicates. The level of genetic variation was estimated
with the calculating of phenotypic coefficient of variation
(PCV) and genetic coefficient of variation (GCV) as
follows:

PCV ¼ σp=μ
� �

100

GCV ¼ σg=μ
� �

100

where σp is the standard deviation of the phenotypic
variance, σg is the standard deviation of the genotypic
variance, and μ is the phenotypic mean [64].

Molecular data analysis
Polymorphic SRAP markers were scored as binary data
with presence (1) or absence (0). For each of the SRAP
markers, the following indices were computed. Poly-
morphism information content (PIC) was determined
according to the formula of Roldán-Ruiz et al. [65]:

PICi ¼ ð2fi � 1 − f½ �
where i is the ith primer, fi is the frequency of the

amplified allele, and (1-fi) is the frequency of the null al-
lele. Resolving power (RP) was estimated as:

RP ¼
X

1 − 2� 0:5 - f ið Þ½ �

Marker index (MI) was calculated according to Powell
et al. [66]:

MIi ¼ PICi �Ni � bi

where Ni is the total bands for the ith primer, and bi is
the percentage polymorphic bands of the ith primer.

Population structure and association analysis
Structure analysis and stratification of the studied popu-
lation into subpopulations with different genetic struc-
tures was done based on SRAP marker data in STRUCT
URE software version 2.3.4 [25]. This analysis was
performed applying an admixture model, a burn-in of
10,000 iterations followed by 100,000 Monte Carlo
Markov Chain (MCMC) replicates. The membership of
each genotype was run for the range of genetic clusters
(K) from K = 2 to K = 10 with five replications for
each K. delta k approach described by Evanno et al.

[67] was used to determine the optimum number of
sub-populations, using STRUCTURE HARVESTER [68].
Association analysis was run by both GLM and MLM

[26] to calculate P-values for marker–trait associations,
using TASSEL version 4.2.1 [69]. The phenotypic mean
of traits (P-matrix) over 2 years was used to identify
significant associations under normal and water deficit
irrigations, separately. To correct for population struc-
ture in GLM and MLM models, a Q-matrix that was
derived from structure analysis (at maximum DK), was
applied as a covariate. Moreover, a kinship matrix (K-
matrix) was calculated based on the results of marker
genotype data using TASSEL version 4.2.1 [69] and was
used in MLM. A correction for multiple testing was
done with the FDR (false discovery rate) method, using
the QVALUE R package [70].
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