RESEARCH ARTICLE **Open Access** # Lasting consequences of psyllid (*Bactericera* cockerelli L.) infestation on tomato defense, gene expression, and growth Kyle Harrison^{1*}, Azucena Mendoza-Herrera², Julien Gad Levy³ and Cecilia Tamborindeguy² ### **Abstract** **Background:** The tomato psyllid, *Bactericera cockerelli* Šulc (Hemiptera: Triozidae), is a pest of solanaceous crops such as tomato (*Solanum lycopersicum* L.) in the U.S. and vectors the disease-causing pathogen 'Candidatus Liberibacter solanacearum'. Currently, the only effective strategies for controlling the diseases associated with this pathogen involve regular pesticide applications to manage psyllid population density. However, such practices are unsustainable and will eventually lead to widespread pesticide resistance in psyllids. Therefore, new control strategies must be developed to increase host-plant resistance to insect vectors. For example, expression of constitutive and inducible plant defenses can be improved through selection. Currently, it is still unknown whether psyllid infestation has any lasting consequences on tomato plant defense or tomato plant gene expression in general. **Results:** In order to characterize the genes putatively involved in tomato defense against psyllid infestation, RNA was extracted from psyllid-infested and uninfested tomato leaves (Moneymaker) 3 weeks post-infestation. Transcriptome analysis identified 362 differentially expressed genes. These differentially expressed genes were primarily associated with defense responses to abiotic/biotic stress, transcription/translation, cellular signaling/transport, and photosynthesis. These gene expression changes suggested that tomato plants underwent a reduction in plant growth/health in exchange for improved defense against stress that was observable 3 weeks after psyllid infestation. Consistent with these observations, tomato plant growth experiments determined that the plants were shorter 3 weeks after psyllid infestation. Furthermore, psyllid nymphs had lower survival rates on tomato plants that had been previously psyllid infested. **Conclusion:** These results suggested that psyllid infestation has lasting consequences for tomato gene expression, defense, and growth. **Keywords:** *Bactericera cockerelli* Šulc, *Solanum lycopersicum* L., Transcriptomics, Plant-insect interactions, Potato, Psyllid, Zebra chip, 'Candidatus Liberibacter solanacearum' Full list of author information is available at the end of the article © The Author(s). 2021 **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. ^{*} Correspondence: kyle.harrison@usda.gov ¹USDA-ARS, Agroecosystem Management Research Unit, Lincoln, NE 68503, LISA Harrison et al. BMC Plant Biology (2021) 21:114 Page 2 of 43 ### **Background** The tomato psyllid (or potato psyllid), Bactericera cockerelli Šulc (Hemiptera: Triozidae), is a major pest of solanaceous crops such as tomato (Solanum lycopersicum L.) and potato (S. tuberosum) in the U.S. [8]. The psyllid is native to the Southwestern U.S. and Northern Mexico [12, 49, 55, 64] but has only recently become an important agricultural pest when it was discovered that B. cockerelli vectors the disease-causing pathogen 'Candidatus Liberibacter solanacearum' (Lso) [43]. Lso is a fastidious bacterial pathogen associated with zebra chip disease in potato as well as other diseases in solanaceous crops [37, 41]. Today, Lso is considered a major pathogen of crops worldwide [20, 63]. Currently, the only effective strategies for controlling the diseases associated with Lso involve calendar application of insecticide [8, 42]. However, these strategies are unsustainable. Multiple reports indicate neonicotinoid resistance is increasing in certain B. cockerelli populations [5, 45, 50]. Since vector-borne disease systems are faced with the rapid evolution of pesticide resistance, major efforts have been made to develop novel solutions based on selectively breeding plants for improved host-plant resistance or genetically manipulating plants and insects for the purpose of disrupting disease transmission [3, 4, 34, 35, 57, 66]. For example, disease transmission can be disrupted by manipulating the host or vector's genes associated with key molecular pathways that facilitate the movement of pathogens from host to vector and vice versa [1, 32]. Such genetic manipulations can be accomplished through direct transformations or artificial selection, but these toolkits require certain a priori genomic information. Therefore, in order to pursue psyllid control strategies that manipulate the host plant's molecular pathways, the current study identifies the genes involved in the transcriptomic response of tomato plants to psyllid infestation. The current study focuses on an insect-plant relationship, however the experiments described are informed by Lso disease development. Specifically, diseases caused by Lso are characterized by long latent periods. Indeed, symptoms in tomato and potato typically start developing 3 weeks after infection [33, 40, 43, 59]. Logically, studies of Lso infection are conducted a few weeks or even months after plants are infested with psyllids and subsequently infected with Lso. To avoid the confounding effects of psyllid herbivory, some studies entirely divorce the effect of vector infestation by transmitting the pathogen from one host-plant to another via grafting [13, 59]. Furthermore, the rate of Lso infection and disease development are independent of psyllid density [52]. Thus, the long-term effects of psyllid infestation on tomato plant biology and gene expression are divorced from Lso research and are still unknown. This is important knowledge gap considering psyllids are known to cause phenotypic changes in solanaceous crops under heavy infestation (≥100 insects per plant), a condition called 'psyllid yellows' [7, 60]. Typically, studies of Lso infection have involved a single control group of plants that have not been exposed to either the psyllid vector or the Lso pathogen. Then, controls will be compared to plants exposed to both the psyllid and Lso. This practice has been acceptable because psyllid-responsive expression changes in plants are expected to be relatively unimportant compared to Lso challenge. Although this experimental design has been invaluable for characterizing Lso disease severity and psyllid transmission efficacy, an unintended consequence is the knowledge gap regarding the lasting consequences of psyllid infestation on tomato plant health. The molecular interaction between host plant and insect vector is especially important because plants have several long-term responses to insect damage that can impact their lifetime health, reproduction, and defense. Plants undergo physiological, transcriptomic, or epigenetic changes which allows them to mount a stronger and faster responses to secondary challenges by previously perceived threats. This is called defense 'priming' [10, 21, 30, 39]. Priming is a common phenomenon that has been studied in several plant species in response to bacteria, fungi, and chewing insects [11, 24, 61, 68]. Furthermore, plants can remain immunologically primed for the rest of their lives or even across generations [47, 53, 62]. Therefore, it is reasonable to hypothesize that tomato plants deploy similar long-term defenses against psyllids postinfestation and that these changes have lasting consequences for tomato survival, growth, and development. In fact, the lasting the consequences of uninfected psyllid infestation were previously observed (but not quantified) in a study by Mendoza Herrera et al. [40]. The current study evaluated the persistent transcriptomic and physical responses of tomato plants to psyllid infestation. This was accomplished by comparing the transcriptomes of uninfested plants to plants that had been infested 3 weeks prior. Second, tomato plant growth was tracked across time to test the relationship between plant growth/development and immune response to psyllid infestation. This experimental design allows for the identification of genes involved in the tomato plant's response to psyllid infestation and whether these genes were associated with improved defense against psyllids. Third, psyllid populations were monitored for the number of eggs laid and nymphal survival when reared on previously uninfested tomato plants (controls) compared to psyllids reared on previously infested plants. Harrison et al. BMC Plant Biology (2021) 21:114 Page 3 of 43 ### **Results** ### 1-Transcriptomic analysis Illumina sequencing of tomato cDNA libraries produced 95.2 million reads that met FastQC quality control criteria (i.e., Phred quality scores > 35). The average number of reads obtained from uninfested plants (17.4 ± 0.6) million) did not significantly differ from psyllid-infested ones $(18.0 \pm 0.4 \text{ million})$ (t-value = -0.68; P = 0.25).HISAT2 alignment analysis showed that $96.3 \pm
0.1\%$ of all reads from uninfested plants and $96.2 \pm 0.3\%$ of all reads from psyllid-infested plants mapped to vSL3.0 of the S. lycopersicum genome (Supplementary Table 2); these alignment rates did not significantly differ (tvalue = 0.14; P = 0.45). The Ballgown analysis identified 362 differentially expressed genes (DEGs) between control and psyllid-infested plants (q-value < 0.01). These DEGs represented the pattern of systemic tomato plant gene expression following psyllid infestation. Gene expression patterns were visualized with a heatmap comparing the fold change (Z-Score) for each gene between samples (Fig. 1); Z-scores based on deviations from the average fpkm (fragments per kilobase per million read) value for a given gene. Additionally, a dendrogram (Fig. 1) and a principal component analysis (PCA, Fig. 2) comparing fpkm values across genes and samples were used to visualize relative similarities in gene expression across samples. Both the dendrogram and the PCA geometries suggested that the overall pattern of gene expression was consistent within each treatment, where per-gene fpkm values were most similar within treatment and most different between treatments. Furthermore, the PCA showed that the first principal component strongly separated the fpkm values of psyllid-infested plants from uninfested plants and accounted for 84.1% of the total variance in fpkm values, meaning the greatest differences in gene expression between samples were the differences between infested and uninfested plants. **Fig. 1** Comparative heatmap of relative expression changes among psyllid-infested (Psyllid#) and uninfested (Ctrl#) tomato plant DEGs. Dark colors denote down-regulation and light colors denote up-regulation. Lines above and to the left of the heatmap depict the phylogenetic hiearchy among similar treatments and similar gene expression levels Harrison et al. BMC Plant Biology (2021) 21:114 Page 4 of 43 Fig. 2 Principal component analysis (PCA) of fragments per kilobase per million reads (fpkm) among treatments psyllid-infested and uninfested tomato plants. Percentages depict the cumulative percent of the total variance explained by the associated principal axis Among the 362 DEGs, 246 (67.9%) were up-regulated in psyllid-infested plants. In addition, 226 (62.4%) DEGs could be assigned a putative function based on the previously published functional analyses of tomato genes or the functional analyses of tomato gene homologs in different model organisms such as Arabidopsis thaliana, corn, potato, rice, or tobacco. The g:Profiler analysis (https://biit.cs.ut.ee/gplink/l/iZL80ldPRt) showed DEGs (69.3%) could be assigned to two or more GO functional categories (Fig. 3; See Supplementary Figure 3 for details). Tomato plant DEGs were assigned to one or more of the following broader categories: Defense response to biotic or abiotic stress (55 DEGs), transcription/translation (50 DEGs), photosynthesis (35 DEGs), molecular signaling (33 DEGs), molecular transport (31 DEGs), reproduction (27 DEGs), protein phosphorylation/ubiquitination (26 DEGs), cellular turnover (23 DEGs), sugar metabolism (20 DEGs), ion transport/ homeostasis (16 DEGs), auxin signaling (9 DEGs), and cell wall biosynthesis/metabolism (6 DEGs) (Tables 1, 2, 3 and 4). RT-qPCR corroborated the relative expression levels in tested genes: Results showed that the unchanged PIP2-4 (Solyc06g011350.2) was expressed at similar levels in both uninfested (1.13 ± 0.01) and psyllid-infested plants $(1.12 \pm 0.01; \text{ t-value} = 0.69, P =$ 0.26). The upregulated DRIP2 (Solyc06g084040.2) was expressed at significantly lower level in control (1.15 ± 0.02) compared to psyllid infested (1.36 \pm 0.03; t-value = - 6.54, P < 0.01). The downregulated LON2 (Solvc04g080860.1) was expressed at significantly higher levels in control (1.45 ± 0.11) compared to psyllid infested (1.01 \pm 0.06; t-value = 4.04, P < 0.01). Lastly, downregulated D27 (Solyc08g008630.2) was expressed at significantly higher levels in control (1.26 ± 0.08) compared to psyllid infested (0.83 ± 0.08) ; t-value = 4.10, P < 0.01). **Fig. 3** g:Profiler analysis of tomato plant DEG homologs depicting their relative overrepresentation among *Arabidopsis* molecular functions (MF), biological processes (BP), or cellular components (CC). The left axis represents the -log₁₀(p_{adj}) likelihood that a given MF, BP, or CC would be associated with a random selection of *Arabidopsis* genes. Circle sizes represent the relative number of times a given MF, BP, or CC appears among analyzed genes. In general, expression changes occurred throughout the cell and were most likely to be involved with cellular processes, metabolism, photosynthesis, response to stimulus, and biological regulation. Labels above, connected to arrows, or adjacent to circles describe specific the MF, BP, or CC associated with each circle; some labels have been omitted due to redundancy **Table 1** The 55 tomato plant DEGs associated with defense response to abiotic and biotic stress. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 44 genes (80%, in bold) would have resulted in improvements to plant defense pathways. These DEGs were related to defense against insect damage, microbial infection, programmed cell death, salt stress, and drought. Simultaneously, 11 DEGs, especially those related to the hypersensitive response, underwent expression changes that would have resulted in impairments to plant defense pathways the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (P < 0.01). NCBI Blast searches were used to identify Gene IDs and | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Tomato gene ID Gene ID Homolog Log2FC Protein name Uniprot description Effect of psyllid infestation Citation | Effect of psyllid infestation | Citation | |----------------------|----------|-----------------|--------|--|--|---|---| | Solyc12g055920.1 | CBL4 | AT5G24270 | -133 | | Calcium sensor that regulates intracellular Na+ and K+ homeostasis and salt tolerance; Activates the plasma membrane Na+/H+ antiporter SOS1 | Decreased potassium and calcium
stress response; Decreased
hypotonic salinity response | Halfter, Ursula, et al. "The
Arabidopsis SOS2 protein kinase
physically interacts with and is
activated by the calcium-binding
protein SOS3." Proceedings of the
National Academy of Sciences 97.7
(2000): 3735-3740. | | Solyc10g076700.1 | STR10 | AT3G08920 | 06:0- | rhodanese domain-
containing protein 10 | Involved in response to cold stress | Decreased reponse to cold stress | Bauer, Michael, and Jutta
Papenbrock. "Identification and
characterization of single-domain
thiosulfate sulfurtransferases from
Arabidopsis thaliana." FEBS letters
532.3 (2002): 427-431. | | Solyc06g073260.2 | CSP41B | AT1G09340 -0.81 | -0.81 | chloroplast stem-loop
binding protein of 41
kDa b, chloroplastic | Associates with pre-ribosomal particles in chloroplasts and participates in chloroplast inbosomal RNA metabolism; Required for chloroplast integrity and embryo development; Regulates the circadian system; Regulates heteroglycans and monosaccharide mobilization | Impaired chloroplast organization;
Impaired circadian rhythm;
Decreased defense response to
bacteria and wounding; Decreased
galactose catabolism; Decreased
monosaccharide metabolism;
Decreased transcription and
translation; Decreased response to
cold and drought; Decreased rRNA
processing | Raab, Sabine, et al. "ABA-responsive
RNA-binding proteins are involved
in chloroplast and stromule
function in Arabidopsis seedlings."
Planta 224.4 (2006): 900-914. | | Solyc01g103760.2 N/a | N/a | AT1G71900 -0.71 | -0.71 | magnesium transporter
NIPA4 | Divalent cation transporter;
Negative regulator of antiviral
defense response | Decreased magnesium ion
transport; Increased antiviral
defense response | Gao, Hua, et al. "Arabidopsis ENOR3 regulates RNAi-mediated antiviral defense." Journal of Genetics and Genomics 45.1 (2018): 33-40. | | Solyc02g093230.2 | CCOAOMT1 | AT4G34050 | 69.0- | caffeoyl-CoA O-
methyltransferase | Methylates caffeoyl-CoA to feruloyl-CoA and 5-hydroxyferuloyl-CoA; Plays a role in the synthesis of feruloylated polysaccharides; Reinforces the plant cell wall; Regulates response to wounding or pathogen challenge | Decreased lignin biosynthesis;
Decreased response to wounding
or pathogen challenge | Civardi, L., J. Rigau, and P. Puigdomenech. "Nucleotide Sequence of two cDNAs coding for Caffeoyl-coenzyme A O-Methyltransferase (CCoAOMT) and study of their expression in Zea mays." Plant Physiol 120.4 (1999): 1. | | Solyc07g032640.1 | PSBO1 | AT5G66570 | 99.0- | oxygen-evolving
enhancer protein 1-1,
chloroplastic | Stabilizes the manganese cluster which is the primary site of water splitting | Decreased defense
response to bacteria; Decreased photoinhibition; Decreased photosynthesis; Decreased photosystem II assembly and stabilization; Decreased regulation of protein dephosphorylation | Murakami, Reiko, et al. "Characterization of an Arabidopsis thaliana mutant with impaired psbO, one of two genes encoding extrinsic 33-kDa proteins in photosystem II." FEBS letters 523.1-3 (2002): 138-142. | impacting pathogen response and cell cycle during geminivirus infection." Plant physiology 148.1 (2008): 436-454. **Table 1** The 55 tomato plant DEGs associated with defense response to abiotic and biotic stress. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in to plant defense pathways. These DEGs were related to defense against insect damage, microbial infection, programmed cell death, salt stress, and drought. Simultaneously, 11 DEGs, especially those related to the hypersensitive response, underwent expression changes that would have resulted in impairments to plant defense pathways (Continued) the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (P < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 44 genes (80%, in bold) would have resulted in improvements | Tomato gene ID | Gene ID | Homolog | Log2FC | ופאסוואפן עוומפו אפוונ פאך
Protein name | Totals, expectantly most related to the hypersensitive response, underwent expression chains and make resulted in impainments to plant determined. Formation of the second infestation of the control | Effect of psyllid infestation | Citation | |------------------------|---------|----------------|--------|--|---|---|---| | Solyc08g076220.2 | N/a | AT1G32060 | -0.64 | phosphoribulokinase,
chloroplastic | Involved in reductive pentose-
phosphate cycle; involved in
defense response to bacteria and
cold stress | Decreased defense response to bacteria; Impaired reductive pentose-phosphate cycle; Decreased response to cold stress | Kiddle, Guy, et al. "Effects of leaf ascorbate content on defense and photosynthesis gene expression in Arabidopsis thaliana." Antioxidants and Redox Signaling 5.1 (2003): 23-32. | | Solyc02g091560.2 | SHM1 | AT4G37930 | -0.53 | serine
hydroxymethyltransferase
1, mitochondrial | Catalyzes interconversion of serine and glycine in the photorespiratory pathway, Involved in controlling cell damage caused by abiotic stress; Regulates the hypersensitive defense response | Decreased response to tetrahydrofolate; Decreased L-serine metabolism; Decreased one-carbon metabolism; Decreased photorespiration; Decreased hypersensitive response; Decreased response to cadmium, cold, heat, and light stress; Decreased tetrahydrofolate metabolism | Moreno, Juan Ignacio, et al. "Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress." The Plant Journal 41.3 (2005): 451-463. | | Solyc01g107660.2 | SEP1 | AT4G34190 | -0.47 | stress enhanced protein 1
protein | Involved in non-photochemical quenching. Plays a role in the thylakoid membrane in response to light stress | Decreased response to high light intensity, Decreased photosynthesis, Decreased response to wounding | Maejima, Kensaku, et al. "Degradation of class E MADS-domain transcription factors in Arabidopsis by a phytoplasmal effector, phyllogen." Plant signaling & behavior 10.8 (2015): e1042635. | | Solyc05g008370.1 | RP12 | AT2G01290 | -0.38 | ribose-5-phosphate
isomerase 2 | Catalyzes the reversible conversion of ribose-5-phosphate to ribulose 5-phosphate | Decreased prorammed cell death; Decreased pentose-phosphate shunt, non-oxidative branch; Decreased vegetative-to- reproductive phase transition of meristem; Decreased hypersensitive response | Xiong, Yuqing, et al. "Deficiency in
a cytosolic ribose-5-phosphate
isomerase causes chloroplast
dysfunction, late flowering and
premature cell death in
Arabidopsis." Physiologia plantarum
137.3 (2009): 249-263. | | Soly:05g006990.2 | NPF4.6 | AT1G69850 | -0.29 | protein NRT1/ PTR
FAMILY 4.6 | Low-affinity proton-dependent nitrate transporter, involved in constitutive nitrate uptake; Involved in (+)-abscisic acid (ABA) transport; Mediates cellular ABA uptake | Decreased abscisic acid transport; Decreased nitrate assimilation; Decreased regulation of stomatal movement; Decreased response to nematode | Huang, Nien-Chen, et al. "Cloning
and functional characterization of
an Arabidopsis nitrate transporter
gene that encodes a constitutive
component of low-affinity uptake."
