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Abstract

Background: The overall genetic distribution and divergence of cloned genes among bread wheat varieties that
have occurred during the breeding process over the past few decades in Ningxia Province, China, are poorly
understood. Here, we report the genetic diversities of 44 important genes related to grain yield, quality, adaptation
and resistance in 121 Ningxia and 86 introduced wheat cultivars and advanced lines.

Results: The population structure indicated characteristics of genetic components of Ningxia wheat, including
landraces of particular genetic resources, introduced varieties with rich genetic diversities and modern cultivars in
different periods. Analysis of allele frequencies showed that the dwarfing alleles Rht-81b at Rht-B1 and Rht-D1b at
Rht-D1, 1BL/1RS translocation, Hap-1 at GW2-6B and Hap-H at Sus2-2B are very frequently present in modern Ningxia
cultivars and in introduced varieties from other regions but absent in landraces. This indicates that the introduced
wheat germplasm with numerous beneficial genes is vital for broadening the genetic diversity of Ningxia wheat
varieties. Large population differentiation between modern cultivars and landraces has occurred in adaptation
genes. Founder parents carry excellent allele combinations of important genes, with a higher number of favorable
alleles than modern cultivars. Gene flow analysis showed that six founder parents have greatly contributed to
breeding improvement in Ningxia Province, particularly Zhou 84258, for yield-related genes.

Conclusions: Varieties introduced from other regions with rich genetic diversity and landraces with well-adapted
genetic resources have been applied to improve modern cultivars. Founder parents, particularly Zhou 8425B, for
yield-related genes have contributed greatly to wheat breeding improvement in Ningxia Province. These findings
will greatly benefit bread wheat breeding in Ningxia Province as well as other areas with similar ecological
environments.
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Background

China is the largest wheat producer and consumer in
the world, with an annual production area of approxi-
mately 2.7 Mha and a production yield of 133.6 Mt in
2019, accounting for 18% of wheat globally [1]. Bread
wheat (Triticum aestivum L.) is widely distributed in
intricate geographical environments in China, reflecting
its wide adaptability and high yield. Ningxia, a north-
western province of China with complex ecological
types, has a long agricultural history of wheat cultivation.
Since the 1950s, bread wheat varieties have experienced
five replacements: the wheat germplasm ‘Quality’ intro-
duced from Australia was widely grown in the 1950s and
achieved the first variety update of Ningxia spring wheat;
the ‘Abbondanza’ wheat resource from Italy was effi-
ciently used in the 1960s and achieved the second
variety update of Ningxia wheat breeding; breeding of
milestone variety ‘Doudi 1’ is representative of the third
variety update in the 1970s; ‘Ningchun 4’ was one of the
most used spring wheat varieties in China, and its appli-
cation and improvement in the 1980s was the fourth
variety update of Ningxia wheat; the release of ‘Ning-
chun 50’ in the 2000s was the mark of the last variety
update [2]. ‘Abbondanza’, as a representation of founder
parents, is widely planted (>667,000 ha) in China [3].
Founder parents, which serve as important germplasm
resources, are very important for the update of new var-
ieties, and many modern wheat cultivars can be tracked
to ancestral founder parents. Wheat germplasm intro-
duction in Ningxia has played an important role in
wheat breeding. Introduced bread wheat germplasms,
such as ‘Quality’ and ‘Cajeme F-71’, have driven studies
on wheat production areas with northward expansion
and farming system reforming in the Yellow River
Ningxia Basin, as well as wheat breeding programmes in
Ningxia. Superior landraces in the early 1950s formed
the basis for wheat improvement programmes and car-
ried particular genetic resources for adaptation to local
environmental conditions. Therefore, it is essential to
dissect the genetic contributions to bread wheat im-
provement of landraces, introduced wheat varieties and
specific founder parents at multiple gene levels in the
past several decades to direct future wheat breeding in
Ningxia.