The Plant Cell 11.8 (1999): 1381-1392. | | Solyc01g094680.2 SPPL2 | SPPL2 | AT1G63690 0.25 | 0.25 | signal peptide
peptidase-like 2 | Involved in pathogen defense
response | Increased defense response to
pathogens | Ascencio-Ibáñez, José Trinidad, et al. "Global analysis of Arabidopsis gene expression uncovers a complex array of changes | Table 1 The 55 tomato plant DEGs associated with defense response to abiotic and biotic stress. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 44 genes (80%, **in bold**) would have resulted in improvements to plant defense pathways. These DEGs were related to defense against insect damage, microbial infection, programmed cell death, salt stress, and drought. Simultaneously, 11 DEGs, especially those related to the hypersensitive response, underwent expression changes that would have resulted in impairments to plant defense pathwave (Continued) the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (P < 0.01). NCBI Blast searches were used to identify Gene IDs and | Tomato gene ID | Gene ID | Homolog Lo | Log2FC P | Protein name | Tomato gene ID Gene ID Homolog Log2FC Protein name Uniprot description Effect of psyllid infestation Citation | Effect of psyllid infestation | Citation | |------------------------|---------|----------------|--|---|--|---|--| | Solyc03g034200.2 | RCF3 | AT5G53060 0.2 | 0.26 R d d | RNA-binding KH
domain-containing
protein RCF3 | Negative regulator of osmotic stress-induced gene expression; Regulates
thermotolerance responses under heat stress; Forms a complex with CPL1 that modulates co-transcriptional processes; Represses stress-inducible gene expression; Involved in primary miRNA biogenesis; Involved in JA-mediated fungal defense | Increased heat acclimation;
Increased jasmonic acid-mediated
signaling; Increased mRNA
processing; Increased miRNA
processing; Increased regulation of
defense response to fungus;
Increased regulation of gene
expression; Increased response to
osmotic stress; Increased RNA
splicing | Xiong, Liming, et al. "HOS5–a
negative regulator of osmotic
stress-induced gene expression in
Arabidopsis thaliana." The Plant
Journal 19.5 (1999): 569-578. | | Solyc04g056280.2 | CDKC-1 | AT5G10270 0.26 | | cyclin dependent kinase
C-1 | Postranscriptional modifier,
Involved in protein
phosphorylation, Involved in leaf
growth and development, Involved
in defense reponse to virus | Increased leaf development;
Increased phosphorylation of RNA
polymerase II C-terminal domain;
Increased defense response to virus | Pischke, Melissa S., et al. "A transcriptome-based characterization of habituation in plant tissue culture." Plant Physiology 140.4 (2006): 1255-1278. | | Solyc05g048850.2 | RH8 | AT4G00660 0.27 | | DEAD-box ATP-
dependent RNA
helicase 8 | ATP-dependent RNA helicase
involved in mRNA turnover and
mRNA decapping | Increased cytoplasmic mRNA processing body assembly and mRNA transport; Increased regulation of translation; Increased stress granule assembly; Increased viral process | Baek, Woonhee, et al. "A DEAD-box
RNA helicase, RH8, is critical for
regulation of ABA signalling and
the drought stress response via
inhibition of PP2CA activity." Plant,
cell & environment 41.7 (2018):
1593-1604. | | Solyc06g008970.2 | OAX | AT1G03190 0.2 | 0.28 g a a B B B B B B B B B B B B B B B B B | general transcription
and DNA repair factor
IIH helicase subunit
XPD | Component of the general transcription and DNA repair factor IIH core comple; Plays an essential role in transcription initiation; Essential during plant growth; Negatively regulates a response to UV damage and heat stress | Increased DNA repair, Increased mitotic recombination; Increased transcription; Increased protein phosphorylation; Increased regulation of mitotic recombination; Increased response to heat, oxidative, and UV stress; Increased transcription by RNA polymerase II | Liu, Zongrang, et al. "Arabidopsis
UVH6, a homolog of human XPD
and yeast RAD3 DNA repair genes,
functions in DNA repair and is
essential for plant growth." Plant
physiology 132.3 (2003): 1405-1414. | | Solyc01g096290.2 | RPL40A | AT2G36170 0.28 | | ubiquitin-60S ribosomal
protein L40 | Involved in protein degradation via
the proteasome; Linear polymer
chains formed via attachment by
the initiator Met-lead during
cellular signaling | Increased modification-dependent
protein catabolism; increased
protein ubiquitination; Increased
translation; Increased defense
response to bacteria | Ditt, Renata F., et al. "The Arabidopsis thaliana transcriptome in response to Agrobacteria tumefaciens." Molecular plant-microbe interactions 19.6 (2006): 665-681. | | Solyc04g082560.2 ITSN2 | ITSN2 | N/a 0.2 | i. 0.29 | intersectin-2 | Adapter protein that provides indirect link between the endocytic membrane and the actin assembly machinery; Regulates the formation of clathrin-coated vesicles; Involved in endocytosis of integrin beta-1 and transferrin receptor | Increased endocytosis; Increased dendrite extension; Increased regulation of Rho protein signal transduction; Increased viral process | Mettlen, Marcel, et al. "Endocytic accessory proteins are functionally distinguished by their differential effects on the maturation of clathrin-coated pits." Molecular biology of the cell 20.14 (2009): | **Table 1** The 55 tomato plant DEGs associated with defense response to abiotic and biotic stress. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in to plant defense pathways. These DEGs were related to defense against insect damage, microbial infection, programmed cell death, salt stress, and drought. Simultaneously, 11 DEGs, especially those related to the hypersensitive response, underwent expression changes that would have resulted in impairments to plant defense pathways (Continued) the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (P < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 44 genes (80%, in bold) would have resulted in improvements | Tomato gene ID | Gene ID | to the hyperse | I og EC | esponse, underwent exp
Protein name | Deus, especially those related to the hypersensitive response, underwent expression changes that would have resulted in impairments to plant delense pathways (continued). Tomato nene ID Gene ID Homolog Location Citation | resulted in impairments to plant of Effect of psyllid infestation | Gitation | |------------------|---------|----------------|---------|--|--|--|---| | Solyc06g062350.2 | RINI | AT5G22330 | | ruvB-like protein 1 | Core component of the chromatin core component of the chromatin is involved in transcriptional regulation, DNA replication, and DNA repair, Component of the NuA4 histone acetyltransferase complex involved in transcriptional activation of select genes | Increased box C/D snoRNP assembly; Increased cell differentiation; Increased chromatin remodeling; Increased flower development; Increased meristem development; Increased regulation of defense response to fungus; Increased regulation of transcription by RNA polymerase II | Heyndrickx, Ken S., and Klaas
Vandepoele. "Systematic
identification of functional plant
modules through the integration of
complementary data sources." Plant
physiology 159.3 (2012): 884-901. | | Solyc11g005130.1 | UBN1 | AT1G21610 0.30 | 0.30 | ubinuclein-1 | Required for replication-
independent chromatin assembly | Increased nucleosome organization;
Increased regulation of gene
silencing; Increased response to salt
stress | Nie, Xin, et al. "The HIRA complex
that deposits the histone H3. 3 is
conserved in Arabidopsis and
facilitates transcriptional dynamics."
Biology open 3:9 (2014): 794-802. | | Solyc02g079040.2 | CBP60B | AT5G57580 | 0.30 | calmodulin-binding
protein 60 B | Transcription activator that binds
DNA in a sequence-specific manner
to promote the expression of
target genes | Increased salicylic acid biosynthesis;
Increased defense response to
bacteria | Reddy, Vaka S., et al. "Genes
encoding calmodulin-binding
proteins in the Arabidopsis
genome." Journal of Biological
Chemistry 277.12 (2002): 9840-9852. | | Solyc10g044910.1 | N/a | AT4G06676 0.31 | 0.31 | protein El24 homolog | Regulator of macroautophagy | Increased macroautophagy;
Increased programmed cell death | Cheng, Chia-Yi, et al. "Araport11: a complete reannotation of the Arabidopsis thaliana reference genome." The Plant Journal 89.4 (2017): 789-804. | | Solyc01g104970.2 | BAK1 | AT4G33430 | 0.31 | brassinosteroid
insensitive 1-associated
receptor kinase 1 | Involved in brassinosteroid
signaling response to beacterium/
fungi/oomycetes; Mediates
programmed cell death | Increased brassinosteroid mediated signaling pathway, increased programmed cell death; Increased defense response to bacteria/fungus/oomycetes | Li, Jia, et al. "BAK1, an Arabidopsis
LRR receptor-like protein kinase,
interacts with BRI1 and modulates
brassinosteroid signaling." Cell 110.2
(2002): 213-222. | | Solyc10g083610.1 | TR | AT5G03730 | 0.31 | protein kinase CTR1 | Ethylene receptor related to bacterial two-component regulators; Acts as a redundant negative regulator of ethylene signaling; | Increased cellular turnover; Increased cytokinin metabolism; Increased defense response to bacteria and insect damage; Increased response to ethylene; Increased hydrogen peroxide biosynthesis; Increased phloem/ xylem histogenesis; Increased regulation of seedling development; Increased regulation of stomatal opening; Increased response to abscisic acid, auxin, and gibberellin; Increased response to heat and salt stress | Chang, Caren, et al. "Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators." Science 262.5133 (1993): 539-544. | Table 1 The 55 tomato plant DEGs associated with defense response to abiotic and biotic stress. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 44 genes (80%, **in bold**) would have resulted in improvements to plant defense pathways. These DEGs were related to defense against insect
damage, microbial infection, programmed cell death, salt stress, and drought. Simultaneously, 11 the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (P < 0.01). NCBI Blast searches were used to identify Gene IDs and | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Tomato gene ID Gene ID Homolog Log2FC Protein name Uniprot description Effect of psyllid infestation Citation | Effect of psyllid infestation | Citation | |------------------------|---------|----------------|--------|--------------------------------------|---|--|--| | Solyc11g013260.1 PHB3 | PHB3 | AT5G40770 0.32 | | prohibitin-3,
mitochondrial | Holdase/unfoldase involved in the stabilization of newly synthesized mitochondrial proteins; Necessary for mitochondrial and cell metabolism and biogenesis; Required to regulate ethylenemediated signaling; Involved in growth maintenance; Functions in nitric oxide-mediated responses | Increased cellular turnover;
Increased defense response to
bacteria; Increased lateral root
development; Increased
mitochondrion organization;
Increased response to auxin,
ethylene, and nitric oxide;
Increased to salt stress; Increased
salicylic acid biosynthesis | Christians, Matthew J., and Paul B. Larsen. "Mutational loss of the prohibitin AtPHB3 results in an extreme constitutive ethylene response phenotype coupled with partial loss of ethylene-inducible gene expression in Arabidopsis seedlings." Journal of experimental botany 58.8 (2007): 2237-2248. | | Solyc08g059660.1 | SEU | AT1G43850 0.32 | 0,32 | corepressor SEUSS | DNA-binding adapter subunit of
the SEU-LUG transcriptional
corepressor of AGAMOUS during
the early floral meristem
development; Regulates petal
shape; Controls cell division during
petal development; Acts through
direct or indirect regulation of
PHABULOSA and YAB1 and thus
regulate cellular proliferation within
the developing petal blade | Increased cell differentiation; Increased response to DNA damage; Increased defense response to most external biotic stimuli; Increased embryo development ending in seed dormancy; Increased gynoecium development; Decreased transcription by RNA polymerase II; Increased response to auxin; Increased response to cycloheximide; Increased response to excess silver ion | Sridhar, Vaniyambadi V., et al. "Transcriptional repression of target genes by LEUNIG and SEUSS, two interacting regulatory proteins for Arabidopsis flower development." Proceedings of the National Academy of Sciences 101.31 (2004): 11494-11499. | | Solyc06g084040.2 DRIP2 | DRIP2 | AT2G30580 0.32 | 0.32 | E3 ubiquitin protein
ligase DRIP2 | E3 ubiquitin-protein ligase that acts as a negative regulator of the response to water stress; Mediates ubiquitination and subsequent proteasomal degradation of the drought-induced transcriptional activator DREB2 | Increased protein ubiquitination;
Increased response to drought | Qin, Feng, et al. "Arabidopsis
DREB2A-interacting proteins
function as RING E3 ligases and
negatively regulate plant drought
stress-responsive gene expression."
The plant cell 20.6 (2008): 1693-
1707. | | Solyc02g077320.2 | - N | AT4G18470 0 | 0.32 | SNI1 protein | Involved in DNA double-strand
break repair. Negative regulator of
hypersensitive response and
systemic acquired resistance;
Functions synergistically with NTL9/
CBNAC as negative regulator of
pathogen-induced PR1 expression;
Suppresses defense response in the
absence of pathogen challenge
and is removed in response to | Increased response to DNA damage, Increased defense response to nematode, Increased histone H3 acetylation; Decreased defense response to pathogens; Decreased histone H3-K4 methylation; Decreased systemic acquired resistance; Increased regulation of transcription; Decreased hypersensitive response | Li, Xin, et al. "Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for suppressors of npr1-1." Cell 98.3 (1999): 329-339. | induction Table 1 The 55 tomato plant DEGs associated with defense response to abiotic and biotic stress. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 44 genes (80%, **in bold**) would have resulted in improvements to plant defense pathways. These DEGs were related to defense against insect damage, microbial infection, programmed cell death, salt stress, and drought. Simultaneously, 11 DEGs, especially those related to the hypersensitive response, underwent expression changes that would have resulted in impairments to plant defense pathways. the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (P < 0.01). NCBI Blast searches were used to identify Gene IDs and | Tomato gene ID | Gene ID | Homolog Log2FC | e response, underwent ex
FC Protein name | DEGS, especially those related to the hypersensitive response, underwent expression changes that would have resulted in infparments to plant delense pathways (<i>Continued</i>). Tomato gene ID—Gene ID—Homolog—Log2FC—Protein name——Uniprot description——Effect of psyllid infestation——Citation———————————————————————————————————— | Effect of psyllid infestation | Citation | |-------------------|---------|----------------|---|---|--|---| | Solyc11g010950.1 | ELP4 | AT3G11220 0.33 | elongator complex
protein 4 | Component of the RNA polymerase II elongator complex, Promotes organs development by modulating cell division rate; Regulates mechanisms producing carbon or importing sucrose; Involved in the repression of the abscisic acid signaling during seed germination, Required for auxin distribution or signaling; Prevents anthocyanins accumulation | Increased response to sucrose; Decreased anthocyanin metabolism; Increased cellular turnover; Increased auxin-mediated signaling; Increased regulation of carbon utilization; Increased regulation of leaf development; Increased response to oxidative stress; Increased tRNA wobble uridine modification | Nelissen, Hilde, et al. "The elongata
mutants identify a functional
Elongator complex in plants with a
role in cell proliferation during
organ growth." Proceedings of the
National Academy of Sciences
102.21 (2005): 7754-7759. | | Solyc11g017300.1 | CSN5A | AT1G22920 0.33 | COP9 signalosome
complex subunit 5a | Protease subunit of the COP9 signalosome complex, Involved in photomorphogenesis and response to jasmonate, Essential regulator of the ubiquitin conjugation pathway; Involved in repression of photomorphogenesis in darkness; Required for degradation of PSIAA6 | Decreased photomorphogenesis; Increased regulation of G2/M transition of mitotic cell cycle; Increased protein deneddylation; Increased red light phototransduction; Increased defense response to insects; Increased response to auxin; Increased floral organ development | Kwok, Shing F., et al. "Arabidopsis homologs of a c-Jun coactivator are present both in monomeric form and in the COP9 complex, and their abundance is differentially affected by the pleiotropic cop/det/fus mutations." The Plant Cell 10.11 (1998): 1779-1790. | | Solyc04g082810.2 | AHL27 | AT1G20900 0.35 | AT-hook motif nuclear-
localized protein 27 | Specifically binds AT-rich DNA sequences related to the nuclear matrix attachment regions; Negatively regulates plant innate immunity to pathogens through the down-regulation of PAMP-triggered FRK1 expression; Regulates flowering and hypocotyl elongation; Chromatin remodeling factor that negatively regulates leaf senescence | Increased chromatin organization;
Increased flower development;
Impaired innate immune response;
Increased leaf senescence;
Increased photomorphogenesis;
Increased vegetative to
reproductive phase transition of
meristem | Lim,
Pyung Ok, et al. "Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants." The Plant Journal 52.6 (2007): 1140-1153. | | Solyc01 g087170.2 | N/a | AT2G41900 0.35 | zinc finger CCCH
domain-containing
protein 30 | Involved in response to salt stress | Increased response to salt stress | Sun, Jiaqiang, et al. "The CCCH-type
zinc finger proteins AtSZF1 and
AtSZF2 regulate salt stress responses
in Arabidopsis." Plant and Cell
Physiology 48.8 (2007): 1148-1158. | | Solyc02g069310.2 | NPR3 | AT5G45110 0.36 | regulatory protein
NPR3 | Substrate-specific adapter of an E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins; Regulates basal defense response to pathogens | Increased defense response to
bacteria and fungus; Increased
protein ubiquitination; Increased
jasmonic acid mediated signaling;
Increased systemic acquired
resistance | Zhang, Yuelin, et al. "Negative
regulation of defense responses in
Arabidopsis by two NPR1 paralogs."
The Plant Journal 48.5 (2006): 647-
656. | **Table 1** The 55 tomato plant DEGs associated with defense response to abiotic and biotic stress. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in to plant defense pathways. These DEGs were related to defense against insect damage, microbial infection, programmed cell death, salt stress, and drought. Simultaneously, 11 DEGs, especially those related to the hypersensitive response, underwent expression changes that would have resulted in impairments to plant defense pathways (Continued) the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (P < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 44 genes (80%, in bold) would have resulted in improvements | Tomato gene ID | Gene ID | Homolog I | Log2FC | Protein name | Uniprot description | Deus, especially mose related to the hypersensitive response, underwent expression changes that would have resurted in impairments to plant delense patriways (<i>continued</i>).
Tomato gene ID Gene ID Homolog Loo2FC Protein name Uniprot description Effect of psyllid infestation Citation | Jeiense patnways (Continued) Citation | |--------------------|---------|----------------|--------|---|---|---|--| | 00.2 | SWAP70 | 08 | 0.36 | | Involved in intracellular signal
transduction; Mediates defense
response to bacteria | Increased defense response to
bacteria, Increased intracellular
signal transduction | Van Leeuwen, Wessel, et al.
"Learning the lipid language of
plant signalling." Trends in plant
science 9.8 (2004): 378-384. | | Solyc07g005880.2 R | RFC1 | AT5G22010 0.37 | 1.37 | replication factor C
subunit 1 | Broad regulator of transcriptional gene silencing, DNA replication, DNA repositive response; Required for DNA double-strand break repair and recombination; Important for lagging strand synthesis | Increased response to DNA damage; Increased DNA replication; Increased cellular turnover; Increased chromatin silencing; Increased H3-K9 methylation; Increased reproduction; Increased response to abscisic acid | Xia, S. T., et al. "Arabidopsis replication factor C subunit 1 plays an important role in embryogenesis." Zhi wu sheng li yu fen zi sheng wu xue xue bao= Journal of plant physiology and molecular biology 33.3 (2007): 179-187. | | Solyc01g096390.2 N | NRPE1 | AT2G40030 0 | 0.37 | DNA-directed RNA
polymerase V subunit 1 | DNA-dependent RNA polymerase;
Catalytic component of RNA
polymerase V involved in RNA-
directed DNA methylation-
dependent silencing of
endogenous repeated sequences;
Essential component of siRNA
production | Increased response to fungus;
Increased DNA methylation;
Increased posttranscriptional gene
silencing; Increased transcription by
RNA polymerase III | Pontier, Dominique, et al. "Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis." Genes & development 19.17 (2005): 2030-2040. | | Solyc01g081330.2 A | АТЛ | AT1G28210 0.40 | 0.40 | chaperone protein dnaJ
1, mitochondrial | Plays a continuous role in plant
development, Involved in the
structural organization of cellular
compartments under heat stress | Increased chaperone protein
refolding; Increased response to
heat | Park, Min Young, et al. "The
Arabidopsis J protein At1 is
essential for seedling growth,
flowering time control and ABA
response." Plant and Cell Physiology
55.12 (2014): 2152-2163. | | Solyc02g021760.2 C | CPSF30 | AT1G30460 0 | 0.40 | 30-kDa cleavage and polyadenylation specificity factor 30 | Component of the cleavage and polyadenylation specificity factor complex that plays a key role in pre-mRNA 3'-end formation and poly(A) addition, Involved in post-transcriptional control of oxidative stress responses; Regulates salicylic acid production | Increased mRNA polyadenylation;
Increased hypersensitive response;
Increased salicylic acid mediated
signaling pathway; Increased
response to oxidative stress;
Increased RNA processing | Delaney, Kimberly J., et al. "Calmodulin interacts with and regulates the RNA-binding activity of an Arabidopsis polyadenylation factor subunit." Plant physiology 140.4 (2006): 1507-1521. | | Solyc08g082480.2 P | PI4KG4 | AT2G46500 0.40 | 0.40 | phosphatidylinositol 4-
kinase gamma 4 | Phosphorylation of phosphatidylinositol to PI4P is the first committed step in the generation of phosphatidylinositol 4,5-bisphosphate | Increased regulation of flower
development; Increased response
to abscisic acid; Increased response
to salt | Ma, Shisong, et al. "Loss of TIP1; 1
aquaporin in Arabidopsis leads to
cell and plant death." The Plant
Journal 40.6 (2004): 845-859. | **Table 1** The 55 tomato plant DEGs associated with defense response to abiotic and biotic stress. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 44 genes (80%, **in bold**) would have resulted in improvements to plant defense pathways. These DEGs were related to defense against insect damage, microbial infection, programmed cell death, salt stress, and drought. Simultaneously, 11 DEGs, especially those related to the hypersensitive response, underwent expression changes that would have resulted in impairments to plant defense pathways (Continued) the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (P < 0.01). NCBI Blast searches were used to identify Gene IDs and | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Tomato gene ID Homolog Log2FC Protein name Uniprot description Effect of psyllid infestation Citation | |---|-----------|----------------|--------|---|--|--|--| | Solyc12g099010.1 | GFS12 | 73 | 0.40 | protein GFS12 | Suppresses BCHC1, which is a negative regulator of storage vacuole trafficking and plant effector-triggered immunity | Increased defense response to
bacteria; Increased protein
targeting to vacuoles | Teh, Ooi-kock, et al. "BEACH-domain proteins act together in a cascade to mediate vacuolar protein trafficking and disease resistance in Arabidopsis." Molecular plant 8.3 (2015): 389-398. | | Solyc08g005270.2 | MD1 | AT1G32230 0.41 | 0.41 | inactive poly [ADP-ribose] polymerase
RCD1 | Regulates hormonal responses during developmental; Required for embryogenesis, vegetative and reproductive development, and abiotic stress responses | Increased defense response to bacteria; Increased embryo development; Increased ethylene-activated signaling pathway; Increased jasmonic acid-mediated signaling; Increased lateral root morphogenesis; Increased programmed cell death; Increased response to drought, osmotic, ozone, and oxide stress | Ahlfors, Reetta, et al. "Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the
WWE protein—protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses." The Plant Cell 16.7 (2004): 1925-1937. | | Solyc01 g111610.2 | BRG3 | AT3G12920 0.42 | 0.42 | probable BOI-related E3
ubiquitin-protein ligase 3 | E3 ubiquitin-protein ligase | Increased defense response;
Increased proteasome-mediated
ubiquitin-dependent protein
catabolic process; Increased
programmed cell death | Park, Jeongmoo, et al. "DELLA proteins and their interacting RING Finger proteins repress gibberellin responses by binding to the promoters of a subset of gibberellin-responsive genes in Arabidopsis." The Plant Cell 25.3 (2013): 927-943. | | Solyc03g025940.1 N/a | N/a | AT3G48880 0.42 | 0.42 | F-box/LRR-repeat protein | Involved in endogenous messenger
response to Gram-negative bacteria | Increased RNA signaling: Increased defense response to Gram-negative bacteria | Thieme, Christoph J., et al.
"Endogenous Arabidopsis messenger
RNAs transported to distant tissues."
Nature Plants 1.4 (2015): 15025. | | Solyc03g121470.2 PLDALPHA4 AT1G55180 0.43 | РГДАГРНА4 | . AT1G55180 | 0.43 | phospholipase D alpha 4 | Hydrolyzes glycerol-phospholipids at the terminal phosphodiesteric bond to generate phosphatidic acids, Promotes growth and plays a role in nitrogen signaling | Increased multidimensional cell division; Increased response to nitrogen, phosphate, and potassium starvation; Increased phospholipid catabolism; Increased nitrogen utilization; Increased postembryonic development; Increased response to osmotic stress; Increased root development | Hong, Yueyun, et al. "Phospholipase
DE and phosphatidic acid enhance
Arabidopsis nitrogen signaling and
growth." The Plant Journal 58.3
(2009): 376-387. | | Solyc06g083510.2 | PBL25 | AT3G24790 0.44 | 0.44 | serine/threonine-
protein kinase PBL25 | Involved in protein phosphorylation
signaling during germination and
plant defense | Increased defense response;
Increased protein phosphorylation;
Increased reproduction | Wang, Yi, et al. "Transcriptome
analyses show changes in gene
expression to accompany pollen
germination and tube growth in
Arabidopsis." Plant physiology 148.3
(2008): 1201-1211. | **Table 1** The 55 tomato plant DEGs associated with defense response to abiotic and biotic stress. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 44 genes (80%, **in bold**) would have resulted in improvements to plant defense pathways. These DEGs were related to defense against insect damage, microbial infection, programmed cell death, salt stress, and drought. Simultaneously, 11 DEGs, especially those related to the hypersensitive response, underwent expression changes that would have resulted in impairments to plant defense pathways (Continued) the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (P < 0.01). NCBI Blast searches were used to identify Gene IDs and | Tomato gene ID Homolog Log2FC Protein name Uniprot description Effect of psyllid infestation Citation | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |---|---------|----------------|--------|---|--|--|--| | Solyc01g111600.2 | HIPP26 | AT4G38580 | 0.45 | heavy metal-associated
isoprenylated plant
protein 26 | Heavy-metal-binding protein; Binds lead, cadmium and copper; Involved in heavy-metal transport; Involved in cadmium transport and play a role in cadmium detoxification | Increased acclimation during heat
response; Increased metal ion
transport; Increased response to
cadmium stress | Gao, Wei, et al. "Arabidopsis
thaliana acyl-CoA-binding protein
ACBP2 interacts with heavy-metal-
binding farnesylated protein AtFP6."
New Phytologist 181.1 (2009): 89-
102. | | Solyc05g052850.2 | MYB1 | AT3G09230 0.54 | 0.54 | transcription factor
MYB1 | Mediates salicylic acid signaling in response to salt stress | Increased response to salt stress
Increased response to salt stress | Wang, Ting, et al. "Salt-related MYB1 coordinates abscisic acid biosynthesis and signaling during salt stress in Arabidopsis." Plant physiology 169.2 (2015): 1027-1041. | | Solyc10g085000.1 BSK5 | BSK5 | AT5G59010 0.55 | 0.55 | serine/threonine-
protein kinase BSK5 | Positive regulator of brassinosteroid signaling, Involved in abiotic stress tolerance; Required for abscisic acid-mediated response to drought and salt stress | Increased brassinosteroid-mediated signaling; Increased response to abscisic acid; Increased response to cold; Increased response to salt stress | Tang, Wengiang, et al. "BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis." Science 321,5888 (2008): 557-560. | | Solyc02g077270 <u>.2</u> | NCL | AT1G53210 0.66 | 99.0 | sodium/calcium
exchanger NCL1 | Participates in the maintenance of calcium homeostasis, Plays roles in auxin response, diurnal rhythm, and flowering time; Involved in response to salt stress | Improved calcium ion homeostasis;
Increased calcium ion
transmembrane transport;
Increased response to salt stress | Wang, Peng, et al. "A Na+/Ca2+
exchanger-like protein (AtNCL)
involved in salt stress in
Arabidopsis." Journal of Biological
Chemistry 287.53 (2012): 44062-
44070. | | Solyc02g090490.2 PLP3 | PLP3 | AT4G37050 0.70 | 0.70 | patatin-like protein 3 | Catalyzes the hydrolysis of the neutral lipids monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and phosphatidylglycerol; Plays a role in root development | Increased defense response;
Increased lipid catabolism;
Increased response to abscisic acid | Rietz, Steffen, et al. "Roles of
Arabidopsis patatin-related
phospholipases a in root
development are related to auxin
responses and phosphate
deficiency." Molecular Plant 3.3
(2010): 524-538. | | Solyc11g069530.1 | EDR2 | AT4G19040 0.71 | 0.71 | protein ENHANCED
DISEASE RESISTANCE 2 | Negative regulator of the salicylic acid-mediated resistance to pathogen that limits initiation of cell death and the establishment of the hypersensitive response; Prevents ethylene-induced senescence | Increased ethylene-activated signaling pathway; Decreased leaf senescence; Increased hypersensitive response; Increased defense response to fungus; Increased response to ethylene; Increased response to salicylic acid | Tang, Dingzhong, et al. "Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain-containing protein." The Plant Journal 44.2 (2005): 245-257. | | Solyc03g083350.2 PI4KG3 | PI4KG3 | AT5G24240 0.72 | 0.72 | phosphatidylinositol 4-
kinase gamma 3 | Phosphorylation of phosphatidylinositol to PIAP is the first committed step in the generation of phosphatidylinositol | Increased regulation of flower
development; Increased response
to abscisic acid; Increased response
to salt | Ma, Shisong, et al. "Loss of TIP1; 1
aquaporin in Arabidopsis leads to
cell and plant death." The Plant
Journal 40.6 (2004): 845-859. | 4,5-bisphosphate Harrison et al. BMC Plant Biology (2021) 21:114 Page 14 of 43 **Table 1** The 55 tomato plant DEGs associated with defense response to abiotic and biotic stress. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in to plant defense pathways. These DEGs were related to defense against insect damage, microbial infection, programmed cell death, salt stress, and drought. Simultaneously, 11 the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (P < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 44 genes (80%, in bold) would have resulted in improvements DEGs, especially those related to the hypersensitive response, underwent expression changes that would have resulted in impairments to plant defense pathways (Continued) | Tomato gene ID Gene ID | Homolog Log2FC Prot | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |--------------------------|---------------------|--------|--|---|---|---| | Solyc01g096320.2 ATHB-12 | AT3G61890 1.31 | 1.31 | homeobox-leucine
zipper protein ATHB-12 |
homeobox-leucine Transcription activator that acts as zipper protein ATHB-12 growth regulators in response to drought | Transcription activator that acts as Increased development; Increased growth regulators in response to drought and osmotic stress drought and osmotic stress are sponse to drought and osmotic stress biology 55.5 (2004): 663-677. | Olsson, Anna, Peter Engström, and Eva Söderman. "The homeobox genes ATHB12 and ATHB7encode potential regulators of growth in response to water deficit in Arabidopsis." Plant molecular biology 55.5 (2004): 663-677. | | Solyc01g088520.2 DRP1E | AT3G60190 1.48 | 1.48 | dynamin-related
protein 1E | Microtubule-associated force- producing protein of tubulo- vesicular network? Plays a major role in plasma membrane maintenance and cell wall integral for plant growth and transport increased reside-mediated development | Increased cellular turnover;
Increased response to fungus;
Increased mitochondrial fission;
Increased response to cadmium
stress; Increased vesicle-mediated
transport | Kang, Byung-Ho, et al. "The
Arabidopsis cell plate-associated
dynamin-like protein, ADL1Ap, is
required for multiple stages of plant
growth and development." Plant
Physiology 126.1 (2001): 47-68. | Harrison et al. BMC Plant Biology (2021) 21:114 Page 15 of 43 **Table 2** The 50 tomato plant DEGs associated with transcription and translation. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (*P* < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 44 genes (88%, **in bold**) would have resulted in improvements to transcription/translation pathways. These DEGs were related to post-translational modifications, miRNA processing, and gene silencing | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|--------------|-----------|--------|--|--|--|--| | Solyc01g087690.1 | SIGD | AT5G13730 | -1.06 | RNA polymerase
sigma factor sigD,
chloroplastic | Sigma factors are initiation factors that promote the attachment of plastidencoded RNA polymerase; Regulates transcription of the ndhF gene which codes for a subunit of the plastid NDH [NAD(P)H dehydrogenase] complex | Decreased response
to light stimulus;
Decreased
transcription;
Decreased regulation
of RNA biosynthesis | Lerbs-Mache, Silva. "Function of plastid sigma factors in higher plants: regulation of gene expression or just preservation of constitutive transcription?." Plant molecular biology 76.3-5 (2011): 235-249. | | Solyc06g073260.2 | CSP41B | AT1G09340 | -0.81 | chloroplast stem-
loop binding
protein of 41 kDa b,
chloroplastic | Associates with pre-
ribosomal particles in
chloroplasts and
participates in
chloroplast ribosomal
RNA metabolism;
Required for
chloroplast integrity
and embryo
development;
Regulates the
ciadian system;
Regulates
heteroglycans and
monosaccharide
mobilization | Impaired chloroplast organization; Impaired circadian rhythm; Decreased defense response to bacteria and wounding; Decreased galactose catabolism; Decreased monosaccharide metabolism; Decreased transcription and translation; Decreased response to cold and drought; Decreased rRNA processing | Raab, Sabine, et al. "ABA-responsive RNA-binding proteins are involved in chloroplast and stromule function in Arabidopsis seedlings." Planta 224.4 (2006): 900-914. | | Solyc03g097320.2 | SIGA | AT1G64860 | -0.72 | RNA polymerase
sigma factor sigA | Essential protein that regulates psaA gene expression; Modulates photosystem stoichiometry; Maintains a harmonious electron flow and photosynthetic efficiency | Decreased response
to light stimulus;
Decreased cellular
response to redox
state; Decreased
DNA-templated
transcription;
Impaired
photosystem
stoichiometry
adjustment | Hakimi, Mohamed-Ali, et al. "Evolutionary conservation of C-terminal domains of primary sigma70-type transcription factors between plants and bacteria." Journal of Biological Chemistry 275.13 (2000): 9215-9221. | | Solyc05g055350.2 | TRZ2 | AT2G04530 | -0.48 | tRNase Z TRZ2,
chloroplastic | Zinc
phosphodiesterase
which displays tRNA
3'-processing
endonuclease activity;
Involved in tRNA
maturation by
removing a 3'-trailer
from precursor tRNA | Decreased tRNA 3'-
end processing | Schiffer, Steffen, Sylvia Rösch, and Anita Marchfelder. "Assigning a function to a conserved group of proteins: the tRNA 3'-processing enzymes." The EMBO journal 21.11 (2002): 2769-2777. | | Solyc11g066920.1 | PCMP-
H28 | AT4G21065 | -0.44 | pentatricopeptide
repeat-containing
protein
At4g21065 | Involved in RNA
modification | Decreased RNA modification | Cheng, Chia-Yi, et al.
"Araport11: a
complete
reannotation of the
Arabidopsis thaliana
reference genome."
The Plant Journal 89.4
(2017): 789-804. | Harrison et al. BMC Plant Biology (2021) 21:114 Page 16 of 43 **Table 2** The 50 tomato plant DEGs associated with transcription and translation. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (*P* < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 44 genes (88%, **in bold**) would have resulted in improvements to transcription/translation pathways. These DEGs were related to post-translational modifications, miRNA processing, and gene silencing (*Continued*) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|---------|-----------|--------|--|--|--|---| | Solyc01g111020.2 | MRL1 | AT4G34830 | -0.29 | pentatricopeptide
repeat-containing
protein MRL1,
chloroplastic | Regulator of the large
subunit of RuBisCO;
Involved in the
processing and
stabilization of the
processed transcript | Decreased mRNA
stabilization | Johnson, Xenie, et al. "MRL1, a conserved pentatricopeptide repeat protein, is required for stabilization of rbcL mRNA in Chlamydomonas and Arabidopsis." The Plant Cell 22.1 (2010): 234-248. | | Solyc03g034200.2 | RCF3 | AT5G53060 | -0.26 | RNA-binding KH
domain-
containing protein
RCF3 | Negative regulator of osmotic stress-induced gene expression; Regulates thermotolerance responses under heat stress; Forms a complex with CPL1 that modulates cotranscriptional processes; Represses stress-inducible gene expression; Involved in primary miRNA processing and premiRNA biogenesis; Involved in JAmediated fungal defense | Increased heat acclimation; Increased jasmonic acid-mediated signaling; Increased mRNA processing; Increased miRNA processing; Increased regulation of defense response to fungus; Increased regulation of gene expression; Increased response to osmotic stress; Increased RNA splicing | Xiong, Liming, et al. "HOS5–a negative regulator of osmotic stress-induced gene expression in Arabidopsis thaliana." The Plant Journal 19.5 (1999): 569-578. | | Solyc01g099300.1 | MORC6 | AT1G19100 | 0.25 | protein
MICRORCHIDIA 6 | Involved in RNA-directed DNA methylation during gene silencing; Regulates chromatin architecture/ condensation to maintain gene silencing; Positive regulator of defense against oomycetes | Increased chromatin
silencing; Increased
fungal defense
response; Increased
DNA repair; Increased
RNA-directed DNA
methylation | Lorković, Zdravko J., e
al. "Involvement of a
GHKL ATPase in RNA-
directed DNA
methylation in
Arabidopsis thaliana."
Current Biology 22.10
(2012): 933-938. | | Solyc12g005330.1 | RPL8A | AT2G18020 | 0.25 | 60S ribosomal
protein L8-1 | Involved cytoplasmic translation |
Increased cytoplasmic translation | Gordon, Sean P., et al. "Pattern formation during de novo assembly of the Arabidopsis shoot meristem." Development 134.19 (2007): 3539-3548. | | Solyc05g050200.1 | ERF1A | AT4G17500 | 0.25 | eukaryotic
translation
initiation factor
1A | Required for maximal
rate of protein
biosynthesis; Enhances
ribosome dissociation
into subunits and
stabilizes the binding
of the initiator Met-
tRNA(I) to 40 S
ribosomal subunits | Increased formation
of translation
preinitiation complex;
Increased translational
fidelity | Li, Jigang, et al. "A
subgroup of MYB
transcription factor
genes undergoes
highly conserved
alternative splicing in
Arabidopsis and rice."
Journal of
experimental botany
57.6 (2006): 1263-1273 | Harrison et al. BMC Plant Biology (2021) 21:114 Page 17 of 43 **Table 2** The 50 tomato plant DEGs associated with transcription and translation. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (*P* < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 44 genes (88%, **in bold**) would have resulted in improvements to transcription/translation pathways. These DEGs were related to post-translational modifications, miRNA processing, and gene silencing (*Continued*) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|---------|-----------|--------|--|---|--|--| | Solyc09g075640.1 | FRS11 | AT1G10240 | 0.25 | FAR1-RELATED
SEQUENCE 11 | Transcription activator involved in regulating light control of development | Increased regulation of transcription | Joly-Lopez, Zoé, et al. "Abiotic stress phenotypes are associated with conserved genes derived from transposable elements." Frontiers in Plant Science 8 (2017): 2027. | | Solyc04g056280.2 | CDKC-1 | AT5G10270 | 0.26 | cyclin dependent
kinase C-1 | Postranscriptional
modifier; Involved in
protein
phosphorylation;
Involved in leaf
growth and
development;
Involved in defense
reponse to virus | Increased leaf
development;
Increased
phosphorylation of
RNA polymerase II C-
terminal domain;
Increased defense
response to virus | Pischke, Melissa S., et
al. "A transcriptome-
based characterization
of habituation in plant
tissue culture." Plant
Physiology 140.4
(2006): 1255-1278. | | Solyc03g123640.2 | APUM23 | AT1G72320 | 0.26 | pumilio homolog
23 | Sequence-specific
RNA-binding protein
that regulates
translation and mRNA
stability by binding
the 3'-UTR of target
mRNAs | Increased regulation
of translation | Francischini, Carlos W., and Ronaldo B. Quaggio. "Molecular characterization of Arabidopsis thaliana PUF proteins-binding specificity and target candidates." The FEBS journal 276.19 (2009): 5456-5470. | | Solyc05g048850.2 | RH8 | AT4G00660 | 0.27 | DEAD-box ATP-
dependent RNA
helicase 8 | ATP-dependent RNA
helicase involved in
mRNA turnover and
mRNA decapping | Increased cytoplasmic
mRNA processing
body assembly and
mRNA transport;
Increased regulation
of translation;
Increased stress
granule assembly;
Increased viral
process | Baek, Woonhee, et al. "A DEAD-box RNA helicase, RH8, is critical for regulation of ABA signalling and the drought stress response via inhibition of PP2CA activity." Plant, cell & environment 41.7 (2018): 1593-1604. | | Solyc05g051790.2 | NRPB5A | AT3G22320 | 0.27 | DNA-directed RNA
polymerases II
and IV subunit 5A | Catalyzes the
transcription of DNA
into RNA; Component
of RNA polymerase II
which synthesizes
mRNA precursors and
many functional non-
coding RNAs | Increased
transcription by RNA
polymerase & & | Ream, Thomas S., et al. "Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II." Molecular cell 33.2 (2009): 192-203. | | Solyc11g005600.1 | EIF2B | AT5G20920 | 0.28 | eukaryotic
translation
initiation factor 2
subunit beta | Functions in the early
steps of protein
synthesis; Binds to a
40S ribosomal subunit,
followed by mRNA
binding to form a 43S
pre-initiation complex | Increased formation
of cytoplasmic
translation initiation
complex; Increased
formation of
translation
preinitiation complex | Ascencio-Ibáñez, José
Trinidad, et al. "Global
analysis of Arabidopsis
gene expression
uncovers a complex
array of changes
impacting pathogen | Harrison et al. BMC Plant Biology (2021) 21:114 Page 18 of 43 **Table 2** The 50 tomato plant DEGs associated with transcription and translation. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (P < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 44 genes (88%, **in bold**) would have resulted in improvements to transcription/translation pathways. These DEGs were related to post-translational modifications, miRNA processing, and gene silencing (*Continued*) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|---------|-----------|--------|--|--|--|---| | | | | | | | | response and cell
cycle during
geminivirus infection."