Bread wheat has the characteristics of a large genome
size, allopolyploid, highly complex repetitive genome
contents shaped by two recent polyploidization events
[4-7], domestication [8], gene flow from frequent intra-
and inter-species introgression [9, 10], and post-
domestication selection aimed at developing high-
yielding locally adapted varieties [11]. Multiple factors
drive the evolution of bread wheat varieties, particularly
many important genetic loci that have been selected dur-
ing modern wheat breeding. Insight into these genetic
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loci is important for understanding phenotypic varia-
tions in adaptability, resistance to biotic and abiotic
stresses, processing and nutritional quality, and yield sta-
bility. The adaptation of wheat to diverse environments
is largely governed by genes related to vernalization
(Vrn-Al, Vrn-B1 and Vrn-D1) [12], photoperiod (Ppd-
D1, etc.) [13], and plant height (Rht-B1 and Rht-DI)
[14]. Yield-related genes include the sucrose synthase
genes TaSusl-7A, -7B and TaSus2-2A, -2B for
thousand-kernel weight and grain size [15, 16], TaGW2-
6A, —6B for grain width [17-19], TaGS-D1 for grain size
[20], TaCwi-Al encoding cell wall invertase [21],
TaCKX6-DI encoding cytokinin oxidase/dehydrogenase
[22], and the grain length-associated gene TaGASR-Al
[23]. Assessing processing quality is crucial in wheat
quality improvement. Strong-gluten wheat varieties are
characterized by a combination of medium-high kernel
hardness, acceptable protein content, medium-strong
dough and good extensibility; representative varieties in-
clude Yumai 34 and Zhengmai 366 for both pan bread
and noodle quality [24]. High- and low-molecular-
weight glutenin subunits (HMW-GS and LMW-GS)
associated with dough quality are influenced by Glu-1I
and Glu-3 loci [25, 26]. Flour colour responsible for
noodle quality is influenced by several factors, including
polyphenol oxidase (PPO) activity (Ppo-Al and Ppo-DI)
[27, 28], phytoene synthase (PSY) enzymes (Psy-Al, Psy-
B1 and Psy-DI) [29, 30], { (zeta)-carotene desaturase
(ZDS) enzymes (Zds-AlI) [31] and peroxidase (Pod-Al)
[32]. Kernel hardness, which has a profound effect on
milling and end-use quality, is largely determined by the
Pina-D1 and Pinb-D1 genes encoding puroindoline a
and puroindoline b proteins, respectively [33]. Increasing
biotic and abiotic stresses are major challenges that ac-
company the impacts of climate and environmental
changes on wheat breeding. In recent decades, some im-
portant stress-resistance genes have been cloned. As one
of the response drought factors, dehydration-responsive
element-binding (DREB) proteins encoded by the Dreb-
B1 locus are induced to improve drought tolerance [34].
Fusarium head blight (FHB) devastates wheat production
worldwide, and its resistance genes Fib1 using recombi-
nants [35, 36] and Fhb7 in wheat distant hybridization
breeding [37] were cloned recently. The Lr34/Yri8/
Pm38 locus conferring durable adult plant resistance to
multiple diseases is used in wheat breeding programmes
worldwide [33]. The 1BL/1RS translocation (IBL/IRS)
has been widely adopted in wheat breeding due to its
positive impacts on grain yield, adaptation, and, in
particular, the presence of resistance genes to several
diseases and pests, though the translocation is associated
with undesirable bread-making quality [38].

Modern breeding has imposed selection for improved
productivity that largely influences the frequency of
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superior alleles for genetic loci underlying traits of
breeding interest. Therefore, molecular diagnosis of
allelic variations is important to manipulate beneficial
alleles in molecular breeding of wheat. Enhanced
sequencing capacity, along with the availability of high-
quality genome sequences of bread wheat, has allowed
researchers to identify specific favorable alleles using
molecular markers. Currently, 157 functional markers
documented for more than 100 loci related to adaptabil-
ity, resistance to biotic and abiotic stresses, quality and
grain yield have been converted into high-throughput
KKASP assays [39]. Such approaches will promote asses-
sing the distribution of functional genes of wheat germ-
plasms and applications in bread wheat breeding.

Our objectives for this study were to evaluate the gen-
etic structure, diversity, divergence and allelic variations
of bread wheat germplasm resources in Ningxia
Province, China, using KASP assays of 44 cloned genes
for adaptation, stress resistance, quality, and grain yield.
Genetic characteristics were evaluated in 207 bread
wheat cultivars, landraces and advanced lines, including
founder parents and varieties from Ningxia and other
regions. Gene flow and allelic frequency implicate the
distribution of important functional genes, which may
improve the selection of future wheat breeding in
Ningxia Province and provide a robust breeding founda-
tion to be used as a guide for other regions and coun-
tries with similar ecological environments.

Methods

Plant materials and DNA extraction

A representative sampling of bread wheat germplasm
consisting of 207 wheat varieties, including 121 Ningxia
varieties and 86 introduced varieties, was evaluated
(Table S1). The latter were introduced to Ningxia
Province over past decades and played a huge role in
local wheat breeding. The Ningxia varieties included 13
landraces and 108 modern cultivars and advanced lines.
In addition, six founder parents among the 207 wheat
varieties used in this study included Moba 66, Abbon-
danza, Beijing 8, Orofen, Xiaoyan 6 and Zhou 8425B.
Genomic DNA was extracted from fresh leaves from
each accession using the CTAB method [40].