Plant physiology 148.1
(2008): 436-454. | | Solyc06g008970.2 | XPD | AT1G03190 | 0.28 | general
transcription and
DNA repair factor
IIH helicase
subunit XPD | Component of the general transcription and DNA repair factor IIH core comple; Plays an essential role in transcription initiation; Essential during plant growth; Negatively regulates a response to UV damage and heat stress | Increased DNA repair;
Increased mitotic
recombination;
Increased
transcription;
Increased protein
phosphorylation;
Increased regulation
of mitotic
recombination;
Increased response to
heat, oxidative, and
UV stress; Increased
transcription by RNA
polymerase II | Liu, Zongrang, et al. "Arabidopsis UVH6, a homolog of human XPD and yeast RAD3 DNA repair genes, functions in DNA repair and is essential for plant growth." Plant physiology 132.3 (2003): 1405-1414. | | Solyc01g096290.2 | RPL40A | AT2G36170 | 0.28 | ubiquitin-60S
ribosomal protein
L40 | Involved in protein
degradation via the
proteasome; Linear
polymer chains
formed via
attachment by the
initiator Met-lead
during cellular
signaling | Increased
modification-
dependent protein
catabolism; Increased
protein
ubiquitination;
Increased translation;
Increased defense
response to bacteria | Ditt, Renata F., et al. "The Arabidopsis thaliana transcriptome in response to Agrobacteria tumefaciens." Molecular plant- microbe interactions 19.6 (2006): 665-681. | | Solyc12g008450.1 | N/a | AT2G40570 | 0.29 | tRNA A64-2'-O-
ribosylphosphate
transferase | Involved in charged-
tRNA amino acid
modification | Increased charged-
tRNA amino acid
modification | N/a | | Solyc04g082560.2 | ITSN2 | N/a | 0.29 | intersectin-2 | Adapter protein that provides indirect link between the endocytic membrane traffic and the actin assembly machinery; Regulates formation of clathrin-coated vesicles; Involved in endocytosis of integrin beta-1 | Increased
endocytosis;
Increased dendrite
extension; Increased
regulation of Rho
protein signal
transduction;
Increased viral
process | Mettlen, Marcel, et al. "Endocytic accessory proteins are functionally distinguished by their differential effects on the maturation of clathrin-coated pits." Molecular biology of the cell 20.14 (2009): 3251-3260. | | Solyc08g082880.2 | cox1101 | N/a | 0.29 | rsm22-cox11
tandem protein 2,
mitochondrial | Involved in mitochondrion-encoded protein synthesis; Exerts its effect at some terminal stage of cytochrome c oxidase synthesis, probably by being involved in the insertion of the copper B into subunit I |
Increased
mitochondrial
respiratory chain
complex IV assembly;
Increased
mitochondrial
translation | Khalimonchuk, Oleh, et al. "Sequential processing of a mitochondrial tandem protein: insights into protein import in Schizosaccharomyces pombe." Eukaryotic cell 5.7 (2006): 997-1006. | | Solyc06g062350.2 | RIN1 | AT5G22330 | 0.29 | ruvB-like protein 1 | Core component of
the chromatin
remodeling INO80 | Increased box C/D
snoRNP assembly;
Increased cell | Heyndrickx, Ken S.,
and Klaas Vandepoele.
"Systematic | Harrison et al. BMC Plant Biology (2021) 21:114 Page 19 of 43 **Table 2** The 50 tomato plant DEGs associated with transcription and translation. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (*P* < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 44 genes (88%, **in bold**) would have resulted in improvements to transcription/translation pathways. These DEGs were related to post-translational modifications, miRNA processing, and gene silencing (*Continued*) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|--------------|-----------|--------|--|--|--|--| | | | | | | complex which is involved in transcriptional regulation, DNA replication, and DNA repair, Component of the NuA4 histone acetyltransferase complex involved in transcriptional activation of select genes | differentiation; Increased chromatin remodeling; Increased flower development; Increased meristem development; Increased regulation of defense response to fungus; Increased regulation of transcription by RNA polymerase II | identification of
functional plant
modules through the
integration of
complementary data
sources." Plant
physiology 159.3
(2012): 884-901. | | Solyc11g005130.1 | UBN1 | AT1G21610 | 0.30 | ubinuclein-1 | Required for
replication-
independent
chromatin assembly | Increased
nucleosome
organization;
Increased regulation
of gene silencing;
Increased response to
salt stress | N/a | | Solyc02g077320.2 | SNI1 | AT4G18470 | 0.32 | SNI1 protein | Involved in DNA double-strand break repair, Negative regulator of hypersensitive response and systemic acquired resistance; Functions synergistically with NTL9/CBNAC as negative regulator of pathogen-induced PR1 expression; Suppresses defense response in the absence of pathogen challenge and is removed in response to induction | Increased response to DNA damage; Increased defense response to nematode; Increased histone H3 acetylation; Decreased defense response to pathogens; Decreased histone H3-K4 methylation; Decreased systemic acquired resistance; Increased regulation of transcription; Decreased hypersensitive response | Li, Xin, et al. "Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screer for suppressors of npr1-1." Cell 98.3 (1999): 329-339. | | Solyc09g061340.1 | PCMP-
E76 | AT2G13600 | 0.33 | pentatricopeptide
repeat-containing
protein
At2g13600 | Involved in
mitochondrial mRNA
modification during
sugar metabolism | Increased
mitochondrial mRNA
modification;
Increased RNA
modification;
Increased sugar-
mediated signaling
pathway; Increased
sugar metabolism | Zhu, Qiang, et al. "SLO2, a mitochondrial pentatricopeptide repeat protein affecting several RNA editing sites, is required for energy metabolism." The Plant Journal 71.5 (2012): 836-849. | | Solyc08g076100.2 | BZIP16 | AT2G35530 | 0.33 | bZIP transcription
factor 16 | Transcriptional activator; G-box and G-box-like motifs are cisacting elements defined in promoters of certain plant genes which are regulated by such diverse stimuli as light-induction or hormone control | Increased
transcription;
Increased intercellular
signaling; increased
photosynthesis;
Increased plant
growth | Shen, Huaishun,
Kaiming Cao, and
Xiping Wang. "AtbZIP16
and AtbZIP68, two new
members of GBFs, can
interact with other G
group bZIPs in
Arabidopsis thaliana."
BMB reports 41.2 (2008)
132-138. | Harrison et al. BMC Plant Biology (2021) 21:114 Page 20 of 43 **Table 2** The 50 tomato plant DEGs associated with transcription and translation. DEGs were sorted by $\log 2$ -fold change ($\log 2$ FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (P < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 44 genes (88%, **in bold**) would have resulted in improvements to transcription/translation pathways. These DEGs were related to post-translational modifications, miRNA processing, and gene silencing (*Continued*) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|--------------|-----------|--------|--|---|--|--| | Solyc10g074690.1 | PABN1 | AT5G51120 | 0.33 | polyadenylate-
binding protein 1 | Involved in the 3'-end
formation of mRNA
precursors | Increased mRNA processing | Cheng, Chia-Yi, et al. "Araport11: a complete reannotation of the Arabidopsis thaliana reference genome." The Plant Journal 89.4 (2017): 789-804. | | Solyc11g010950.1 | ELP4 | AT3G11220 | 0.33 | elongator
complex protein 4 | Component of the RNA polymerase II elongator complex; Promotes organs development by modulating cell division rate; Regulates mechanisms producing carbon or importing sucrose; Involved in the repression of the abscisic acid signaling during seed germination; Required for auxin distribution or signaling; Prevents anthocyanins accumulation | Increased response to sucrose; Decreased anthocyanin metabolism; Increased cellular turnover; Increased auxin-mediated signaling; Increased regulation of carbon utilization; Increased regulation of leaf development; Increased response to oxidative stress; Increased tRNA wobble uridine modification | Nelissen, Hilde, et al. "The elongata mutants identify a functional Elongator complex in plants with a role in cell proliferation during organ growth." Proceedings of the National Academy of Sciences 102.21 (2005): 7754-7759. | | Solyc05g007740.1 | PCMP-
H25 | AT2G34370 | 0.33 | pentatricopeptide
repeat-containing
protein
At2g34370,
mitochondrial | Involved in RNA
modification | Increased RNA
modification | Guillaumot, Damien,
et al. "Two interacting
PPR proteins are
major Arabidopsis
editing factors in
plastid and
mitochondria."
Proceedings of the
National Academy of
Sciences 114.33
(2017): 8877-8882. | | Solyc08g007270.2 | HAT4 | AT4G16780 | 0.34 | homeobox-leucine
zipper protein HAT4 | Negative regulator of
cell elongation and
proliferation; Mediator
of the red/far-red light
effects on leaf cell
expansion under
shade; Negatively
regulates its own
expression | Increased lateral root formation; Decreased regulation of transcription; Increased red light phototransduction; Increased response to auxin and cytokinin; Increased root development; Increased secondary thickening; Increased shade avoidance; Increased shoot system morphogenesis | Schena, Mark, Alan M.
Lloyd, and Ronald W.
Davis. "The HAT4 gene
of Arabidopsis
encodes a
developmental
regulator." Genes &
development 7.3
(1993): 367-379. | | Solyc03g007100.2 | CPSF160 | AT5G51660 | 0.34 | cleavage and polyadenylation specificity factor | Play sa key role in pre-
mRNA 3'-end
formation | Increased mRNA polyadenylation | Herr, Alan J., et al.
"Defective RNA
processing enhances | Harrison et al. BMC Plant Biology (2021) 21:114 Page 21 of 43 **Table 2** The 50
tomato plant DEGs associated with transcription and translation. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (*P* < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 44 genes (88%, **in bold**) would have resulted in improvements to transcription/translation pathways. These DEGs were related to post-translational modifications, miRNA processing, and gene silencing (*Continued*) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|--------------|-----------|--------|--|---|--|---| | | | | | subunit 1 | | | RNA silencing and
influences flowering
of Arabidopsis."
Proceedings of the
National Academy of
Sciences 103.41
(2006): 14994-15001. | | Solyc03g098420.2 | PCMP-
H37 | AT2G01510 | 0.35 | pentatricopeptide
repeat-containing
protein
At2g01510 | Involved in RNA
modification | Increased RNA
modification | Cheng, Chia-Yi, et al. "Araport11: a complete reannotation of the Arabidopsis thaliana reference genome." The Plant Journal 89.4 (2017): 789-804. | | Solyc04g074910.2 | RPS21B | AT3G53890 | 0.36 | 40S ribosomal
protein S21-1 | Structural constituent of the ribosome | Increased chloroplast
organization;
Increased
endonucleolytic
cleavage to generate
mature 3'-end of SSU-
rRNA from (SSU-rRNA),
5.8S rRNA, LSU-rRNA);
Increased translation | Wang, Ruijuan, et al. "Balance between cytosolic and chloroplast translation affects leaf variegation." Plant physiology 176.1 (2018): 804-818. | | Solyc05g005780.2 | N/a | AT1G60070 | 0.37 | AP-1 complex
subunit gamma-2 | Subunit of clathrin-
associated adaptor
protein complex 1
that plays a role in
protein sorting at the
trans-Golgi network
and early endosomes | Increased intracellular
protein transport;
Increased vesicle-
mediated transport | Feng, Chong, et al. "Arabidopsis adaptor protein 1G is critical for pollen development." Journa of integrative plant biology 59.9 (2017): 594-599. | | Solyc06g076340.2 | APUM2 | AT2G29190 | 0.37 | pumilio homolog
2 | Sequence-specific
RNA-binding protein
that regulates
translation and mRNA
stability by binding
the 3'-UTR of target
mRNAs | Increased regulation of translation | Francischini, Carlos W. and Ronaldo B. Quaggio. "Molecular characterization of Arabidopsis thaliana PUF proteins-binding specificity and target candidates." The FEBS journal 276.19 (2009): 5456-5470. | | Solyc02g078260.1 | NRPB2 | AT4G21710 | 0.37 | DNA-directed RNA
polymerase II
subunit 2 | Catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates; Contributes to the polymerase catalytic activity; Essential for the completion of mitosis in females | Increased production
of miRNAs; Increased
transcription by RNA
polymerase II | Ream, Thomas S., et al. "Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II." Molecular cell 33.2 (2009): 192-203. | | Solyc01g096390.2 | NRPE1 | AT2G40030 | 0.37 | DNA-directed RNA
polymerase V
subunit 1 | DNA-dependent RNA
polymerase; Catalytic
component of RNA
polymerase V involved
in RNA-directed DNA | Increased response to
fungus; Increased
DNA methylation;
Increased
posttranscriptional | Pontier, Dominique, e
al. "Reinforcement of
silencing at
transposons and
highly repeated | Harrison et al. BMC Plant Biology (2021) 21:114 Page 22 of 43 **Table 2** The 50 tomato plant DEGs associated with transcription and translation. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (*P* < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 44 genes (88%, **in bold**) would have resulted in improvements to transcription/translation pathways. These DEGs were related to post-translational modifications, miRNA processing, and gene silencing (Continued) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|----------|-----------|--------|---|---|---|--| | | | | | | methylation-
dependent silencing
of endogenous
repeated sequences;
Essential component
of siRNA production | gene silencing;
Increased
transcription by RNA
polymerase III | sequences requires
the concerted action
of two distinct RNA
polymerases IV in
Arabidopsis." Genes &
development 19.17
(2005): 2030-2040. | | Solyc04g005690.2 | N/a | AT1G14650 | 0.38 | probable splicing
factor 3A subunit
1 | Involved in mRNA
splicing | Increased
transcription by
mRNA splicing | Dou, Kun, et al. "The PRP6-like splicing factor STA1 is involved in RNA-directed DNA methylation by facilitating the production of Pol V-dependent scaffold RNAs." Nucleic acids research 41.18 (2013): 8489-8502. | | Solyc07g049480.2 | CPSF73-I | AT1G61010 | 0.39 | cleavage and
polyadenylation
specificity factor
subunit 3-I | Play sa key role in pre-
mRNA 3'-end
formation | Increased mRNA 3'-
end processing by
stem-loop binding
and cleavage;
Increased mRNA
polyadenylation;
Increased snRNA
processing | Herr, Alan J., et al. "Defective RNA processing enhances RNA silencing and influences flowering of Arabidopsis." Proceedings of the National Academy of Sciences 103.41 (2006): 14994-15001. | | Solyc05g047520.2 | HEN2 | AT2G06990 | 0.40 | DEXH-box ATP-
dependent RNA
helicase DEXH10 | Involved in the degradation of a large number of non-coding nuclear exosome substrates; Involved in the maintenance of homeotic B and C gene expression in the reproductive whorl; Regulates floral organ spacing and identity | Increased maturation
of 5.8S rRNA;
Increased mRNA
processing; Decreased
posttranscriptional
gene silencing; RNA
catabolic process;
Increased RNA
metabolism;
Increased floral organ
development | Western, Tamara L., et
al. "HUA ENHANCER2,
a putative DExH-box
RNA helicase,
maintains homeotic B
and C gene
expression in
Arabidopsis."
Development 129.7
(2002): 1569-1581. | | Solyc02g021760.2 | CPSF30 | AT1G30460 | 0.40 | 30-kDa cleavage
and
polyadenylation
specificity factor
30 | Component of the cleavage and polyadenylation specificity factor complex that plays a key role in pre-mRNA 3'-end formation and poly(A) addition; Involved in post-transcriptional control of oxidative stress responses; Regulates salicylic acid production | Increased mRNA
polyadenylation;
Increased
hypersensitive
response; Increased
salicylic acid
mediated signaling
pathway; Increased
response to oxidative
stress; Increased RNA
processing | Delaney, Kimberly J., et al. "Calmodulin interacts with and regulates the RNA-binding activity of an Arabidopsis polyadenylation factor subunit." Plant physiology 140.4 (2006): 1507-1521. | | Solyc12g049410.1 | NUP107 | AT3G14120 | 0.40 | nuclear pore
complex protein
NUP107 | Involved in mRNA export from the nucleus by | Increased mRNA
transport from
nucleus; Increased | Parry, Geraint, et al.
"The Arabidopsis
SUPPRESSOR OF | Harrison et al. BMC Plant Biology (2021) 21:114 Page 23 of 43 **Table 2** The 50 tomato plant DEGs associated with transcription and translation. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (*P* < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 44 genes (88%, **in bold**) would have resulted in improvements to transcription/translation pathways. These DEGs were related to post-translational modifications, miRNA processing, and gene silencing (*Continued*) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation |
Citation | |------------------|---------|-----------|--------|--|---|---|---| | | | | | | posttranscriptional
tethering of RNA
polymerase II;
Involved in protein
import into the
nucleus | protein transort into
nucleus | AUXIN RESISTANCE proteins are nucleoporins with an important role in hormone signaling and development." The Plant Cell 18.7 (2006): 1590-1603. | | Solyc03g025940.1 | N/a | AT3G48880 | 0.42 | F-box/LRR-repeat
protein | Involved in
endogenous
messenger response
to Gram-negative
bacteria | Increased RNA
signaling; Increased
defense response to
Gram-negative
bacteria | Thieme, Christoph J.,
et al. "Endogenous
Arabidopsis
messenger RNAs
transported to distant
tissues." Nature Plants
1.4 (2015): 15025. | | Solyc09g082520.2 | RPS3AA | AT3G04840 | 0.47 | 40S ribosomal
protein S3a-1 | Structural constituent of the ribosome | Increased translation | Chen, I-Peng, et al. "The transcriptional response of Arabidopsis to genotoxic stress—a high-density colony array study (HDCA)." The Plant Journal 35.6 (2003): 771-786. | | Solyc04g040170.1 | NRPE5A | AT3G57080 | 0.49 | DNA-directed RNA
polymerase V
subunit 5A | Catalyzes the
transcription of DNA
into RNA; Component
of RNA polymerase II
which synthesizes
mRNA precursors and
many functional non-
coding RNAs | Increased
transcription by RNA
polymerase I & II & III | Ream, Thomas S., et al. "Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II." Molecular cell 33.2 (2009): 192-203. | | Solyc05g032770.2 | AL4 | AT5G26210 | 0.53 | PHD finger
protein ALFIN-
LIKE 4 | Histone-binding
component that
specifically recognizes
H3 tails trimethylated
on Lys-4 | Increased chromatin
organization;
Increased regulation
of transcription | Lee, Woo Yong, et al. "Arabidopsis ING and Alfin1-like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers." The Plant Journal 58.3 (2009): 511-524. | | Solyc09g065850.2 | AUX22 | AT1G15580 | 0.64 | auxin-induced
protein AUX22 | Repressors of early
auxin response genes
at low auxin
concentrations | Increased auxin-
activated signaling;
Increased regulation
of transcription | Taniguchi, Masatoshi, et al. "Identification of gravitropic response indicator genes in Arabidopsis inflorescence stems." Plant signaling & behavior 9.9 (2014): e29570. | | Solyc05g012210.2 | AFP3 | AT3G29575 | 0.76 | ninja-family protein
AFP3 | Acts as a negative
regulator of abscisic
acid response and
stress responses | Decreased
transcription;
Increased signal
transduction | de Torres-Zabala,
Marta, et al.
"Pseudomonas
syringae pv. tomato | Harrison et al. BMC Plant Biology (2021) 21:114 Page 24 of 43 **Table 2** The 50 tomato plant DEGs associated with transcription and translation. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (*P* < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 44 genes (88%, **in bold**) would have resulted in improvements to transcription/translation pathways. These DEGs were related to post-translational modifications, miRNA processing, and gene silencing (*Continued*) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid
infestation | Citation | |------------------|-------------|-----------|--------|---|---|---|---| | | | | | | | | hijacks the
Arabidopsis abscisic
acid signalling
pathway to cause
disease." The EMBO
journal 26.5 (2007):
1434-1443. | | Solyc08g007530.2 | AHL1 | AT4G12080 | 0.90 | AT-hook motif
nuclear-localized
protein 1 | Specifically binds ATrich DNA sequences related to the nuclear matrix attachment regions; Functions in the positioning of chromatin fibers within the nucleus | Increased
transcription;
Increased cellular
turnover | Fujimoto, Satoru, et al. "Identification of a novel plant MAR DNA binding protein localized on chromosomal surfaces." Plant molecular biology 56.2 (2004): 225-239. | | Solyc01g096320.2 | ATHB-
12 | AT3G61890 | 1.31 | homeobox-leucine
zipper protein
ATHB-12 | Transcription activator that acts as growth regulators in response to drought | Increased
development;
Increased
transcription;
Increased response to
abscisic acid;
Increased response to
virus; Increased
response to drought
and osmotic stress | Olsson, Anna, Peter Engström, and Eva Söderman. "The homeobox genes ATHB12 and ATHB7encode potential regulators of growth in response to water deficit in Arabidopsis." Plant molecular biology 55.5 (2004): 663-677. | **Table 3** The 35 tomato plant DEGs associated with molecular signaling. DEGs were sorted by $\log 2$ -fold change ($\log 2$ FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (P < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 28 genes (85%, **in bold**) would have resulted in improvements to molecular signaling pathways. These DEGs were related to protein phosphorylation and mobilization to the vacuole | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|---------|-----------|--------|---|--|---|--| | Solyc08g083360.2 | PNSB3 | AT3G16250 | -1.23 | photosynthetic NDH
subunit of subcomplex B
3, chloroplastic | NDH shuttles electrons
from NAD(P)H:
plastoquinone to quinones
in the photosynthetic
chain; Couples the redox
reaction to proton
translocation | Decreased photosynthetic electron transport | Qian, Haifeng, et al. "PGRS and NDH pathways in photosynthetic cyclic electron transfer respond differently to sublethal treatment with photosystem-interfering herbicides." Journal of agricultural and food chemistry 62.18 (2014): 4083-4089. | | Solyc01g087690.1 | SIGD | AT5G13730 | -1.06 | RNA polymerase sigma
factor sigD, chloroplastic | Promotes the attachment
of plastid-encoded RNA
polymerase; Regulates
transcription of the ndhF
gene | Decreased response to
light stimulus; Decreased
transcription; Decreased
regulation of RNA
biosynthesis | Lerbs-Mache, Silva. "Function of plastid sigma factors in higher plants: regulation of gene expression or just preservation of constitutive transcription?." Plant molecular biology 76.3-5 (2011): 235-249. | | Solyc02g085950.2 | RBCS3B | AT5G38410 | -1.03 | Ribulose bisphosphate carboxylase small chain | RuBisCO catalyzes two reactions: the | Decarbon fixation;
Decreased chloroplast | Menges, Margit, et al. "Cell
cycle-regulated gene | Harrison et al. BMC Plant Biology (2021) 21:114 Page 25 of 43 **Table 3** The 35 tomato plant DEGs associated with molecular signaling. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (P < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 28 genes (85%, **in bold**) would have resulted in improvements to molecular signaling pathways. These DEGs were related to protein phosphorylation and mobilization to the vacuole (*Continued*) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|---------|-----------|--------|---
---|--|---| | | | | | | carboxylation of D-ribulose
1,5-bisphosphate as well
as the oxidative
fragmentation of the
pentose substrate; Both
reactions occur
simultaneously and in
competition at the same
active site | ribulose bisphosphate
carboxylase complex
assembly; Decreased
photorespiration and
photosynthesis;
Decreaesed response to
blue and red light | expression inArabidopsis."
Journal of Biological
Chemistry 277.44 (2002):
41987-42002. | | Solyc12g036170.1 | PNSB4 | AT1G18730 | -1.03 | photosynthetic NDH
subunit of subcomplex B
4, chloroplastic | NDH shuttles electrons
from NAD(P)H:
plastoquinone to quinones
in the photosynthetic
chain; Couples the redox
reaction to proton
translocation | Decreased photosynthetic electron transport | Qian, Haifeng, et al. "PGRS and NDH pathways in photosynthetic cyclic electron transfer respond differently to sublethal treatment with photosystem-interfering herbicides." Journal of agricultural and food chemistry 62.18 (2014): 4083-4089. | | Solyc11g006020.1 | ndhO | AT1G74880 | -0.93 | NAD(P)H-quinone
oxidoreductase subunit O,
chloroplastic | NDH shuttles electrons
from NAD(P)H:
plastoquinone to quinones
in the photosynthetic
chain; Couples the redox
reaction to proton
translocation | Decreased NADH
dehydrogenase complex
assembly; Decreased
photosynthesis | Ishikawa, Noriko, Tsuyoshi
Endo, and Fumihiko Sato.
"Electron transport
activities of Arabidopsis
thaliana mutants with
impaired chloroplastic
NAD (P) H
dehydrogenase." Journal of
plant research 121.5 (2008):
521-526. | | Solyc02g066920.2 | CRR7 | AT5G39210 | -0.84 | protein
CHLORORESPIRATORY
REDUCTION 7,
chloroplastic | Required for both formation and activity of the chloroplast NAD(P)H dehydrogenase complex of the photosynthetic electron transport chain; Required for the accumulation of NDH subcomplex A; Involved in post-translational steps during the biogenesis of subcomplex A | Decreased NAD(P)H
dehydrogenase complex
assembly | Kamruzzaman Munshi, M.,
Yoshichika Kobayashi, and
Toshiharu Shikanai.
"Identification of a novel
protein, CRR7, required for
the stabilization of the
chloroplast NAD (P) H
dehydrogenase complex
in Arabidopsis." The Plant
Journal 44.6 (2005): 1036-
1044. | | Solyc04g082930.1 | LHCB7 | AT1G76570 | -0.82 | chlorophyll a-b binding
protein 7, chloroplastic | Captures and delivers
excitation energy;
Functions in non-
photochemical quenching
to dissipate energy;
Contributes to primary
photochemistry | Decreased photosynthesis
and light harvesting in
photosystem I; Impaired
protein-chromophore
linkage; Decreased
response to blue and far-
red light | Peterson, Richard B., and
Neil P. Schultes. "Light-
harvesting complex B7
shifts the irradiance
response of
photosynthetic light-
harvesting regulation in
leaves of Arabidopsis
thaliana." Journal of plant
physiology 171.3-4 (2014):
311-318. | | Solyc10g077040.1 | CRD1 | AT3G56940 | -0.80 | magnesium-
protoporphyrin
monomethyl ester cyclase | Catalyzes the formation of
the isocyclic ring in
chlorophyll biosynthesis;
Mediates the cyclase
reaction | Decreased chlorophyll
biosynthesis; Decreased
chloroplast organization;
Decreased photosynthesis;
Decreased regulation of
tetrapyrrole metabolic
process | Tottey, Stephen, et al. "Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide." Proceedings of the National Academy of Sciences 100.26 (2003): 16119-16124. | | Solyc06g048410.2 | FSD1 | AT4G25100 | -0.79 | iron superoxide
dismutase [Fe] 1, | Breaks down superoxide anion radicals | Decreased response to cadmium stress; | Kuo, W. Y., et al.
"CHAPERONIN 20 mediates | Harrison et al. BMC Plant Biology (2021) 21:114 Page 26 of 43 **Table 3** The 35 tomato plant DEGs associated with molecular signaling. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (P < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 28 genes (85%, **in bold**) would have resulted in improvements to molecular signaling pathways. These DEGs were related to protein phosphorylation and mobilization to the vacuole (*Continued*) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|---------|-----------|--------|--|--|---|---| | | | | | chloroplastic | | Decreased response to
copper ion; Decreased
response to light intensity;
Decreased response to
oxidative stress and ozone | iron superoxide dismutase
(Fe SOD) activity
independent of its co-
chaperonin role in
Arabidopsis chloroplasts."
New Phytologist 197.1
(2013): 99-110. | | Solyc02g080540.1 | ATPC1 | AT4G04640 | -0.74 | ATP synthase gamma
chain, chloroplastic | Produces ATP from ADP in
the presence of a proton
gradient across the
membrane | Decreased ATP
biosynthesis; Decreased
ATP synthesis coupled
proton transport;
Decreased photosynthetic
electron transport in
photosystem II | Dal Bosco, Cristina, et al. "Inactivation of the chloroplast ATP synthase y subunit results in high non-photochemical fluorescence quenching and altered nuclear gene expression in Arabidopsis thaliana." Journal of Biological Chemistry 279.2 (2004): 1060-1069. | | Solyc03g097320.2 | SIGA | AT1G64860 | -0.72 | RNA polymerase sigma
factor sigA | Essential protein; Controls
the transcription of the
psaA gene and thus
modulates photosystem
stoichiometry; Maintains a
harmonious electron flow
and photosynthetic
efficiency | Decreased response to
light stimulus; Decreased
cellular response to redox
state; Decreased DNA-
templated transcription;
Impaired photosystem
stoichiometry adjustment;
Decreased regulation of
RNA biosynthesis | Hakimi, Mohamed-Ali, et
al. "Evolutionary
conservation of C-terminal
domains of primary
sigma70-type transcription
factors between plants
and bacteria." Journal of
Biological Chemistry
275.13 (2000): 9215-9221. | | Solyc07g032640.1 | PSBO1 | AT5G66570 | -0.66 | oxygen-evolving
enhancer protein 1-1,
chloroplastic | Stabilizes the manganese
cluster which is the
primary site of water
splitting | Decreased defense
response to bacteria;
Decreased
photoinhibition;
Decreased photosynthesis;
Decreased photosystem II
assembly and stabilization;
Decreased regulation of
protein dephosphorylation | Murakami, Reiko, et al. "Characterization of an Arabidopsis thaliana mutant with impaired psbO, one of two genes encoding extrinsic 33-kDa proteins in photosystem II." FEBS letters 523.1-3 (2002): 138-142. | | Solyc03g120430.2 | GLYK | AT1G80380 | -0.66 | D-glycerate 3-kinase,
chloroplastic | Indispensable ancillary
metabolic pathway to the
photosynthetic C3 cycle
that enables land plants to
grow in an oxygen-
containing atmosphere | Impaired oxidative
photosynthetic carbon
pathway; Decreased
photorespiration | Boldt, Ralf, et al. "D-
GLYCERATE 3-KINASE, the last
unknown enzyme in the
photorespiratory cycle in
Arabidopsis, belongs to a
novel kinase family." The Plant
Cell 17.8 (2005): 2413-2420. | | Solyc08g080050.2 | PGRL1A | AT4G22890 | -0.64 | PGR5 protein 1A,
chloroplastic | Ferredoxin-plastoquinone
reductase involved in
cyclic electron flow around
photosystem I | Decreased photosynthesis;
Decreased photosynthetic
electron transport in
photosystem I | DalCorso, Giovanni, et al. "A
complex containing PGRL1
and PGR5 is involved in the
switch between linear and
cyclic electron flow in
Arabidopsis." Cell 132.2
(2008): 273-285. | | Solyc10g007690.2 | LHCA3 | AT1G61520 | -0.62 | Photosystem I chlorophyll
a/b-binding protein 3-1,
chloroplastic | The light-harvesting complex functions as a light receptor; Captures and delivers excitation energy to photosystems with which it is closely associated | Decreased photosynthesis;
Impaired protein-
chromophore
linkage;
Decreased response to
cold and light stress | Ganeteg, Ulrika, et al. "The properties of the chlorophyll a/b-binding proteins Lhca2 and Lhca3 studied in vivo using antisense inhibition." Plant physiology 127.1 (2001): 150-158. | | Solyc01g005520.2 | MET1 | AT1G55480 | -0.62 | protein MET1,
chloroplastic | Involved in photosystem II supercomplex formation and repair | Decreased photosynthesis | Ishikawa, Atsushi, et al. "Molecular characterization of the ZKT gene encoding a protein with PDZ, K-Box, and TPR motifs in Arabidopsis." Bioscience, biotechnology, and biochemistry 69.5 (2005): 972-978. | Harrison et al. BMC Plant Biology (2021) 21:114 Page 27 of 43 **Table 3** The 35 tomato plant DEGs associated with molecular signaling. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (P < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 28 genes (85%, **in bold**) would have resulted in improvements to molecular signaling pathways. These DEGs were related to protein phosphorylation and mobilization to the vacuole (*Continued*) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|---------|-----------|--------|---|--|--|---| | Solyc04g064670.2 | PPD4 | AT1G77090 | -0.62 | psbP domain-containing
protein 4, chloroplastic | Involved in photosynthesis | Decreased photosynthesis | Dal Bosco, Cristina, et al. "Inactivation of the chloroplast ATP synthase γ subunit results in high non-photochemical fluorescence quenching and altered nuclear gene expression in Arabidopsis thaliana." Journal of Biological Chemistry 279.2 (2004): 1060-1069. | | Solyc05g026550.2 | ndhL | AT1G70760 | -0.60 | NAD(P)H-quinone
oxidoreductase subunit L,
chloroplastic | NDH shuttles electrons
from NAD(P)H:
plastoquinone to quinones
in the photosynthetic
chain; Couples the redox
reaction to proton
translocation | Decreased NADH
dehydrogenase complex
(plastoquinone) assembly;
Decreased photosynthetic
electron transport in
photosystem I | Thieme, Christoph J., et al. "Endogenous Arabidopsis messenger RNAs transported to distant tissues." Nature Plants 1.4 (2015): 15025. | | Solyc11g008620.1 | PGLP1B | AT5G36790 | -0.56 | phosphoglycolate
phosphatase 1B,
chloroplastic | Photorespiratory enzyme
that dephosphorylates the
2-phosphoglycolate
produced by the RuBisCO
oxygenation reaction | Decreased
dephosphorylation;
Decreased
photorespiration | Reiland, Sonja, et al. "Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks." Plant physiology 150.2 (2009): 889-903. | | Solyc04g057980.2 | ndhH | ATCG01110 | -0.56 | NAD(P)H-quinone
oxidoreductase subunit H,
chloroplastic | NDH shuttles electrons
from NAD(P)H:
plastoquinone to quinones
in the photosynthetic
chain, Couples the redox
reaction to proton
translocation | Decreased photosynthesis;
Decreased reaction to
light | Lerbs-Mache, Silva. "Function of plastid sigma factors in higher plants: regulation of gene expression or just preservation of constitutive transcription?." Plant molecular biology 76.3-5 (2011): 235-249. | | Solyc02g091560.2 | SHM1 | AT4G37930 | -0.53 | serine
hydroxymethyltransferase
1, mitochondrial | Catalyzes interconversion
of serine and glycine in
the photorespiratory
pathway; Involved in
controlling cell damage
caused by abiotic stress;
Regulates the
hypersensitive defense
response | Decreased response to
tetrahydrofolate;
Decreased L-serine
metabolism; Decreased
one-carbon metabolism;
Decreased
photorespiration;
Decreased hypersensitive
response; Decreased
response to cadmium,
cold, heat, and light stress | Moreno, Juan Ignacio, et al. "Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress." The Plant Journal 41.3 (2005): 451-463. | | Solyc05g052600.2 | N/a | AT3G55800 | -0.50 | sedoheptulose-1,7-
bisphosphatase,
chloroplastic | Involved in fructose 1,6-
biphosphate metabolism | Decreased defense
response to bacteria;
Decreased
gluconeogenesis; Impaired
reductive pentose-
phosphate cycle;
Decreased photosynthesis | Kiddle, Guy, et al. "Effects
of leaf ascorbate content
on defense and
photosynthesis gene
expression in Arabidopsis
thaliana." Antioxidants and
Redox Signaling 5.1 (2003):
23-32. | | Solyc01g107660.2 | SEP1 | AT4G34190 | -0.47 | stress enhanced protein 1 protein | Involved in non-
photochemical quenching;
Plays a role in the
thylakoid membrane in
response to light stress | Decreased response to
high light intensity;
Decreased photosynthesis;
Decreased response to
wounding | Maejima, Kensaku, et al. "Degradation of class E MADS-domain transcription factors in Arabidopsis by a phytoplasmal effector, phyllogen." Plant signaling & behavior 10.8 (2015): e1042635. | Harrison et al. BMC Plant Biology (2021) 21:114 Page 28 of 43 **Table 3** The 35 tomato plant DEGs associated with molecular signaling. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (P < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 28 genes (85%, **in bold**) would have resulted in improvements to molecular signaling pathways. These DEGs were related to protein phosphorylation and mobilization to the vacuole (*Continued*) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|---------|-----------|--------|--|---|--|--| | Solyc10g080080.1 | NTRC | AT2G41680 | -0.46 | NADPH-dependent
thioredoxin reductase 3 | Electron donor for plastidial 2-Cys peroxiredoxin; Required for chlorophyll biosynthesis and biogenesis of the photosynthetic apparatus; Regulates starch biosynthesis by redox activation of the ADP-glucose pyrophosphorylase | Impaired cell redox
homeostasis; Decreased
hydrogen peroxide
catabolic process;
Decreased regulation of
chlorophyll biosynthesis;
Decreased regulation of
starch biosynthesis;
Decreased removal of
superoxide radicals | Moon, Jeong Chan, et al. "The C-type Arabidopsis thioredoxin reductase ANTR-C acts as an electror donor to 2-Cys peroxiredoxins in chloroplasts." Biochemical and biophysical research communications 348.2 (2006): 478-484. | | Solyc02g072140.1 | GIL1 | AT5G58960 | -0.44 | protein Gravitropic In
The Light 1 | Required for red and far-
red light-induced and
phytochrome-mediated
deregulation of negative
gravitropism leading to
randomization of
hypocotyl growth
orientation | Impaired gravitropism;
Decreased response to
red or far red light | Allen, Trudie, et al. "Phytochrome-mediated
agravitropism in
Arabidopsis hypocotyls
requires GIL1 and confers
a fitness advantage." The
Plant Journal 46.4 (2006):
641-648. | | Solyc11g008990.1 | VIPP1 | AT1G65260 | -0.36 | membrane-associated
protein VIPP1,
chloroplastic | Required for plastid vesicle
formation and thylakoid
membrane biogenesis | Decreased thylakoid
membrane organization;
Decreased vesicle
organization | Kroll, Daniela, et al. "VIPP1,
a nuclear gene of
Arabidopsis thaliana
essential for thylakoid
membrane formation."
Proceedings of the
National Academy of
Sciences 98.7 (2001): 4238-
4242. | | Solyc05g014310.2 | HHL1 | AT1G67700 | -0.34 | protein HHL1,
chloroplastic | Involved in
photoprotection; Forms a
complex with LQY1 that is
involved in the repair and
reassembly cycle of the
PSII-LHCII supercomplex
under high-light
conditions | Increased response to light stress | Jin, Honglei, et al. "HYPERSENSITIVE TO HIGH LIGHT1 interacts with LOW QUANTUM YIELD OF
PHOTOSYSTEM II1 and functions in protection of photosystem II from photodamage in Arabidopsis." The Plant Cell 26.3 (2014): 1213-1229. | | Solyc05g050680.1 | CKB4 | AT2G44680 | 0.28 | casein kinase II subunit
beta-4 | Regulates the basal catalytic activity of the alpha subunit; Involved in the proteasome-dependent degradation of PIF1 and promotion of photomorphogenesis; Participates in the regulation of the initiation of translation | Improved circadian
rhythm; Improved
photoperiodism, Increased
flowering | Dennis, Michael D., and
Karen S. Browning.
"Differential
phosphorylation of plant
translation initiation factors
by Arabidopsis thaliana
CK2 holoenzymes." Journal
of Biological Chemistry
284.31 (2009): 20602-
20614. | | Solyc02g091410.2 | DEGP7 | AT3G03380 | 0.29 | protease Do 7 | Serine protease | Increased photoinhibition | Sun, Xuwu, et al. "The stromal chloroplast Deg7 protease participates in the repair of photosystem II after photoinhibition in Arabidopsis." Plant physiology 152.3 (2010): 1263-1273. | | Solyc05g055470.2 | NAC078 | AT5G04410 | 0.29 | NAC domain-containing
protein 78 | Transcriptional activated
by transmembrane
proteolysis; Induces
flavonoid biosynthesis and
required for the
accumulation of
anthocyanins in response
to high light stress | Increased transcription;
Increased regulation of
flavonoid biosynthesis;
Increased response to
high light intensity | Morishita, Teruyuki, et al. "Arabidopsis NAC transcription factor, ANAC078, regulates flavonoid biosynthesis under high-light." Plant and Cell Physiology 50.12 (2009): 2210-2222. | Harrison et al. BMC Plant Biology (2021) 21:114 Page 29 of 43 **Table 3** The 35 tomato plant DEGs associated with molecular signaling. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (P < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in 28 genes (85%, **in bold**) would have resulted in improvements to molecular signaling pathways. These DEGs were related to protein phosphorylation and mobilization to the vacuole (*Continued*) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|---------|-----------|--------|--|--|---|--| | Solyc08g076100.2 | BZIP16 | AT2G35530 | 0.33 | bZIP transcription
factor 16 | Transcriptional activator; G-
box and G-box-like motifs
are cis-acting elements
defined in promoters of
certain plant genes | Increased transcription;
Increased intercellular
signaling; Increased
photosynthesis; Increased
plant growth | Shen, Huaishun, et al. "AtbZIP16 and AtbZIP68, two new members of GBFs, can interact with other G group bZIPs in Arabidopsis thaliana." BMB reports 41.2 (2008): 132- 138. | | Solyc11g017300.1 | CSN5A | AT1G22920 | 0.33 | COP9 signalosome
complex subunit 5a | Involved in photomorphogenesis and response to jasmonate; Essential regulator of the ubiquitin conjugation pathway; Involved in repression of photomorphogenesis in darkness; Required for degradation of PSIAA6 | Decreased
photomorphogenesis;
Increased cellular turnover;
Increased protein
deneddylation; Increased
red light
phototransduction;
Increased defense
response; Increased
response to auxin;
Increased floral organ
development | Kwok, Shing F., et al. "Arabidopsis homologs of
a c-Jun coactivator are
present both in
monomeric form and in
the COP9 complex, and
their abundance is
differentially affected by
the pleiotropic cop/det/fus
mutations." The Plant Cell
10.11 (1998): 1779-1790. | | Solyc08g007270.2 | HAT4 | AT4G16780 | 0.34 | homeobox-leucine
zipper protein HAT4 | Negative regulator of cell
elongation and specific
cell proliferation processes
; Mediator of the red light
response under light
stress; Negatively regulates
its own expression | Increased lateral root
formation; Increased red
light phototransduction;
Increased response to
auxin; Increased response
to cytokinin; Increased
secondary thickening;
Increased shade
avoidance | Schena, Mark, Alan M.
Lloyd, and Ronald W.
Davis. "The HAT4 gene of
Arabidopsis encodes a
developmental regulator."