KASP genotyping of functional genes

Conventional functional markers were summarized
based on 44 cloned wheat genes for grain yield, quality,
adaptation and stress resistance [33]; these markers were
converted into KASP assays [39] that have been widely
exploited to characterize wheat germplasm resources
[41-44]. A total of 44 KASP arrays developed from
cloned genes were used for genotyping in this study
(Table S2). The KASP arrays were designed based on
diagnostic SNP markers following standard KASP
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guidelines. Primers were designed carrying a standard
FAM tail (5'-GAAGGTGACCAAGTTCATGCT-3’) and
HEX tail (5'-GAAGGTCGGAGTCAACGGATT-3’)
with different fluorescence signals.

KASP assays were performed in 5.0l mixtures
containing 2.2 pL of 40 ng/uL DNA, 2.5 uL of 1xKASP
V4.0 2X Master mix (KBS-1016-017), 0.04 uL Mg>*,
0.056 uL of primer mixture, and 0.204 uL ddH,O and
the following amplification programme: denaturation at
95°C for 15min, followed by ten touchdown cycles
(95°C for 20's; touchdown at 65 °C initially and decreas-
ing by 1°C per cycle for 25 s) and 30 additional cycles of
annealing (95°C for 10s; 57°C for 60s) [44]. KASP
genotyping was performed using QuantStudio™ 7 Flex
(Applied Biosystems by Life Technologies, U.S.). Each
sample carrying different fluorescence signals was visual-
ized, and the corresponding data was generated with
QuantStudioTM Real-time PCR Software v1.3 (Applied
Biosystems by Life Technologies) (Fig. S1). Then, we
manually converted these data to allelic varieties accord-
ing to the corresponding fluorescence tails.

Population structure and phylogenetic analysis
A neighbour-joining tree was constructed in PowerMarker
v3.25 [45] and visualized in MEGA 7 [46] using genotypic
data for 44 genes. The first three eigenvectors of principal
coordinate analysis (PCA) were obtained using the R
package Adegenet v2.0.1 [47]. The population structure of
the 207 accessions based on the 44 functional genes was
evaluated using Structure 2.3.4 with a burn-in period at
50,000 iterations and a run of 500,000 replications of Mar-
kov Chain Monte Carlo (MCMC) [48]. The number of
populations was estimated based on the AK model [49].
Allele numbers and frequencies were calculated for
all loci. Genetic diversities were evaluated by Power-
Marker v3.25, and Student’s ¢-test was applied to
compare the effects of two genotypes at a threshold
probability of P<0.05. Genetic flow and F-statistics
(Fst) were measured for population differentiation
with POPGENE software [50].

Results

Genotyping and population structure

Genotyping of 207 bread wheat varieties using 44 KASP
assays identified allelic variations at 44 loci (Table S1).
All selected KASP assays exhibited clear clustering
results for the varieties (Fig. S1). In total, these loci
are related to grain yield (10), quality (14), adapta-
tion (6), and stress resistance (14).

The neighbour-joining analysis divided 207 varieties
into two groups, namely, Ningxia and Others (Fig. 1a),
in agreement with PCA (Fig. 1b). The number of sub-
populations (K) was plotted against the AK calculated
from the structure, and the peak of the broken line
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Fig. 1 The population structure of 207 wheat accessions based on 44 genes. a A neighbour-joining tree of all accessions. Different lines are
presented in different colors. b Plots of first three principal components of all accessions. ¢ Population structure of all accessions based on Structure
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graph was observed at K =2 (Figs. 1c, S2), demonstrating
that the population was basically divided into two sub-
groups. The first subgroup mainly referred to landraces
and cultivars from Ningxia Province (Ningxia); the sec-
ond mainly consisted of introduced varieties from for-
eign countries and other provinces in China (Others).
Moreover, accessions from Ningxia grouped into two
clades of landraces and modern cultivars (Fig. S3). This
indicated the characteristics of the genetic components
of Ningxia wheat, in which landraces, introduced var-
ieties and modern cultivars in different periods together
formed wheat breeding processes.