Genes & development 7.3
(1993): 367-379. | | Solyc04g082810.2 | AHL27 | AT1G20900 | 0.35 | AT-hook motif nuclear-
localized protein 27 | Negatively regulates innate immunity to pathogens through the downregulation of PAMP-triggered FRK1 expression; Regulates flowering and hypocotyl elongation; Chromatin remodeling factor that negatively regulates leaf senescence | Increased chromatin organization; Increased flower development; Impaired innate immune response; Increased leaf senescence; Increased photomorphogenesis; Increased vegetative to reproductive phase transition of meristem | Lim, Pyung Ok, et al. "Overexpression of a
chromatin architecture-
controlling AT-hook
protein extends leaf
longevity and increases
the post-harvest storage
life of plants." The Plant
Journal 52.6 (2007): 1140-
1153. | | Solyc12g026400.1 | DEGP9 | AT5G40200 | 0.41 | protease Do 9 | Serine protease that degrades the two-component response regulator ARR4; Acts upstream of ARR4 and regulates the activity of ARR4 in cytokinin and light-signaling pathways; Mediates the cross-talk between light and cytokinin signaling | Increased photosynthesis | Chi, Wei, et al. "DEG9, a serine protease, modulates cytokinin and light signaling by regulating the level of ARABIDOPSIS RESPONSE REGULATOR 4." Proceedings of the National Academy of Sciences 113.25 (2016): E3568-E3576. | ### **Growth analysis** The experiments tracking tomato stem growth rate showed, after 3 weeks, psyllid-infested plants $(21.9 \pm 0.8 \text{ cm}, n = 28)$ were significantly shorter compared to uninfested plants $(26.1 \pm 0.7 \text{ cm}, n = 27)$ (t-value = -4.2, P < 0.001). These results suggested that psyllid infestation had lasting, negative consequences on tomato growth (Fig. 4). ### Psyllid development experiments The psyllid development experiments showed that psyllids laid a statistically similar number of eggs on plants that had been previously infested $(36.6 \pm 13.4, n = 28)$ and uninfested plants $(48.8 \pm 12.1, n = 27)$ (t-score = -0.71, P = 0.24). Also, the rate of egg hatching was similar between psyllids raised on previously infested plants $(88.3 \pm 6.7\%)$ compared to psyllids raised on uninfested plants $(89.1 \pm 2.8\%)$ (n = 55; t-score = 0.04, P = 0.48). In contrast, the same experiments showed that nymphs had a significantly lower survival rate when reared on previously psyllid-infested plants $(71.9 \pm 6.0\%)$ compared to nymphs reared on uninfested plants $(85.4 \pm 3.7\%)$ (t-score = -1.89, P = 0.03). These differences, though, were Harrison et al. BMC Plant Biology (2021) 21:114 Page 30 of 43 **Table 4** The 33 tomato plant DEGs associated with photosynthesis. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (*P* < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in only 7 genes (20%, **in bold**) would have resulted in improvements to photosynthesis. Simultaneously, 28 DEGs, especially those related to response to light stimulus and photorespiration, underwent expression changes that would have resulted in impairments to photosynthesis | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|---------|-----------|--------|--|---|--|---| | Solyc06g073260.2 | CSP41B | AT1G09340 | -0.81 | chloroplast stem-loop
binding protein of 41
kDa b, chloroplastic | Associates with pre- ribosomal particles in chloroplasts and participates in chloroplast ribosomal RNA metabolism; Required for chloroplast
integrity and embryo development; Regulates the circadian system; Regulates heteroglycans and monosaccharide mobilization | Impaired chloroplast organization; Impaired circadian rhythm; Decreased defense response to bacteria and wounding; Decreased galactose catabolism; Decreased monosaccharide metabolism; Decreased transcription and translation; Decreased response to cold and drought; Decreased rRNA processing | Raab, Sabine, et al. "ABA-responsive RNA-binding proteins are involved in chloroplast and stromule function in Arabidopsis seedlings." Planta 224.4 (2006): 900-914. | | Solyc11g042940.1 | XK1 | AT2G21370 | -0.53 | D-ribulose kinase
precursor | Can phosphorylate
D-ribulose with low
efficiency | Decreased
phosphorylation | Xie, Yuan, et al. "Crystal Structures of Putative Sugar Kinases from Synechococcus Elongatus PCC 7942 and Arabidopsis Thaliana." PloS one 11.5 (2016): e0156067. | | Solyc02g069010.2 | IMPL1 | AT1G31190 | -0.39 | phosphatase IMPL1,
chloroplastic | Phosphatase acting
preferentially on D-
myoinositol 1-
phosphate | Decreased inositol
biosynthesis;
Decreased signal
transduction | Torabinejad, Javad, et al. "VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants." Plant physiology 150.2 (2009): 951-961. | | Solyc04g080860.1 | LON2 | AT5G47040 | -0.37 | lon protease 2 | Mediates the selective degradation of misfolded and unassembled polypeptides in the peroxisomal matrix; Necessary for type 2 peroxisome targeting signal-containing protein processing | Decreased lateral root development; Decreased protein transport; Decreased protein processing; Decreased protein processing; Decreased protein quality control for misfolded or incompletely synthesized protein; Decreased protein targeting to peroxisome | Lingard, Matthew J.,
and Bonnie Bartel.
"Arabidopsis LON2 is
necessary for
peroxisomal function
and sustained matrix
protein import." Plant
physiology 151.3
(2009): 1354-1365. | | Solyc05g006990.2 | NPF4.6 | AT1G69850 | -0.29 | protein NRT1/ PTR
FAMILY 4.6 | Low-affinity proton-
dependent nitrate
transporter; Involved
in constitutive nitrate
uptake; Involved in
(+)-abscisic acid
(ABA) transport;
Mediates cellular ABA
uptake | Decreased abscisic
acid transport;
Decreased nitrate
assimilation;
Decreased regulation
of stomatal
movement;
Decreased response
to nematode | Huang, Nien-Chen, et al. "Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of lowaffinity uptake." The Plant Cell 11.8 (1999): 1381-1392. | Harrison et al. BMC Plant Biology (2021) 21:114 Page 31 of 43 **Table 4** The 33 tomato plant DEGs associated with photosynthesis. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (*P* < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in only 7 genes (20%, **in bold**) would have resulted in improvements to photosynthesis. Simultaneously, 28 DEGs, especially those related to response to light stimulus and photorespiration, underwent expression changes that would have resulted in impairments to photosynthesis (*Continued*) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|---------|-----------|--------|---|--|--|--| | Solyc01g109520.2 | RABG3F | AT3G18820 | 0.25 | ras-related protein
RABG3f | Essential for
trafficking from
prevacuolar
compartments;
Essential for plant
growth; Participates
in the recruitment of
the core retromer
components to the
endosomal
membrane | Increased intracellular
protein transport;
Increased late
endosome to vacuole
transport; Increased
Rab protein signal
transduction;
Increased vacuole
organization | Zelazny, Enric, et al. "Mechanisms governing the endosomal membrane recruitment of the core retromer in Arabidopsis." Journal of Biological Chemistry 288.13 (2013): 8815-8825. | | Solyc09g074680.2 | CUL1 | AT4G02570 | 0.25 | cullin-1 | Involved in ubiquitination and subsequent proteasomal degradation; Regulator of mitotic processes during gametogenesis and embryogenesis; Involved in floral organ development; Involved in auxin signaling; Regulates responses to jasmonates; Involved in phytochrome A light signaling; Involved in leaf senescence | Increased auxin-
activated signaling
pathway; Increased
cellular cycling;
Increased embryo
development;
Increased jasmonic
acid-mediated
signaling; Increased
phloem or xylem
histogenesis;
Increased protein
ubiquitination;
Disrupted circadian
rhythm; Increased
response to jasmonic
acid; Increased
protein catabolism | Feng, Suhua, et al. "Arabidopsis CAND1, an unmodified CUL1- interacting protein, is involved in multiple developmental pathways controlled by ubiquitin/ proteasome- mediated protein degradation." The Plant Cell 16.7 (2004): 1870-1882. | | Solyc03g034200.2 | RCF3 | AT5G53060 | 0.26 | RNA-binding KH
domain-containing
protein RCF3 | Negative regulator of osmotic stress-induced gene expression; Regulates thermotolerance responses under heat stress; Forms a complex with CPL1 that modulates cotranscriptional processes; Represses stress-inducible gene expression; Involved in primary miRNA processing and premiRNA biogenesis; Involved in JAmediated fungal defense | Increased heat acclimation;
Increased jasmonic acid-mediated signaling; Increased mRNA processing; Increased mregulation of defense response to fungus; Increased regulation of gene expression; Increased response to osmotic stress; Increased RNA splicing | Xiong, Liming, et al. "HOS5–a negative regulator of osmotic stress-induced gene expression in Arabidopsis thaliana." The Plant Journal 19.5 (1999): 569-578. | | Solyc12g095990.1 | TIF4A-2 | AT1G54270 | 0.26 | eukaryotic initiation
factor 4A-2 | Subunit of the eIF4F
complex involved in
cap recognition;
Required for mRNA
binding to ribosome;
Unwinds RNA
secondary structures | Increased
cytoplasmic
translational initiation;
Increased response
to cadmium ion | Vergnolle, Chantal, et
al. "The cold-induced
early activation of
phospholipase C and
D pathways
determines the
response of two | Harrison et al. BMC Plant Biology (2021) 21:114 Page 32 of 43 **Table 4** The 33 tomato plant DEGs associated with photosynthesis. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (*P* < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in only 7 genes (20%, **in bold**) would have resulted in improvements to photosynthesis. Simultaneously, 28 DEGs, especially those related to response to light stimulus and photorespiration, underwent expression changes that would have resulted in impairments to photosynthesis (*Continued*) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|---------|-----------|--------|---|---|---|--| | | | | | | in the 5'-UTR of
mRNAs; Necessary for
efficient binding of
the small ribosomal
subunit | | distinct clusters of
genes in Arabidopsis
cell suspensions."
Plant physiology
139.3 (2005): 1217-
1233. | | Solyc12g089150.1 | SYP61 | AT1G28490 | 0.26 | syntaxin-61 | Vesicle trafficking
protein that functions
in the secretory
pathway; Involved in
osmotic stress
tolerance and in
abscisic acid
regulation of
stomatal responses | Increased abscisic
acid-activated
signaling; Increased
Golgi vesicle
transport; Increased
intracellular protein
transport; Increased
vesicle docking and
fusion | Shahriari,
Mojgan, et al. "The AAA-type ATPase AtSKD1 contributes to vacuolar maintenance of Arabidopsis thaliana." The Plant Journal 64.1 (2010): 71-85. | | Solyc05g055600.2 | VPS33 | AT3G54860 | 0.27 | vacuolar protein-
sorting-associated
protein 33 homolog | Involved in regulating
membrane fusion at
the tonoplast and the
prevacuolar
compartment | Increased vesicle
docking involved in
exocytosis | Rojo, Enrique, et al. "The AtC–VPS protein complex is localized to the tonoplast and the prevacuolar compartment in Arabidopsis." Molecular biology of the cell 14.2 (2003): 361-369. | | Solyc08g065890.2 | EPSIN1 | AT5G11710 | 0.28 | clathrin interactor
EPSIN 1 | Plays a role in
transport via clathrin-
coated vesicles from
the trans-Golgi
network to
endosomes;
Stimulates clathrin
assembly; Plays a role
in the vacuolar
trafficking of soluble
cargo proteins at the
trans-Golgi network | Increased protein
targeting to vacuole | Song, Jinhee, et al. "Arabidopsis EPSIN1 plays an important role in vacuolar trafficking of soluble cargo proteins in plant cells via interactions with clathrin, AP-1, VTI11, and VSR1." The Plant Cell 18.9 (2006): 2258-2274. | | Solyc01g096290.2 | RPL40A | AT2G36170 | 0.28 | ubiquitin-60S
ribosomal protein
L40 | Involved in protein
degradation via the
proteasome; Linear
polymer chains
formed via
attachment by the
initiator Met-lead
during cellular
signaling | Increased
modification-
dependent protein
catabolism; Increased
protein
ubiquitination;
Increased translation;
Increased defense
response to bacteria | Ditt, Renata F., et al. "The Arabidopsis thaliana transcriptome in response to Agrobacteria tumefaciens." Molecular plant- microbe interactions 19.6 (2006): 665-681. | | Solyc08g007360.2 | MAG5 | AT5G47480 | 0.28 | protein transport
protein SEC16A
homolog | Required for efficient
protein export from
the endoplasmic
reticulum to the
Golgi; Functions as a
scaffold and regulator
of COPII coat
assembly at ER exit
sites | Increased COPII
vesicle coating;
Increased
endoplasmic
reticulum
organization;
Increased protein
transport | Takagi, Junpei, et al. "MAIGO5 functions in protein export from Golgi-associated endoplasmic reticulum exit sites in Arabidopsis." The Plant Cell 25.11 (2013): 4658-4675. | | Solyc04g082560.2 | ITSN2 | N/a | 0.29 | intersectin-2 | Adapter protein that provides indirect link | Increased endocytosis; | Mettlen, Marcel, et al.
"Endocytic accessory | Harrison et al. BMC Plant Biology (2021) 21:114 Page 33 of 43 **Table 4** The 33 tomato plant DEGs associated with photosynthesis. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (*P* < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in only 7 genes (20%, **in bold**) would have resulted in improvements to photosynthesis. Simultaneously, 28 DEGs, especially those related to response to light stimulus and photorespiration, underwent expression changes that would have resulted in impairments to photosynthesis (*Continued*) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|--------------|-----------|--------|--|--|---|---| | | | | | | between the
endocytic membrane
traffic and the actin
assembly machinery;
Regulates formation
of clathrin-coated
vesicles; Involved in
endocytosis of
integrin beta-1 | Increased dendrite
extension; Increased
regulation of Rho
protein signal
transduction;
Increased viral
process | proteins are
functionally
distinguished by their
differential effects on
the maturation of
clathrin-coated pits."
Molecular biology of
the cell 20.14 (2009):
3251-3260. | | Solyc03g034180.2 | GRF2 | AT1G78300 | 0.31 | 14-3-3-like protein
GF14 omega | Associated with a
DNA binding
complex that binds
to the G box | Increased
brassinosteroid-
mediated signaling | DeLille, Justin M.,et al.
"The Arabidopsis 14-
3-3 family of
signaling regulators."
Plant Physiology
126.1 (2001): 35-38. | | Solyc05g053830.2 | N/a | AT4G14160 | 0.31 | protein transport
protein SEC23 | Promotes the
formation of
transport vesicles
from the
endoplasmic
reticulum | Increased COPII-
coated vesicle cargo
loading; Increased
intracellular protein
transport | De Craene, Johan-
Owen, et al. "Study of
the plant COPII
vesicle coat subunits
by functional
complementation of
yeast Saccharomyces
cerevisiae mutants."
PLoS One 9.2 (2014):
e90072. | | Solyc01g104970.2 | BAK1 | AT4G33430 | 0.31 | brassinosteroid
insensitive 1-
associated receptor
kinase 1 | Involved in
brassinosteroid
signaling response to
beacteria/fungi/
oomycetes; Mediates
programmed cell
death | Increased
brassinosteroid
mediated signaling
pathway; Increased
programmed cell
death; Increased
defense response to
bacteria/fungus/
oomycetes | Li, Jia, et al. "BAK1, an
Arabidopsis LRR
receptor-like protein
kinase, interacts with
BRI1 and modulates
brassinosteroid
signaling." Cell 110.2
(2002): 213-222. | | Solyc11g013260.1 | РНВ3 | AT5G40770 | 0.32 | prohibitin-3,
mitochondrial | Holdase/unfoldase involved in the stabilization of newly synthesized mitochondrial proteins; Necessary for mitochondrial and cell metabolism and biogenesis; Required to regulate ethylenemediated signaling; Involved in growth maintenance; Functions in nitric oxide-mediated responses | | Christians, Matthew J., et al. "Mutational loss of the prohibitin AtPHB3 results in an extreme constitutive ethylene response phenotype coupled with partial loss of ethylene-inducible gene expression in Arabidopsis seedlings." Journal of experimental botany 58.8 (2007): 2237-2248. | | Solyc09g061340.1 | PCMP-
E76 | AT2G13600 | 0.33 | pentatricopeptide
repeat-containing
protein At2g13600 | Involved in
mitochondrial mRNA
modification during
sugar metabolism | Increased
mitochondrial mRNA
modification;
Increased RNA
modification;
Increased sugar-
mediated signaling
pathway; Increased
sugar metabolism | Zhu, Qiang, et al. "SLO2,
a mitochondrial
pentatricopeptide
repeat protein affecting
several RNA editing
sites, is required for
energy metabolism."
The Plant Journal 71.5
(2012): 836-849. | Harrison et al. BMC Plant Biology (2021) 21:114 Page 34 of 43 **Table 4** The 33 tomato plant DEGs associated with photosynthesis. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (*P* < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in only 7 genes (20%, **in bold**) would have resulted in improvements to photosynthesis. Simultaneously, 28 DEGs, especially those related to response to light stimulus and photorespiration, underwent expression changes that would have resulted in impairments to photosynthesis (*Continued*) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|---------|-----------|--------|---------------------------------|---|--|---| | Solyc08g076100.2 | BZIP16 | AT2G35530 | 0.33 | bZIP transcription
factor 16 | Transcriptional activator; G-box and G-box-like motifs are cis-acting elements defined in promoters of certain plant genes which are regulated by such diverse stimuli as light-induction or hormone control | Increased
transcription;
Increased intercellular
signaling; increased
photosynthesis;
Increased plant
growth | Shen, Huaishun, et al. "AtbZIP16 and AtbZIP68, two new members of GBFs, can interact with other G group bZIPs in Arabidopsis thaliana."
BMB reports 41.2 (2008): 132-138. | | Solyc11g010950.1 | ELP4 | AT3G11220 | 0.33 | elongator complex
protein 4 | Component of the RNA polymerase II elongator complex; Promotes organs development by modulating cell division rate; Regulates mechanisms producing carbon or importing sucrose; Involved in the repression of the abscisic acid signaling during seed germination; Required for auxin distribution or signaling; Prevents anthocyanins accumulation | Increased response to sucrose; Decreased anthocyanin metabolism; Increased cellular turnover; Increased auxin-mediated signaling; Increased regulation of carbon utilization; Increased regulation of leaf development; Increased response to oxidative stress; Increased tRNA wobble uridine modification | Nelissen, Hilde, et al. "The elongata mutants identify a functional Elongator complex in plants with a role in cell proliferation during organ growth." Proceedings of the National Academy of Sciences 102.21 (2005): 7754-7759. | | Solyc11g033270.1 | M3KE1 | AT3G13530 | 0.34 | MAP3K epsilon
protein kinase | Serine/threonine- protein kinase involved in the spatial and temporal organization of cortical activity; Required for the normal functioning of the plasma membrane in developing pollen; Involved in the regulation of cell expansion, cell elongation, and embryo development | Increased cell
division; Increased
regulation of
embryonic
development;
Increased regulation
of cell growth;
Increased signal
transduction by
protein
phosphorylation | Seguí-Simarro, José M., et al. "Mitogenactivated protein kinases are developmentally regulated during stress-induced microspore embryogenesis in Brassica napus L." Histochemistry and cell biology 123.4-5 (2005): 541-551. | | Solyc01g096350.2 | CRK3 | AT2G46700 | 0.34 | CDPK-related kinase 3 | Plays a role in signal
transduction
pathways that
involve calcium as a
second messenger;
Serine/threonine
kinase that
phosphorylates
histone H3 an GLN1-1 | Increased response
to abscisic acid
stimulus; Increased
intracellular signal
transduction;
Increased leaf
senescence;
Increased peptidyl-
serine
phosphorylation | Du, Wei, et al. "Biochemical and
expression analysis of
an Arabidopsis
calcium-dependent
protein kinase-related
kinase." Plant science
168.5 (2005): 1181-
1192. | Harrison et al. BMC Plant Biology (2021) 21:114 Page 35 of 43 **Table 4** The 33 tomato plant DEGs associated with photosynthesis. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (*P* < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in only 7 genes (20%, **in bold**) would have resulted in improvements to photosynthesis. Simultaneously, 28 DEGs, especially those related to response to light stimulus and photorespiration, underwent expression changes that would have resulted in impairments to photosynthesis (*Continued*) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|---------|-----------|--------|--|--|--|---| | Solyc05g052510.2 | CHC1 | AT3G11130 | 0.34 | clathrin heavy chain
1 | Clathrin is the major
protein of the
polyhedral coat of
coated pits and
vesicles; Mediates
endocytosis and is
required for a correct
polar distribution of
PIN auxin
transporters | Increased clathrin-
dependent
endocytosis;
Increased intracellular
protein transport;
Increased receptor-
mediated
endocytosis;
Increased stomatal
movement | Kitakura, Saeko, et al. "Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis." The Plant Cell 23.5 (2011): 1920-1931. | | Solyc02g030210.2 | N/a | AT2G41710 | 0.36 | AP2 ethylene-
responsive
transcription factor
At2g41710 | Acts as a transcriptional activator; Binds to the GCC-box pathogenesis-related promoter element; Involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways | Increased ethylene-
activated signaling
pathway; Increased
growth/development
of reproductive
tissues | Seki, Motoaki, et al. "Functional annotation of a full- length Arabidopsis cDNA collection." Science 296.5565 (2002): 141-145. | | Solyc02g069310.2 | NPR3 | AT5G45110 | 0.36 | regulatory protein
NPR3 | Substrate-specific
adapter of an E3
ubiquitin-protein
ligase complex;
Mediates protein
ubiquitination and
subsequent
proteasomal
degradation;
Regulates basal
defense responses
against pathogens | Increased defense
response to bacteria
and fungus;
Increased protein
ubiquitination;
Increased jasmonic
acid-mediated
signaling; Increased
systemic acquired
resistance | Zhang, Yuelin, et al. "Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs." The Plant Journal 48.5 (2006): 647-656. | | Solyc05g021100.2 | SWAP70 | AT2G30880 | 0.36 | switch-associated
protein 70 | Involved in
intracellular signal
transduction;
Mediates defense
response to bacteria | Increased defense
response to bacteria;
Increased
intracellular signal
transduction | Van Leeuwen, Wessel,
et al. "Learning the
lipid language of
plant signalling."
Trends in plant
science 9.8 (2004):
378-384. | | Solyc01g089900.2 | ALG12 | AT1G02145 | 0.39 | dol-P-Man:
Man(7)GlcNAc(2)-PP-
Dol alpha-1,6-
mannosyltransferase | assembly; Adds the | Increased dolichol-
linked
oligosaccharide
biosynthesis;
Increased N-linked
glycosylation;
Increased ERAD
signaling | Hong, Zhi, et al. "Mutations of an α1, 6 mannosyltransferase inhibit endoplasmic reticulum—associated degradation of defective brassinosteroid receptors in Arabidopsis." The Plant Cell 21.12 (2009): 3792-3802. | Harrison et al. BMC Plant Biology (2021) 21:114 Page 36 of 43 **Table 4** The 33 tomato plant DEGs associated with photosynthesis. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (*P* < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in only 7 genes (20%, **in bold**) would have resulted in improvements to photosynthesis. Simultaneously, 28 DEGs, especially those related to response to light stimulus and photorespiration, underwent expression changes that would have resulted in impairments to photosynthesis (*Continued*) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid
infestation | Citation | |------------------|---------|-----------|--------|---|---|--|---| | Solyc10g074570.1 | СРК4 | AT4G09570 | 0.39 | calcium-dependent
protein kinase 4 | Plays a role in signal
transduction
pathways that
involve calcium as a
second messenger;
Regulator of the
calcium-mediated
abscisic acid
signaling pathway | Increased intracellular signal transduction; Increased peptidylserine phosphorylation; Increased abscisic acid-activated signaling; Increased protein autophosphorylation | Rodriguez Milla,
Miguel A., et al. "A
novel yeast two-
hybrid approach to
identify CDPK
substrates:
Characterization of
the interaction
between AtCPK11
and AtDi19, a nuclea
zinc finger protein1."
FEBS letters 580.3
(2006): 904-911. | | Solyc12g099010.1 | GFS12 | AT5G18525 | 0.40 | protein GFS12 | Acts predominantly
to suppress BCHC1,
which itself is a
negative factor in
protein storage
vacuole trafficking
regulation and plant
effector triggered
immunity | Increased defense
response to bacteria;
Increased protein
targeting to vacuoles | Teh, Ooi-kock, et al. "BEACH-domain proteins act together in a cascade to mediate vacuolar protein trafficking and disease resistance in Arabidopsis." Molecular plant 8.3 (2015): 389-398. | | Solyc08g005270.2 | RCD1 | AT1G32230 | 0.41 | inactive poly [ADP-
ribose]
polymerase
RCD1 | Regulates hormonal
responses during
developmental;
Required for
embryogenesis,
vegetative and
reproductive
development, and
abiotic stress
responses | Increased defense response to bacteria; Increased embryo development; Increased ethyleneactivated signaling pathway; Increased jasmonic acid-mediated signaling; Increased lateral root morphogenesis; Increased nitric oxide biosynthesis; Increased programmed cell death; Increased response to drought, osmotic, ozone, and oxide stress | Ahlfors, Reetta, et al. "Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein–protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses." The Plant Cell 16.7 (2004): 1925-1937. | | Solyc03g025940.1 | N/a | AT3G48880 | 0.42 | F-box/LRR-repeat
protein | Involved in
endogenous
messenger response
to Gram-negative
bacteria | Increased RNA
signaling; Increased
defense response to
Gram-negative
bacteria | Thieme, Christoph J.,
et al. "Endogenous
Arabidopsis
messenger RNAs
transported to distant
tissues." Nature Plants
1.4 (2015): 15025. | | Solyc06g083510.2 | PBL25 | AT3G24790 | 0.44 | serine/threonine-
protein kinase
PBL25 | Involved in protein
phosphorylation
signaling during
germination and
plant defense | Increased defense
response; Increased
protein
phosphorylation;
Increased
reproduction | Wang, Yi, et al. "Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis." Plant physiology 148.3 (2008): 1201-1211. | Harrison et al. BMC Plant Biology (2021) 21:114 Page 37 of 43 **Table 4** The 33 tomato plant DEGs associated with photosynthesis. DEGs were sorted by log2-fold change (log2FC). These DEGs were identified in the transcriptome analysis comparing psyllid-infested and uninfested tomato plants 3 weeks after infestation (*P* < 0.01). NCBI Blast searches were used to identify Gene IDs and protein products in tomatoes as well as their homologs in other species. Specifically, the expression changes in only 7 genes (20%, **in bold**) would have resulted in improvements to photosynthesis. Simultaneously, 28 DEGs, especially those related to response to light stimulus and photorespiration, underwent expression changes that would have resulted in impairments to photosynthesis (*Continued*) | Tomato gene ID | Gene ID | Homolog | Log2FC | Protein name | Uniprot description | Effect of psyllid infestation | Citation | |------------------|---------|-----------|--------|--|---|---|---| | Solyc01g100720.2 | IMPA4 | AT1G09270 | 0.45 | importin subunit
alpha-4 | Mediates nuclear
protein import across
the nuclear envelope;
Cellular receptor for
the nuclear import of
the virD2 protein of
Agrobacteria | Increased defense
response to symbiont
of tumor, nodule or
growth; Increased
NLS-bearing protein
transport into
nucleus; Increased
symbiont intracellular
transport | Bhattacharjee, Saikat, et al. "IMPa-4, an Arabidopsis importin a isoform, is preferentially involved in Agrobacteria-mediated plant transformation." The Plant Cell 20.10 (2008): 2661-2680. | | Solyc10g085000.1 | BSK5 | AT5G59010 | 0.55 | serine/threonine-
protein kinase BSK5 | Positive regulator of
brassinosteroid
signaling; Involved in
abiotic stress
tolerance; Required
for abscisic acid-
mediated response
to drought and salt
stress | Increased
brassinosteroid-
mediated signaling;
Increased response
to abscisic acid;
Increased response
to cold; Increased
response to salt
stress | Tang, Wenqiang, et
al. "BSKs mediate
signal transduction
from the receptor
kinase BRI1 in
Arabidopsis." Science
321.5888 (2008): 557-
560. | | Solyc09g008460.2 | RABC2A | AT5G03530 | 0.60 | ras-related protein
RABC2a | Involved in
intracellular vesicle
trafficking and
protein transport | Increased intracellular
protein transport;
Increased Rab protein
signal transduction | Hashimoto, Kohsuke, et al. "An isoform of Arabidopsis myosin XI interacts with small GTPases in its C-terminal tail region." Journal of experimental botany 59.13 (2008): 3523-3531. | | Solyc05g012210.2 | AFP3 | AT3G29575 | 0.76 | ninja-family protein
AFP3 | Acts as a negative
regulator of abscisic
acid response and
stress responses | Decreased
transcription;
Increased signal
transduction | de Torres-Zabala,
Marta, et al.
"Pseudomonas
syringae pv. tomato
hijacks the
Arabidopsis abscisic
acid signalling
pathway to cause
disease." The EMBO
journal 26.5 (2007):
1434-1443. | only apparent after nymphs had spent 3–5 days on previously-psyllid infested plants. These results suggest that tomato plants responded to psyllid infestation by mounting an immune response that made them less suitable hosts for psyllid nymphs 3 weeks after the first infestation (Fig. 5). ### Discussion Transcriptomic analysis of *S. lycopersicum* leaves showed that 362 genes were differentially expressed in tomato plants 3 weeks after psyllid infestation, suggesting that a week-long infestation by a small number of *B. cockerelli* had lasting consequences for gene expression in tomato plants (Figs. 1 and 2). Homologs of the DEGs were associated with 1) defense against abiotic and biotic stress, 2) transcription/translation, 3) molecular signaling, and 4) photosynthesis (Tables 1, 2, 3, 4; Supplementary Figure 3). In addition, RT-qPCR results corroborated the expression levels obtained by transcriptomic analysis for four tested genes (DRIP2, LON2, D27, PIP2-4) in the plants originally sequenced (Supplementary Figure 1) as well as plants independently grown and sampled (Supplementary Figure 2). Furthermore, the results of the tomato plant growth and psyllid development experiments Harrison et al. BMC Plant Biology (2021) 21:114 Page 38 of 43 Fig. 4 Boxplots of tomato stem length 3 weeks after psyllid-infested plants compared to uninfested plants. The '*' denotes a significant difference based on a one-way Student's t-Test for $\alpha = 0.05$ were consistent with the results of the transcriptome analysis by demonstrating that psyllid infestation had lasting consequences for tomato plant growth (Fig. 4) and defense (Fig. 5). Specifically, the growth experiments demonstrated that tomato growth was stunted by psyllid infestation while the psyllid development experiments demonstrated that tomato plants that had been previously challenged by psyllids were less suitable hosts for nymphs. Among the DEGs identified in the transcriptome analysis, 55 were homologs of genes associated with defense against biotic and abiotic stress (Table 1). For example, regulatory protein NPR3 (NPR3; Solyc02g069310.2) is a substrate-specific adapter of an E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins, and consequently regulates the basal defense response to pathogens [69]. Since expression of NPR3 was significantly up-regulated (P = 0.001) in tomato plants 3 weeks after psyllid infestation, its associated defensive pathway was likely increased. Furthermore, NPR3 is involved in defense against insects, therefore its up-regulation may have been a consequence of plant defensive priming and/or the crosstalk between the jasmonic acid and salicylic acid pathways [16, 46]. Recently, a study performed in citrus plants showed that exposure to Asian citrus psyllids for 14 and 150 days resulted in induction of NPR1 and a delay in plant growth compared to the unfed plants. This effect was not detected after 7 days. The authors concluded that the prolonged exposure (~ 150 days) of citrus to Asian citrus psyllid feeding suppressed plant immunity and inhibited growth, probably through the salicylic acid signaling pathway [28]. Based on the functional characterization of Arabidopsis homologs, the expression changes observed Fig. 5 Development of a cohort of eggs and nymphs raised on previously psyllid-infested (black) and uninfested plants (grey). This graph reports the percentage number of eggs, nymphs, and adults present on the plants relative to the initial number of eggs laid on each plant Harrison et al. BMC Plant Biology (2021) 21:114 Page 39 of 43 in 80% stress-related DEGs would have likely coincided with increased responsiveness to abiotic and biotic stressors (see Table 1 for citations). A subset of 50 DEGs were homologs of genes involved in transcription and/or translation (Table 2). For example, RNA-binding KH domain-containing protein RCF3 (RCF3; Solyc03g034200.2) is a negative regulator of osmotic stressinduced gene expression [67]. Since the expression of RCF3 was down regulated in tomato plants 3 weeks after psyllid infestation (P = 0.001), stress responsive gene expression would have increased. This interpretation is supported by the up regulation of genes such as homeobox-leucine zipper protein ATHB-12 (ATHB-12; Solyc01g096320.2), phospholipase D alpha 4 (PLDALPHA4; Solyc03g121470.2), and inactive poly [ADP-ribose] polymerase RCD1 (RCD1; Solyc08g005270.2). Furthermore, the expression profile changes observed in 88% of DEGs related to transcription/translation likely coincided with
increased transcription/translation (see Table 2 for citations). Similarly, a subset of 35 genes were homologs of genes that function in molecular signaling (Table 3). In fact, the most common functional categories associated with DEGs were cellular processing and intracellular signaling (Fig. 3; Supplementary Figure 3). Together, these results suggest tomato plants were still active in responding to the psyllid threat 3 weeks after psyllids were last sensed by the plant. A set of 33 DEGs were homologs of genes involved in photosynthesis (Table 4). For example, RNA polymerase sigma factor sigA (SIGA; Solyc03g097320.2) controls the transcription of the psaA gene and modulates photosystem stoichiometry, meaning its down regulation in tomato plants would have likely led to impaired photosynthesis after psyllid infestation [14, 19]. Furthermore, the expression changes in 26 (80%) DEGs related to photosynthesis would have likely also coincided with impaired photosynthesis. In support of this observation, the long-term, deleterious effects of psyllid infestation on tomato plant growth were evidenced by the experiments that tracked tomato plant stem length after psyllid infestation. These experiments showed the growth rate in tomato plant stems slowed after psyllid infestation (Fig. 4). These results were consistent with our previous study that observed stunted growth in tomato plants after psyllid infestation [40]. In addition to stunted stem growth, other developmental processes were likely impacted by psyllid infestation. For example, 6 DEGs were homologs of genes involved in auxin signaling. Since auxin-related signaling has several effects on plant growth and orientation, expression changes in these genes may be related to the stunting observed in tomato plants after psyllid infestation. Changes to plant growth, development, and photosynthesis post-herbivory may be related to the molecular crosstalk that takes place between plant defensive pathways and plant growth/development pathways [23, 26, 54]. Although 251 DEGs were homologs of genes for which published characterizations were available, 111 DEGs (30.7%) lacked any supporting information. This means nearly a third of the lasting consequences of psyllid infestation on tomato gene expression remain unknown. Of these DEGs, 78 (70.3%) were up-regulated in psyllid-infested plants relative to controls, consistent with the general pattern observed across DEGs. Therefore, it is reasonable to hypothesize that many of these expression changes would also be related to stress response, translation/transcription, molecular signaling, and/or photosynthesis. In conclusion, the results of this manuscript are the first to report the long-lasting effects of psyllid herbivory on plant gene expression and health. The transcriptomic and growth experiments demonstrated that tomato plants underwent expression changes that likely repressed growth and developmental pathways in favor of promoting the expression of a select number of genes which are likely involved in defense against psyllid challenge. The DEGs that improved defense may constitute the genes directly involved in the tomato's long-term response to psyllid challenge. This hypothesis is supported by the psyllid development experiments which showed psyllid nymphs had lower survival rates on psyllidinfested plants relative to uninfested plants (Fig. 5). The results presented in the current research showed that short exposures to small numbers of phloem feeding insects can have significant and lasting consequences for plant gene expression, growth, and defense. Alternatively, it is possible that the expression changes observed in tomato plants 3 weeks after psyllid infestation were a consequence of the accumulation of stress-related expression changes during psyllid infestation and sampling (with a razor blade). Continual stress can create negative feedback loops in stress-responsive genetic pathways [2]. This explanation is consistent with the overall deleterious impact of psyllid infestation observed in this study [9, 22]. Future disease biology research should continue exploring the long-term effects that vectors have on their hosts independent of their associated pathogens. These results should also be taken into consideration for epidemiologic studies of diseases associated with Liberibacter and their psyllid vectors. ### Methods ### Insect source *B. cockerelli* were field-collected from Weslaco, Texas in 2008 and used to establish laboratory colonies. Tomato psyllid colonies have since been maintained on tomato plants under a 16: 8-h (Light: Dark) photoperiod at room temperature $(22 \pm 2\,^{\circ}\text{C})$. The absence of Lso in these psyllid colonies was confirmed each month using the diagnostic PCR method previously described by Nachappa et al. Harrison et al. BMC Plant Biology (2021) 21:114 Page 40 of 43 [44]. Briefly, DNA from psyllids from the colony was extracted using the 10% CTAB method and subjected to PCR amplification of 'Candidatus Liberibacter solanacearum' 16S rDNA. ### Plant material Tomato plants, cultivar Moneymaker (Victory Seed Company; Molalla, OR), were grown from seed in Metro-Mix 900 (Sun Gro Horticulture, Agawam, MA) soil and individually transplanted to $10 \times 10 \, \mathrm{cm}$ square pots 4 weeks later. Plants were watered every other day and fertilized weekly according to the manufacturer's recommendation (Miracle-Gro $^{\circ}$ Water Soluble Tomato Plant Food; $18-18-21 \, \mathrm{NPK}$). All experiments were conducted at the same photoperiod (16: 8) and temperature ($22 \pm 2 \, ^{\circ}\mathrm{C}$) used to rear psyllids. ### Psyllid infestation and sample collection Psyllid infestation were initiated when plants were 6 weeks old. Leaves branching below the apical meristem (i.e., leaves similar to the ones sampled for the transcriptome analysis) were caged with a small, white organza bag (amazon.com). Restricting psyllids to these leaves exposed them to systemic response of the plant to any prior infestation. Each bag either had no psyllids (control plants) or three adult male psyllids (psyllid-infested plants). Males were chosen to avoid the potentially confounding effect of oviposition on tomato gene expression. Seven days after infestation, caged tomato leaves were removed with a bleach-sterilized razor blade. Three weeks later, the top-most, fully developed leaf was sampled from each plant and immediately flash-frozen in liquid nitrogen. Samples were transferred to Eppendorf tubes and kept submerged under liquid nitrogen while ground with plastic, RNase-free pestles. ### RNA purification, sequencing and bioinformatic analysis Total RNA extraction was performed on leaf tissue harvested 3 weeks after psyllid infestation using the Plant RNeasy Mini Kit (Qiagen, Valencia, CA) following the manufacturer's protocol. Three biological replicates were sequenced per treatment (i.e., uninfested and psyllidinfested, six samples total). One fully-develop leaf and petiole were removed per biological replicate using sterilized razor blades. The top-most leaf was sampled to ensure that the gene expression changes observed were more likely to be associated with a plant systemic response. Samples were ground using sterilized plastic pestles. RNA samples were treated with RNase-Free DNase (Qiagen). Any remaining DNA was removed using the TURBO DNA-free™ Kit (Life Technologies, Carlsbad, CA). All remaining RNA was stored at -80 °C for downstream quantitative reverse transcription PCR (RTqPCR) validation. The isolated RNA was submitted to the Texas A&M Genomics and Bioinformatic Service for quality analysis, library preparation, and sequencing. For transcriptomic sequencing, cDNA libraries were developed using the TruSeq RNA Library Prep Kit v2 (Illumina®; San Diego, CA) following the manufacturer's protocol, generating 2 X 150 bp read lengths. Libraries were multiplexed and sequenced on the Illumina PE HiSeg 2500 v4 platform. Sequence cluster identification, quality prefiltering, base calling, and uncertainty assessment were done in real time using Illumina's HCS 2.2.38 and RTA 1.18.61 software with default parameter settings. Library preparation, sequencing, and read processing were performed by the Texas A&M Genomics and Bioinformatic Service. The processed sequences were uploaded to the CyVerse Discovery Environment computational infrastructure [17] where bioinformatic analysis was performed using the HISAT2-StringTie-Ballgown RNA-Seq workflow [31]. Libraries reads were mapped to the S. lycopersicum genome (vSL3.0) using HISAT2. StringTie assembled hits to known transcripts based on the vITAG3.2 annotation and made non-redundant with StringTie-Merge. DEGs were identified using Ballgown. Genes were considered differentially expressed when comparative qvalues were below 0.01 [48]. DEG gene names were searched against the tomato genome database [15, 25] as well as the PhytoMine search engine in Phytozome [18]. DEGs were assigned putative functions based on their homology with other plant genes with known function published in Ensembl Plants (version SL2.50) and the UniProt Knowledgebase [6]. Arabidopsis thaliana homologs of DEGs were uploaded to the NCBI Gene Expression Omnibus (GEO) functional genomics data repository in order to visual overrepresentation among molecular pathways using the g:Profiler functional profiler. ### Transcriptome validation by RT-qPCR To verify the results of the transcriptomic analysis, RTqPCR analyses were performed on three genes differentially expressed in psyllid-infested plants: One putatively upregulated gene, an E3 ubiquitin-protein ligase that acts as a negative regulator of the response to water stress (Solyc06g084040.2 or DRIP2) [36] and two putatively downregulated genes, a peroxisomal protease potentially involved in drought stress (Solyc04g080860.1 or LON2) and a chloroplastic Betacarotene isomerase D27 (Solyc08g008630.2 or D27) [38, 65]. Since many