Significant genetic divergence in yield and quality genes
between accessions from Ningxia and others

Genetic diversity and variations were assessed to further
clarify the large genetic differences between germplasms
from Ningxia and Others. There was apparent difference
in genetic diversity at 44 loci controlling yield, quality,
adaptation and stress resistance between Ningxia wheat
germplasms and Others (Fig. 2a). Further exploration

indicated a higher genetic diversity at ten grain yield loci
in Others than in the Ningxia wheat varieties (P < 0.01),
whereas Ningxia showed higher genetic diversity than
Others at 14 quality genes (P<0.05) (Fig. S4A, B).
Among them, estimated genetic diversity at the Cwi-44,
GS-D1, Sus2-2B and SusI-7B loci for yield was abundant
in the Others subgroup, whereas Glu-BI, Glu-D1, Pina-
D1 and Zds-Al, which are related to quality, showed
much higher genetic diversity in the Ningxia subgroup
than in the Others subgroup (Table S3). In addition, we
found that genetic divergence was most obvious for
quality genes, followed by yield genes (Fig. 2b). In-depth
analysis revealed evident genetic divergence at some loci,
such as Cwi-4A (0.035) and Sus2-2B (0.035) for grain
yield, Pinb-D1 (0.057) and Zds-Al (0.064) for quality in
the Ningxia and Others subgroups (Table S3).

Allele frequency analysis showed that alleles of Hap-4A-C
(Cwi-4A), GS-Dla (GS-D1), Hap-A (GW2-6A) and Hap-1
(GW2-6B) for larger grain size and TKW were predomin-
ant in the Ningxia subgroup compared with the Others
subgroup (Fig. 2c), whereas at Sus2-2B, the allele Hap-H
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associated with higher TKW was more frequent in the
Others subgroup. At 14 loci for quality traits, a higher fre-
quency of Glu-DId encoding the high-molecular-weight
glutenin subunit (HMW-GS) Dx5 + Dyl0 occurred more
frequently in Ningxia (44%) than in Others (27%) (Fig. 2d).
The Ppo-A1b, Pod-Alb and Zds-Ala alleles, associated with
lower PPO activity, higher POD activity and lower yellow

pigment content, respectively, were more frequent in
Ningxia than in Others. In contrast, the frequencies of
HMW-GS Axl or Ax2* and Pinb-DIb for hard grain
texture were significantly higher in Others. Concerning
adaptation and stress resistance genes, genetic diversity in
the two subgroups was not significantly different (Fig. S4C,
D), and allelic variations showed minor differences at Rit-
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B1, Rht-D1, Vin-B1, Vin-DI and Ppd-DI in both sub-
groups (Ningxia and Others) (Fig. S5).

Genetic divergence in adaptation genes was most significant
during breeding improvement in Ningxia Province

To evaluate population differentiation during breeding im-
provement in Ningxia Province, we further analysed the gen-
etic relationships between landraces and modern cultivars.
Higher genetic diversity occurred in modern cultivars than
in landraces (Fig. 3a). Moreover, the difference in genetic di-
versity was clear in adaptation-related genes (Fig. 3b). Popu-
lation differentiation (Fst) between modern cultivars and
landraces was very high at Vin-A1 (0.39), followed by Rht-B1
(0.16) (Fig. 4a). Similarly, the spring-type allele Vin-Ala at
Vin-A1, which influences vernalization, was frequently found
in modern cultivars (57%) but was not detected in landraces
(Fig. 4b). In contrast, Vrn-B1b, which is associated with the
spring type, is predominant in both modern cultivars (58%)
and landraces (82%), and Vin-Dla, also related to the spring
type, retained towering scaling in modern cultivars (57%)
and landraces (86%) (Fig. S7). The dwarfing allele Rht-B1b
(Rht-B1) is present in 28% of modern cultivars but is absent
in landraces (Fig. 4b). A similar situation is observed for
another dwarfing gene, RAht-DI1b. Interestingly, the
photoperiod-insensitive allele (Ppd-DI1a) predominates in
modern cultivars and landraces (Fig. S7).