of the regulatory genes differentially expressed in this study were involved in drought stress, an aquaporin (Solyc06g011350.2 or PIP2-4) that putatively underwent no regulatory change was selected as a control [29]. RT-qPCR experiments were conducted using RNA from the six sequenced tomato leaf samples Harrison et al. BMC Plant Biology (2021) 21:114 Page 41 of 43 (three per treatment) as well as six independently grown tomato plants (three per treatment), which were obtained by repeating the plant growth and infestation assays (three plants per treatment). This allowed for validation of the transcriptome results. An aliquot of 500 ng RNA was taken from each sample to develop cDNA libraries using the Verso™ cDNA Kit (Thermo Fisher Scientific, Waltham, MA), following the manufacturer's manual. The cDNA libraries were diluted to 1:5 prior to RT-qPCR. Each reaction consisted of 1.0 µL cDNA, 5.0 µL SensiFAST SYBR Hi-ROX mix (Bioline, Memphis, TN), 0.4 µL of each primer (400 nM), and 3.6 µL of molecular grade water. Primers were designed using Primer3 [56], which targeted exons within a DEG, had an optimal annealing temperature of 60.0-62.0 °C, generated 150 bp amplicons (Supplementary Table 1). RT-qPCR was performed in an Applied Biosystem QuantStudio 6 Flex system using the following parameters: 2 min at 95 °C, followed by 40 cycles of 5 s at 95 °C and 30 s at 60 °C. The melting curve for each reaction was generated to assure amplicon specificity. All RT-qPCR reactions were performed in triplicate. Relative expression levels for each gene were analyzed using the $2^{-\Delta\Delta CT}$ method [51] with glyceraldehyde 3-phosphate dehydrogenase (GADPH) as a reference gene [27]. Since expression levels did not assume normality, they were analyzed using the Mann-Whitney U ranked test in JMP[®] Version 13 (SAS Institute Inc., Cary, NC, 1989– 2018). # Plant growth and psyllid development on previously infested and uninfested plants Tomato plants were grown and treated using the same methods described above where 28 tomato plants were psyllid-infested and 27 plants were left uninfested. In order to minimize handling stress, plant growth was tracked using pictures taken 3 weeks after infestation to compare the total stem length of psyllid-infested plants to uninfested plants. Each picture included a 52 cm-long tray that served as a size standard. The total length (in pixels) of a tomato plant main stem was measured from the soil to the tip of the apical meristem using ImageJ1.X [58] and converted to centimeters using the length standard. This no-contact method of measurement was chosen to minimize plant wounding. Stem lengths were analyzed using a one-way student's t-test in JMP. Three weeks after initial infestation, three female psyllids were transferred to a no-choice cage and allowed to oviposit on undamaged leaves of the tomato plants that had previously been psyllid-infested or uninfested. As before, psyllids were restricted to a single leaf inside an organza bag, using a different leaf than the one used during the initial infestation. This exposed them to plant systemic conditions. Three adult females were caged together in each bag; there was one bag per plant. After 48 h, psyllids were removed, and their eggs were counted. Eggs were left on their respective plants and allowed to hatch. Nymphs were counted every other day and left to develop into adults. Adults were collected as they emerged. Egg hatching and nymph survival rates were calculated for the psyllids reared on each plant. Additionally, initial egg number and nymphal survival rates were compared between psyllids reared on previously infested and uninfested plants. Since 100% of the nymphs that survived development also emerged, adult emergence rate was not compared. Egg number and nymph survival were analyzed using student's one-way t-tests in JMP. ### **Supplementary Information** The online version contains supplementary material available at https://doi.org/10.1186/s12870-021-02876-z. **Additional file 1: Supplementary Table 1.** Primer sequences used to target four specific genes for RT-qPCR experiments: One gene expressed at similar levels between control and psyllid-infested plants (PIP2–4, Solyc06g011350.2), one gene expressed at a higher level in psyllid-infested plants (DRIP2, Solyc06g084040.2), and two genes expressed at higher levels in uninfested plants (LONZ, Solyc04g080860.1, and D27, Solyc08g008630.2). Asterisks indicate significant differences in expression. **Additional file 2: Supplementary Table 2.** HISAT2 alignment summary of uninfested and psyllid-infested tomato plant transcriptomes to the *S. lycopersicum* vSL3.0 genome. **Additional file 3: Supplementary Figure 1.** RT-qPCR results comparing $\Delta\Delta C_T$ values between control (white) and psyllid-infested (black) tomato plants. Samples were the same used for sequencing the tomato plant transcriptome. Tested genes were chosen based on the expected outcome predicted by the transcriptome analysis: One gene expressed at similar levels between uninfested and psyllid-infested plants (PIP2–4, Solyc06g011350.2), one gene expressed at a higher level in psyllid-infested plants (DRIP2, Solyc06g084040.2), and two genes expressed at higher levels in uninfested plants (LON2, Solyc04g080860.1, and D27, Solyc08g008630.2). Asterisks indicate significant differences in expression. **Additional file 4: Supplementary Figure 2.** RT-qPCR results comparing $\Delta\Delta C_T$ values between control (white) and psyllid-infested (black) tomato plants. Samples were grown independent of the samples sequenced for the tomato plant transcriptome. Tested genes were chosen based on the expected outcome predicted by the transcriptome analysis: One gene expressed at similar levels between control and psyllid-infested plants (PIP2–4, Solyc06g011350.2), one gene expressed at a higher level in psyllid-infested plants (DRIP2, Solyc06g084040.2), and two genes expressed at higher levels in control plants (LON2, Solyc04g080860.1, and D27, Solyc08g008630.2). Asterisks indicate significant differences in expression. **Additional file 5: Supplementary Figure 3.** Numerical results from the g:Profiler analysis. The first column depicts the ID of each circle from Fig. 3. The second column describes the GO information source (MF for molecular function, BP for 'biological process', and CC for 'cellular component') for each circle. The third column describes the term name associated with each circle. The fourth column describes the associated GO ID for the term. The fifth column shows the adjusted *p*-value for each term. ### **Abbreviations** DEG(s): Differentially expressed gene(s); fpkm: Fragments per kilobase per million reads; GEO: Gene Expression Omnibus; Lso: 'Candidatus Liberibacter solanacearum'; NIFA: National Institute of Food and Agriculture; Harrison et al. BMC Plant Biology (2021) 21:114 Page 42 of 43 PCA: Principal component analysis; RT-qPCR: Quantitative reverse transcription PCR ### Acknowledgements We thank Dr. Richard Metz for advice on RNA quality and sequencing methods, the A.W.E.S.O.M.E. faculty group of the College of Agriculture and Life Sciences at Texas A&M University for editing the manuscript and Dr. Surya Saha for discussions about tomato transcriptomes. ### Authors' contributions JGL and CT: Initiated the project and designed experiments. KH, AMH, and JGL: Performed experiments and data analysis. KH, JGL and CT: Wrote the manuscript. All authors have read, edited, and consented to sending the manuscript for submission. The authors read and approved the final manuscript. ### **Funding** This project is supported by Agriculture and Food Research Initiative competitive award no. 2017–67013-26564 from the USDA National Institute of Food and Agriculture (NIFA) and by the Texas A&M AgriLife Research Insect Vector Disease Grant Program (award number 06-L701774). Both supporters paid for the cost of travel, materials, plant seeds, and laboratory supplies/equipment for conducting these experiments. The NIFA grant also funded the postdoctoral salary of KH. ### Availability of data and materials Raw sequence data, processed data, and metadata were made available on the Gene Expression Omnibus (GEO) functional genomics repository under the 'kharrison18' directory (Accession # GSE165807). Other data including psyllid nymph counts, plant pictures, and RT-qPCR results can be obtained from the corresponding author, Dr. Kyle Harrison, upon request. ### Ethics approval and consent to participate The presented research did not involve human subjects or animals requiring an ethics approval. ### Consent for publication Not applicable. ### Competing interests The authors declare that they have no competing interests. ### **Author details** ¹USDA-ARS, Agroecosystem Management Research Unit, Lincoln, NE 68503, USA. ²Department of Entomology, Texas A&M University, College Station, TX 77843, USA. ³Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA. # Received: 5 October 2020 Accepted: 4 February 2021 Published online: 24 February 2021 ### References - Almeida RP, Blua MJ, Lopes JR, Purcell AH. Vector transmission of Xylella fastidiosa: applying fundamental knowledge to generate disease management strategies. Ann Entomol Soc Am. 2014;98:775–86. - Arimura G-I, Kost C, Boland W. Herbivore-induced, indirect plant defences. Biochim Biophys Acta (BBA). 2005;1734:91–111 Molecular and Cell Biology of Lipids. - Avila CA, Marconi TG, Viloria Z, Kurpis J, Del Rio SY. Bactericera cockerelli resistance in the wild tomato Solanum habrochaites is polygenic and influenced by the presence of Candidatus Liberibacter solanacearum. Sci Rep. 2019;9:14031. https://doi.org/10.1038/s41598-019-50379-7. - Barzman M, Bàrberi P, Birch ANE, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Hommel B, Jensen JE, Kiss J, Kudsk P. Eight principles of integrated pest management. Agron Sustain Dev. 2015;35:1199–215.
- Bass C, Denholm I, Williamson MS, Nauen R. The global status of insect resistance to neonicotinoid insecticides. Pestic Biochem Physiol. 2015;121: 78–87. - Bateman A, Martin MJ, O'Donovan C, Magrane M, Apweiler R, Alpi E, Antunes R, Ar-Ganiska J, Bely B, Bingley M, Bonilla C, Britto R, Bursteinas B, Chavali G, Cibrian-Uhalte E, Da Silva A, De Giorgi M, Dogan T, Fazzini F, - Gane P, Cas-Tro LG, Garmiri P, Hatton-Ellis E, Hieta R, Huntley R, Legge D, Liu WD, Luo J, MacDougall A, Mutowo P, Nightin-Gale A, Orchard S, Pichler K, Poggioli D, Pundir S, Pureza L, Qi GY, Rosanoff S, Saidi R, Sawford T, Shypitsyna A, Turner E, Volynkin V, Wardell T, Watkins X, Watkins CA, Figueira L, Li WZ, McWilliam H, Lopez R, Xenarios I, Bougueleret L, Bridge A, Poux S, Redaschi N, Aimo L, Argoud-Puy G, Auchincloss A, Axelsen K, Bansal P, Baratin D, Blatter MC, Boeckmann B, Bolleman J, Boutet E, Breuza L, Casal-Casas C, De Castro E, Coudert E, Cuche B, Doche M, Dornevil D, Duvaud S, Estreicher A, Famiglietti L, Feuermann M, Gasteiger E, Gehant S, Gerritsen V, Gos A, Gruaz-Gumowski N, Hinz U, Hulo C, Jungo F, Keller G, Lara V, Lemercier P, Lieberherr D, Lombardot T, Martin X, Masson P, Morgat A, Neto T, Nouspikel N, Paesano S, Pedruzzi I, Pilbout S, Pozzato M, Pruess M, Rivoire C, Roechert B, Schneider M, Sigrist C, Sonesson K, Staehli S, Stutz A, Sundaram S, Tognolli M, Verbregue L, Veuthey AL, Wu CH, Arighi CN, Arminski L, Chen CM, Chen YX, Garavelli JS, Huang HZ, Laiho KT, McGarvey P, Natale DA, Suzek BE, Vinayaka CR, Wang QH, Wang YQ, Yeh LS, Yerramalla MS, Zhang J, UniProt C. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204-12. https://doi.org/10.1093/nar/qku989. - Brown J, Rehman M, Rogan D, Martin R, Idris A. First report of "Candidatus Liberibacter psyllaurous" (synonym "Ca. L. Solanacearum") associated with 'tomato vein-greening'and 'tomato psyllid yellows' diseases in commercial greenhouses in Arizona. Plant Dis. 2010;94:376. - Butler CD, Trumble JT. The potato psyllid, Bactericera cockerelli (Sulc)(Hemiptera: Triozidae): life history, relationship to plant diseases, and management strategies. Terrestrial Arthropod Rev. 2012;5:87–111. - 9. Coley P. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia. 1988;74:531–6. - Conrath U, Beckers GJ, Flors V, García-Agustín P, Jakab G, Mauch F, Newman M-A, Pieterse CM, Poinssot B, Pozo MJ. Priming: getting ready for battle. Mol Plant-Microbe Interact. 2006;19:1062–71. - 11. Conrath U, Pieterse CM, Mauch-Mani B. Priming in plant–pathogen interactions. Trends Plant Sci. 2002;7:210–6. - Cranshaw W. The potato (tomato) psyllid, Paratrioza cockerelli (Sulc), as a pest of potatoes. Advances in potato pest biology and management. American Phytopathological Society (APS) St Paul USA. 1994. p. 83–95. - Crosslin JM, Munyaneza JE. Evidence that the zebra chip disease and the putative causal agent can be maintained in potatoes by grafting and in vitro. Am J Potato Res. 2009;86:183–7. - 14. Falk S, Sinning I. cpSRP43 is a novel chaperone specific for light-harvesting chlorophyll a, b-binding proteins. J Biol Chem. 2010;285:21655–61. - Fernandez-Pozo N, Menda N, Edwards JD, Saha S, Tecle IY, Strickler SR, Bombarely A, Fisher-York T, Pujar A, Foerster H. The sol genomics network (SGN)—from genotype to phenotype to breeding. Nucleic Acids Res. 2014; 43:D1036–41. - Girard C, Rivard D, Kiggundu A, Kunert K, Gleddie SC, Cloutier C, Michaud D. A multicomponent, elicitor-inducible cystatin complex in tomato, Solanum lycopersicum. New Phytol. 2007;173:841–51. - 17. Goff SA, Vaughn M, McKay S, Lyons E, Stapleton AE, Gessler D, Matasci N, Wang LY, Hanlon M, Lenards A, Muir A, Merchant N, Lowry S, Mock S, Helmke M, Kubach A, Narro M, Hopkins N, Micklos D, Hilgert U, Gonzales M, Jordan C, Skidmore E, Dooley R, Cazes J, McLay R, Lu ZY, Pasternak S, Koesterke L, Piel WH, Grene R, Noutsos C, Gendler K, Feng X, Tang CL, Lent M, Kim SJ, Kvilekval K, Manjunath BS, Tannen V, Stamatakis A, Sanderson M, Welch SM, Cranston KA, Soltis P, Soltis D, O'Meara B, Ane C, Brutnell T, Kleibenstein DJ, White JW, Leebens-Mack J, Donoghue MJ, Spalding EP, Vision TJ, Myers CR, Lowenthal D, Enquist BJ, Boyle B, Akoglu A, Andrews G, Ram S, Ware D, Stein L, Stanzione D. The iPlant collaborative: cyberinfrastructure for plant biology. Front Plant Sci. 2011;2:16. https://doi.org/10.3389/fpls.2011.00034. - Goodstein DM, Shu SQ, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40:D1178–86. https://doi.org/10.1093/nar/gkr944. - Hakimi MA, Privat I, Valay JG, Lerbs-Mache S. Evolutionary conservation of Cterminal domains of primary sigma(70)-type transcription factors between plants and bacteria. J Biol Chem. 2000;275:9215–21. https://doi.org/10.1074/ jbc.275.13.9215. - Harrison K, Tamborindeguy C, Scheuring DC, Herrera AM, Silva A, Badillo-Vargas IE, Miller JC, Levy JG. Differences in Zebra Chip severity between 'Candidatus Liberibacter Solanacearum' Haplotypes in Texas. Am J Potato Res. 2019;1:86–93. - 21. Heil M, Kost C. Priming of indirect defences. Ecol Lett. 2006;9:813-7. - 22. Herms DA, Mattson WJ. Plant growth and defense. Trends Ecol Evol. 1994;9:487. - 23. Hou X, Ding L, Yu H. Crosstalk between GA and JA signaling mediates plant growth and defense. Plant Cell Rep. 2013;32:1067–74. - 24. Howe GA, Jander G. Plant immunity to insect herbivores. Annu Rev Plant Biol. 2008;59:41–66. - 25. http://www.solgenomics.net/. 2019. - Huot B, Yao J, Montgomery BL, He SY. Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant. 2014;7:1267–87. - Huot OB, Levy JG, Tamborindeguy C. Global gene regulation in tomato plant (Solanum lycopersicum) responding to vector (Bactericera cockerelli) feeding and pathogen ('Candidatus Liberibacter solanacearum') infection. Plant Mol Biol. 2018;97:57–72. https://doi.org/1 0.1007/s11103-018-0724-v. - Ibanez F, Suh JH, Wang Y, Stelinski LL. Long-term, sustained feeding by Asian citrus psyllid disrupts salicylic acid homeostasis in sweet orange. BMC Plant Biol. 2019;19:493. https://doi.org/10.1186/s12870-019-2114-2. - Jang JY, Kim DG, Kim YO, Kim JS, Kang H. An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol. 2004;54:713–25. https://doi. org/10.1023/B:PLAN.000040900.61345.a6. - Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT. Priming in systemic plant immunity. Science. 2009;324:89–91. - Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15. https://doi.org/10.1038/s41587-019-0201-4. - Kumar S, Chandra A, Pandey K. Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy. J Environ Biol. 2008; 29:641–53. - 33. Levy J, Ravindran A, Gross D, Tamborindeguy C, Pierson E. Translocation of 'Candidatus Liberibacter solanacearum', the zebra chip pathogen, in potato and tomato. Phytopathology. 2011;101:1285–91. - Lévy J, Scheuring D, Koym J, Henne D, Tamborindeguy C, Pierson E, Miller JC Jr. Investigations on putative Zebra Chip tolerant potato selections. Am J Potato Res. 2015:1–9. https://doi.org/10.1007/s12230-015-9452-x. - Levy J, Tamborindeguy C. Solanum habrochaites, a potential source of resistance against Bactericera cockerelli (Hemiptera: Triozidae) and "Candidatus Liberibacter solanacearum". J Econ Entomol. 2014;107:1187–93. https://doi.org/10.1603/ec13295. - Li J, Hu J. Using co-expression analysis and stress-based screens to uncover Arabidopsis Peroxisomal proteins involved in drought response. PLoS One. 2015;10:e0137762. https://doi.org/10.1371/journal.pone.0137762. - Liefting LW, Sutherland PW, Ward LI, Paice KL, Weir BS, Clover GR. A new 'Candidatus Liberibacter'species associated with diseases of solanaceous crops. Plant Dis. 2009;93:208–14. - Lingard MJ, Bartel B. Arabidopsis LON2 is necessary for peroxisomal function and sustained matrix protein import. Plant Physiol. 2009;151:1354–65. https://doi.org/10.1104/pp.109.142505. - 39. Mauch-Mani B, Baccelli I, Luna E, Flors V. Defense priming: an adaptive part of induced resistance. Annu Rev Plant Biol. 2017;68:485–512. - Mendoza Herrera A, Levy J, Harrison K, Yao J, Ibanez F, Tamborindeguy C. Infection by 'Candidatus Liberibacter solanacearum' haplotypes a and B in Solanum lycopersicum 'Moneymaker. Plant Dis. 2018;102:2009–15. - Munyaneza J, Sengoda V, Crosslin J, Garzon-Tiznado J, Cardenas-Valenzuela O. First report of "Candidatus Liberibacter solanacearum" in tomato plants in Mexico. Plant Dis. 2009;93:1076. - Munyaneza JE. Zebra chip disease of potato: biology, epidemiology, and management. Am J Potato Res. 2012;89:329–50. https://doi.org/10.1007/ s12230-012-9262-3. - Munyaneza JE, Crosslin JM, Upton JE. Association of Bactericera cockerelli (Homoptera: Psyllidae) with "zebra chip," a new potato disease in southwestern United States and Mexico. J Econ Entomol. 2007;100:656–63. https://doi.org/10.1603/0022-0493(2007)100[656:aobchp]2.0.co;2. - Nachappa P, Levy J, Pierson E, Tamborindeguy C. Diversity of endosymbionts in the potato psyllid, *Bactericera cockerelli* (Hemiptera: Triozidae), vector of Zebra Chip disease of potato. Curr Microbiol. 2011;62: 1510–20. https://doi.org/10.1007/s00284-011-9885-5. - 45. Nauen R, Denholm I. Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch Insect Biochem Physiol. 2005;58:200–15. - 46. Niki T, Mitsuhara I, Seo S, Ohtsubo N, Ohashi Y. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related - (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol. 1998;39:500–7. - Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V. Primed plants do not forget.
Environ Exp Bot. 2013;94:46–56. - Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650–67. https://doi.org/10.1038/nprot.2016.095. - Pletsch DJ. The potato psyllid Paratrioza cockerelli (Sulc), its biology and control. Montana Agric Exp Stn Bull. 1947;446:95. - Prager SM, Vindiola B, Kund GS, Byrne FJ, Trumble JT. Considerations for the use of neonicotinoid pesticides in management of Bactericera cockerelli (Šulk)(Hemiptera: Triozidae). Crop Prot. 2013;54:84–91. - Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2^{*} (–delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinform Biomathematics. 2013;3:71. - Rashed A, Nash TD, Paetzold L, Workneh F, Rush CM. Transmission efficiency of 'Candidatus Liberibacter solanacearum' and potato Zebra Chip disease Progress in relation to pathogen titer, vector numbers, and feeding sites. Phytopathology®. 2012;102:1079–85. https://doi.org/10.1094/PHYTO-04-12-0094-R. - Rasmann S, De Vos M, Casteel CL, Tian D, Halitschke R, Sun JY, Agrawal AA, Felton GW, Jander G. Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol. 2012;158:854–63. - Robert-Seilaniantz A, Grant M, Jones JD. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol. 2011;49:317–43. - Romney V. Breeding areas of the tomato Psyllid, Paratrioza cockerelli (Šule). J Econ Entomol. 1939;32:150-1. - Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. In: Bioinformatics Methods and Protocols: Methods in Molecular Biology; 2000. p. 365–86. - 57. San Miguel K, Scott JG. The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide. Pest Manag Sci. 2016;72:801–9. - Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671. - Secor G, Rivera V, Abad J, Lee I-M, Clover G, Liefting L, Li X, De Boer S. Association of 'Candidatus Liberibacter solanacearum'with zebra chip disease of potato established by graft and psyllid transmission, electron microscopy, and PCR. Plant Dis. 2009;93:574–83. - Sengoda VG, Munyaneza JE, Crosslin JM, Buchman JL, Pappu HR. Phenotypic and etiological differences between psyllid yellows and Zebra Chip diseases of potato. Am J Potato Res. 2010;87:41–9. https://doi.org/10.1 007/s12230-009-9115-x. - Shoresh M, Harman GE, Mastouri F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol. 2010;48:21–43. - Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B. Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol. 2012;158:835–43. - Tamborindeguy C, Huot OB, Ibanez F, Levy J. The influence of bacteria on multi-trophic interactions among plants, psyllids, and pathogen. Insect Sci. 2017;24:961–74. - Wallis RL. Ecological studies on the potato psyllid as a pest of potatoes: US Dept. of Agriculture; 1955. - Waters MT, Brewer PB, Bussell JD, Smith SM, Beveridge CA. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol. 2012;159:1073–85. https://doi. org/10.1104/pp.112.196253. - 66. Whalon ME, Mota-Sanchez D, Hollingworth RM. Global pesticide resistance in arthropods. Cabi. 2008. - Xiong L, Ishitani M, Lee H, Zhu J-K. HOS5-a negative regulator of osmotic stress-induced gene expression in Arabidopsis thaliana. Plant J. 1999;19:569– 78. https://doi.org/10.1046/j.1365-313X.1999.00558.x. - Yi H-S, Heil M, Adame-Alvarez RM, Ballhorn DJ, Ryu C-M. Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiol. 2009;151:2152–61. - Zhang Y, Cheng YT, Qu N, Zhao Q, Bi D, Li X. Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs. Plant J. 2006;48: 647–56. https://doi.org/10.1111/j.1365-313X.2006.02903.x. ### **Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.