Population differentiation in other genes controlling
yield, quality and resistance was also analysed, though
no significant differences were found between the two
groups (Fig. S6). For genes controlling stress resist-
ance, the Fst values among the two subgroups at the
loci Lr34 and I-fehw3 were extremely high, at 0.55
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(Lr34) and 0.43 (I-fehw3) respectively, compared with
those of other resistance genes (Fig. 4c). Allele
frequency analyses showed the favorable alleles Lr34+
and Westonia type at 1-fehw3 to be predominant in
landraces (Fig. 4d). The genetic differentiation (Fst)
values for DRO-5B, Lr68, PHS1, VP-1B and Lrl4a
were 0.30, 0.22, 0.22, 0.14 and 0.12, respectively
(Table S4), whereas corresponding favorable allele
frequencies showed distinct differences between
modern cultivars and landraces (5% vs 54, 5% vs 47,
50% vs 92, 67% vs 30, 22% vs 0%) (Fig. S8). For
quality genes, the most extreme genetic differentiation
between the two subgroups was detected for Pod-Al
(0.23), followed by Pinb-D1 (0.24) (Fig. 4e). The
majority of modern cultivars (55%) carry the Pod-Alb
allele, whereas few landraces harbour this allele. The
hard grain texture allele (Pinb-D1b) is frequently
present in modern cultivars (38%), but it is absent in
landraces (Fig. 4f), as verified by genetic differenti-
ation between the two subgroups (Fig. 4e). Addition-
ally, loci including Glu-D1, PSY1-DI and Pinb2-B2
show obvious genetic differences (Table S4), and the
corresponding allele frequencies differ significantly
between cultivars and landraces (Fig. S9). For yield-
related genes, the most significant difference occurred
in TaGW2-6B (Fig. 4g), at which the favorable allele
Hap-1 predominates in modern cultivars (76%) but is
absent in landraces (Fig. 4h). At the TGW6, Cwi-4A
and GS-D1I loci, favorable allele frequencies are higher
in modern cultivars than in landraces (Fig. S10),
whereas the opposite situation is observed at the loci
GASR-A1, Susl-7A and GW2-6A.
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on adaptation genes
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Genetic contribution from founder parents for Ningxia
bread wheat cultivars

Founder parents, as an important genetic resource, have
greatly promoted the improvement of wheat varieties in
China since the 1950s. In this study, we analysed the
genetic contributions of six founder parents, including
Moba 66, Abbondanza, Beijing 8, Orofen, Xiaoyan 6 and

Zhou 8425B, to modern cultivars in Ningxia Province.
To clearly understand the importance of founder par-
ents, we counted the number of favorable alleles of
genes for yield, quality, adaptation and stress resistance
in these cultivars (Fig. 5). The number of favorable
alleles for higher TKW in the six founder parents ranged
from three to seven for ten yield genes. The founder
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parent Xiaoyan 6 carries seven favorable alleles: Hap-4A- Ala at TGW6 (Fig. S11). For 14 quality genes, the aver-
C at Cwi-4A, GS-Dla at GS-D1, Hap-H at Susl-7A and  age number of favorable alleles was six, ranging from
2B, Hap-A at GW2-6A, Hap-1 at GW2-6B and TGW6-  five to nine. The founder parent Xiaoyan 6 carries the
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most favorable alleles: Ax1 or Ax2* at Glu-Al, Glu-D1d
at Glu-D1, Zds-Ala at Zds-Al, Pds-B1b at Pds-B1, Pod-
Alb at Pod-Al, Psy-Alb at Psy-Al, Psy-Dla at Psyl-D1,
Psy-Bla or b at Psy-B1 and Wx-B1b at Wx-B1. All six
founder parents carry Psy-A1b, Psy-Dla and Psy-Bla or
b associated with low YP content, except Psy-DI for
Zhou 8425B (Fig. S12). For stress resistance, the founder
parent Abbondanza harbours eight favorable alleles,
including PHS+ at PHSI, Vp-1Bc at VP-1B, PHS+ at
MFT-A1, Westonia type at I-fehw3, Dreb-Bla at Dreb-
B1, Hap-5A-A at DRO-5A, Hap-5B-II at DRO-5B and
Lr14+ at Lri4a (Fig. S13). For six adaptation genes, the
photoperiod-insensitive allele (Ppd-D1a) was detected in
all founder parents, except for Orofen. In addition,
Moba 66, Xiaoyan 6 and Zhou 8425B have the dwarfing
allele Rht-B1b. Zhou 8425B also has another dwarfing
allele, Rht-D1b (Fig. S14). Such evaluation of these
founder parents with respect to different types of func-
tional genes allowed us to infer contributions to breed-
ing improvement in Ningxia Province.

To compare differences in four types of genes
between founder parents and modern cultivars, we
investigated the relationship number of alleles with the
proportion of accessions. Seventeen percent of the
founder parents had seven and nine favorable alleles at
yield and quality genes, respectively; the proportion was
7% on average for modern cultivars (Figs. 5b, c). Most
founder parents and modern cultivars have three to six
allelic variations in resistance genes and carry dwarfing,
spring-type and photoperiod-insensitive alleles at adap-
tation genes (Figs. 5d, e).

The gene flow value at yield genes was 2.47 between
modern cultivars and Zhou 8425B, which was the most
frequent among all founder parents, indicating that
Zhou 8425B had the largest genetic exchange with mod-
ern cultivars and played an important role regarding
yield potential in Ningxia wheat (Fig. 6). At quality and
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resistance genes, all founder parents had nearly equal
gene flow to modern cultivars, with an average gene flow
of 0.60 at quality loci ranging from 0.48 to 0.76 and 0.53
at resistance loci ranging from 0.40 to 0.69. For adapta-
tion genes, the gene flow values between the founder
parents Abbondanza, Orofen and modern cultivars were
0.82 and 0.63, respectively. In summary, founder parents
with different favorable alleles together were responsible
for improvement of Ningxia wheat cultivars.

Discussion

Population structure indicating wheat genetic
components in Ningxia Province

Ningxia Province, which has diverse ecological types, is
not only suitable for the growth of winter wheat but also
the main cultivation area for spring wheat. The practice of
introducing foreign germplasm resources shows that al-
most all types of bread wheat can be planted and har-
vested normally in Ningxia Province. Of course, landraces,
as local characteristic resources, have played an important
role in early breeding programmes. In this study, all var-
ieties were clustered into three subgroups based on popu-
lation structure analyses, namely, modern cultivars,
landraces and Others, revealing their genetic differences
based on 44 important functional genes (Figs. S3). To fur-
ther clarify the breeding contribution of introduced germ-
plasm and landraces in Ningxia Province, genetic diversity
and the frequency spectrum for divergence were evaluated
based on 44 genes for yield, quality, adaptation and resist-
ance. In this study, genetic diversity was most enriched for
the subgroup Others comprising introductions outside of
Ningxia Province, followed by modern cultivars; landraces
showed minimum genetic diversity at 44 important loci
(Figs. 2a, 3a). This indicates that conventional artificial
hybridization breeding using external resources to im-
prove varieties has increased diversity by promoting gene
exchange and recombination in coding regions,
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Fig. 6 Gene flow between six founder parents and modern cultivars at yield, quality, stress resistance and adaptation gene
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particularly for important cloned functional genes for self-
pollinated wheat [51]. Introduced varieties from other
regions with rich genetic diversity have facilitated local
breeding improvement; thus, introduced varieties have
made a significant genetic contribution to Chinese mod-
ern cultivars [44]. The allele frequency spectrum for diver-
gence also supports this at the gene level. Dwarfing alleles
Rht-B1b at Rht-B1 and Rht-D1b at Rht-DI1, well-known
Green Revolution genes that swept through China and
had a significantly positive influence on wheat breeding,
are very widespread in modern Ningxia cultivars and
varieties introduced from other regions but absent in
landraces (Figs. S5A, S7), indicating that introduced wheat
germplasm with numerous beneficial genes is vital for
broadening the genetic diversity of Ningxia wheat culti-
vars. Similar types of genes also include the IBL/IRS
translocation, GW2-6B, and Sus2-2B (Figs. 2¢, S8, S10).
Therefore, wide introduction, in-depth research and ef-
fective use of wheat germplasm resources outside of
Ningxia Province are important ways to improve wheat
yield and breeding effectiveness in Ningxia Province. As
autochthonous traditional varieties, evaluation of wheat
landraces stored in gene banks with highly beneficial un-
tapped diversity and sources of stress adaptation should
be used for wheat improvement [52]. Due to the
colonization of diverse ecological environments in the
process of domestication and selection by ancient farmers
in Ningxia Province, landraces contain broader specific
genetic loci than most breeding programmes and form the
basis of early wheat breeding, especially for China in the
pre-1950s. Zhou et al. [53] highlighted environmental
stresses and independent selection efforts that have re-
sulted in considerable genome-wide divergence at the
population level in Chinese wheat landraces. Of course,
this characteristic has been exploited in other countries,
where the first improved varieties consisted of selections
of local landraces [52], such as the landrace population
‘Catalan de Monte’ in Spain [54, 55] and “Turkey Red’ in
the United States [56]. Therefore, finding new genes and
increasing the frequency of rare alleles among landraces in
Ningxia Province via next-generation genotyping and
sequencing technologies should be used in breeding.
Overall, our results indicate that landraces with good
adaptation and introduced varieties with wide diversities
will co-promote bread wheat breeding in Ningxia
Province.

Dissecting allele frequency identifies the direction of
important gene selection

Modern wheat breeding practices accompanying inten-
sive selection pressure have always focused on econom-
ically important loci [57, 58]. For each of those loci
contributing to agronomic phenotypes, causal polymor-
phisms have been identified with increased frequencies
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of favorable alleles consistent with selection during mod-
ern breeding [59]. In this study, we found evidence of
convergent increases in allele frequencies at targeted
genes for improved selection for Ningxia bread wheat
from landraces to modern cultivars. VP-1B is one of im-
portant seed dormancy genes for PHS tolerance during
harvest [60], and the favorable allele Vp-1Bc was found
to be predominant, with a frequency of 68% in Ningxia
modern cultivars. Similarly, Hap-1 at the GW2-6B locus
strongly influences kernel width and thousand-kernel
weight, and the allele was found in 76% of modern culti-
vars, while the desirable allele was absent in landraces,
indicating that breeders have intensively selected for the
favorable allele at the GW2-6B locus due to the demand
for increasing grain yield in breeding (Fig. 4h). HMW-
GS is influenced at Glu-D1I locus [25]. The allele Glu-
D1d associated with a high gluten content and superior
bread-making quality showed a relatively high frequency
in modern cultivars compared with landraces, which is
in agreement with reports for most cultivars in Pakistani
and China [22, 57, 58]. In addition, the favorable allele
Hap-4A-C at Cwi-4A, which encodes the CWI enzyme
that converts sucrose to glucose associated with grain
size, was detected in 85% of modern cultivars, showing
the effective use of this gene in bread wheat molecular
breeding.

For some important genes, their favorable alleles had
maintained high values in varieties before modern wheat
breeding [44]. The photoperiod-insensitive allele Ppd-
Dla was found to be fixed at a frequency of 100% in
both landraces and modern cultivars, showing that this
gene is so important that it has been selected for com-
pletely before modern breeding in Ningxia. Flowering
time is one of the most important developmental traits
for wheat adaptability and yield stability in target envi-
ronments, and the photoperiod-insensitive allele of the
photoperiod response gene Ppdl is known to be a major
determinant of flowering time optimization [61]. There-
fore, early flowering in varieties carrying photoperiod-
insensitive alleles was fixed during the long-term selec-
tion process. A high yellow pigment content is favored
for durum wheat pasta but is considered undesirable for
Chinese steamed bread and white noodles [62—-64], and
the alleles Psy-A1b and Psy-Bla/b are thus encouraged.
The frequencies of the two alleles approached almost
100%; these alleles were fixed in both landraces and
modern cultivars before breeding selection in Ningxia.

However, to breed perfect bread wheat varieties in
Ningxia, favorable alleles with minor frequencies in
modern cultivars should be regarded. For example, the
root architecture-related gene DRO-5B is an IAA-
response gene that is responsible for reduced height and
increased thousand-kernel weight [65, 66]. The favorable
allele Hap-5B-1I is present in 54% of landraces but
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only 5% of modern cultivars, indicating that this allele
might have undergone negative selection and thus
underutilization in modern breeding. In addition, Hlc
at the GASR-AI locus, which influences grain length,
is predominant in landraces but has a low frequency
in modern cultivars. Overall, breeding is a process of
aggregating desirable genes and eliminating undesir-
able or even deleterious alleles. Low frequencies of
favorable alleles for important genes in modern culti-
vars identify the direction of improvement for future
bread wheat breeding in Ningxia and are helpful for
further breeding by design.

Founder parents contain a combination of important
functional genes

Founder parents, which serve as important germplasm
resources, play a pivotal role in updating new varieties
[67]. They exhibit not only superior phenotypes and
high recombination ability but also wide adaptation and
prominent specific characteristics [3]. Previous studies
have found that genes controlling important traits were
present in combination rather than being randomly dis-
tributed on chromosomes in founder parents [68—72].
For example, pedigree analysis of Huanghuazhan rice
showed that 61.79% of 50 kb blocks are HTBs (Huan-
ghuazhan traceable blocks), together with the elite per-
formance of Huanghuazhan, and that large-scale
important genes are located in HTBs, supporting that
they represent the combination of elite alleles of import-
ant genes [73]. In our study, counting the number of fa-
vorable alleles at ten yield-related genes successfully
clarified 3 ~7 favorable alleles for higher TKW in six
founder parents. Furthermore, Hap-4A-C at Cwi-4A,
Hap-H at Susl-7A, GS-Dla at GS-DI1, Hap-A at GW2-
6A, Hap-1 at GW2-6B and TGW6-Ala at TGW6 are
conserved in the founder parents Zhou 8425B, Xiaoyan
6 and Abbondanza, except for GS-Dia allele. For
quality-related genes, the average number of favorable
alleles was found to be approximately six, and Psy-A1b,
Psy-Dla, Psy-Bla or -b associated with a low YP content
are conserved across all founder parents, showing that
favorable alleles of these important genes are conserved
in modern bread wheat breeding. Interestingly, the six
founder parents carry different favorable alleles at resist-
ance- and adaptation-related genes, probably because
these genes are randomly selected to respond to various
environments, such that these founder parents can
maintain high yield and good quality wherever they are
cultivated.

Founder parents have excellent allele combinations of
important genes for agronomical desirable traits, and
many varieties have been derived from them. In this
study, yield trait improvement of modern cultivars was
the main achievement using founder parents in Ningxia
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bread wheat breeding. Gene flow was most frequent
(2.47) when comparing modern cultivars with the
founder parent Zhou 8425B for yield-related genes,
meaning that founder parents, especially Zhou 8425B,
have contributed greatly to the yield improvement of
Ningxia wheat. Zhou 8425B is a founder parent fitting
current breeding needs, with features of dwarfing, high
yield and disease resistance, and more than 300 wheat
varieties (lines) such as AK58 and Zhou 16 have been
bred from this parent [65, 74, 75]. High yield is an ever-
important objective of wheat breeding, and analysis of
the breeding history of many crop species has revealed
the presence and roles of founder parents [68]. Li
et al. [76] found that Beijing 8, serving as a founder par-
ent, contributed many loci in close proximity to the po-
sitions of known vyield component genes that confer
important traits in breeding. In addition, pedigree ana-
lysis has shown that inherited ancestor genome seg-
ments in the rice variety Huanghuazhan are extremely
enriched in the grain yield category [73].

Functional markers combining phenomics will advance
Ningxia wheat breeding

Functional markers that have strong associations with
relevant phenotypes are ideal for gene tagging, and al-
lelic variants can be associated to functional genes in
breeding [33, 77]. Liu et al. [33] documented 97 func-
tional markers that detect 93 alleles at 30 loci in bread
wheat. Rasheed et al. [39] converted gel-based functional
markers to high-throughput KASP markers. In this
study, we evaluated the molecular characterization and
genetic distribution of Ningxia bread wheat breeding in
terms of important genes related to adaptation, stress re-
sistance, quality and yield by utilizing these KASP func-
tional markers. However, an objective fact is that these
in our research are only a few number of predicted
genes relative to wheat whole genome. At present, many
gene mapping studies (both QTL studies and GWAS)
have identified genes controlling agronomic traits, and
KASP markers have been produced [77]. Indeed, more
than 150 KASP markers for almost 100 functional genes
have been developed, and 72 have been validated in a
bread wheat diversity panel [78]. With innovations of
whole-genome assemblies, revolutionary advances in
reference genome sequences for bread wheat ‘Chinese
Spring’ [79] and its progenitors, T. turgidum spp. dicoc-
coides [80], Aegilops tauschii [81, 82] and T. urartu [83],
have recently been achieved. These wheat genome data
provide new opportunities to uncover genetic variation
in traits of breeding interest and enable genome-based
breeding to produce wheat cultivars. In the future, with
an increasing number of important cloned genes, we will
use more functional markers to genetically characterize
Ningxia wheat.
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With the development of sequencing technology, how
to combine the data obtained from sequencing with
practical breeding work has become the focus of
breeders. Despite the functional markers for important
cloned genes used in our study, a lack of relative pheno-
typing data has led to a poor understanding of the actual
improvement obtained within the Ningxia breeding
programme. Our capacity to collect useful high-quality
phenotypic data lags behind the current capacity to gen-
erate genotyping data. However, 44 functional markers
(genes) influencing grain yield, quality, adaptation and
resistance  phenotypes, such as plant height,
vernalization, drought tolerance, leaf rust, grain hard-
ness, grain width, and spikelet number per spike, have
been developed, and collecting these phenotypic data is
laborious, time consuming and costly due to the large
number of bead wheat varieties. Luckily, with the rapid
advancement of high-throughput plant phenotype meas-
urement technology, plant phenomics has developed
rapidly. High-throughput phenotyping platforms allow
for recording data on traits such as plant development,
architecture, growth, biomass, and photosynthesis for
hundreds to thousands of plants in a single day [84],
which will help to fill the gap of the lack of phenotypes
in this study and benefit genomics-assisted breeding
(GAB) for wheat improvement in Ningxia Province.

Conclusions

In this study, we report a comprehensive functional gene
assessment of modern improved wheat based on 44 im-
portant genes underlying grain yield, quality, adaptation
and resistance in 207 cultivars and lines in Ningxia Prov-
ince. Varieties introduced from other regions with rich
genetic diversity and landraces with well-adapted genetic
resources have been applied to improve modern culti-
vars. Founder parents, particularly Zhou 8425B, for
yield-related genes have contributed greatly to breeding
improvement of wheat in Ningxia Province. This work
reports genetic characteristics at the gene level and ad-
vances improvement in selection for future wheat breed-
ing in Ningxia Province.
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