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Abstract

Background: Over the life cycle of perennial trees, the dormant state enables the avoidance of abiotic stress
conditions. The growth cycle can be partitioned into induction, maintenance and release and is controlled by
complex interactions between many endogenous and environmental factors. While phytohormones have long
been linked with dormancy, there is increasing evidence of regulation by DAM and CBF genes. To reveal whether
the expression kinetics of CBFs and their target PtDAM1 is related to growth cessation and endodormancy
induction in Populus, two hybrid poplar cultivars were studied which had known differential responses to dormancy
inducing conditions.

Results: Growth cessation, dormancy status and expression of six PtCBFs and PtDAM1 were analyzed. The ‘Okanese’
hybrid cultivar ceased growth rapidly, was able to reach endodormancy, and exhibited a significant increase of
several PtCBF transcripts in the buds on the 10th day. The ‘Walker’ cultivar had delayed growth cessation, was
unable to enter endodormancy, and showed much lower CBF expression in buds. Expression of PtDAM1 peaked on
the 10th day only in the buds of ‘Okanese’. In addition, PtDAM1 was not expressed in the leaves of either cultivar
while leaf CBFs expression pattern was several fold higher in ‘Walker’, peaking at day 1. Leaf phytohormones in both
cultivars followed similar profiles during growth cessation but differentiated based on cytokinins which were largely
reduced, while the Ox-IAA and iP7G increased in ‘Okanese’ compared to ‘Walker’. Surprisingly, ABA concentration
was reduced in leaves of both cultivars. However, the metabolic deactivation product of ABA, phaseic acid,
exhibited an early peak on the first day in ‘Okanese’.
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Conclusions: Our results indicate that PtCBFs and PtDAM1 have differential kinetics and spatial localization which
may be related to early growth cessation and endodormancy induction under the regime of low night temperature
and short photoperiod in poplar. Unlike buds, PtCBFs and PtDAM1 expression levels in leaves were not associated
with early growth cessation and dormancy induction under these conditions. Our study provides new evidence
that the degradation of auxin and cytokinins in leaves may be an important regulatory point in a CBF-DAM induced
endodormancy. Further investigation of other PtDAMs in bud tissue and a study of both growth-inhibiting and the
degradation of growth-promoting phytohormones is warranted.
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Key message
Differential timing and expression levels of the key regu-
latory genes CBFs and DAM1 in buds and down-
regulation of cytokinins and IAA, and ABA metabolism
in leaves might be involved in the regulation of growth
cessation and dormancy development in vegetative buds
of contrasting Populus cultivars differentially sensitive to
low night temperature.

Background
The synchrony of the plant with its environment en-
ables adapted temperate perennial plants to avoid in-
jury. In these northern, temperate regions, growth
cessation is a necessary pre-requisite to cold acclima-
tion and subsequent freezing stress resistance [1, 2].
The growth cycle is regulated by dormancy and in
turn, dormancy is governed by both inherent but also
environmental factors. While shortening photoperiod
has long been known as the most important driver to
woody plant dormancy induction [3–6], the
temperature has also been and is increasingly recog-
nized as a strong mediator of this response [7, 8] for
a review see Tanino et al. (2010) [9]. With global
warming, more attention is being paid to temperature
and its impact on the dormancy cycle. In this regard,
research on forest and agroforest tree species have in-
creasingly highlighted the impact of temperature on
dormancy [10–13] and photosynthetic capacity [14].
In North America, with its wide adaptation and fast
growth, Populus hybrids are the major agroforestry
tree of choice in managed lands. Evaluating the im-
pact of future climate change on Populus dormancy
cycle is important to select cultivars which are better
adapted to fluctuating temperatures.
Dormancy in temperate trees is divided into three

phases: paradormancy, endodormancy and ecodormancy
[15]. Bud dormancy is defined as ‘the temporary suspen-
sion of visible growth of any plant structure containing a
meristem’ [15]. Paradormancy is defined as growth ces-
sation controlled by physiological factors within the
plant but external to the affected structure, endodor-
mancy is defined as growth cessation controlled by

physiological factors internal to the affected structure,
and ecodormancy represents growth cessation controlled
by environmental factors external to the plant [16].
Thus, the various types of dormancy in plants constitute
a vast field of study. However, because of the impact of
the autumn dormancy induction period on other com-
ponents of the annual growth cycle [17], and the demon-
stration that temperature mediates timing and depth of
dormancy in Populus hybrids [13], in this paper, we will
focus on these two aspects.
Furthermore, excellent review papers have focused on

the molecular changes, gene regulatory pathways, and
hormonal regulations during dormancy [18–25], but
relatively less is known about the potential role of C-
Repeat Binding Factors (CBFs) in dormancy and
Dormancy-Associated MADS-box (DAM) genes in
Populus hybrid cultivars widely used in agroforestry
systems.
CBF genes, first described in Arabidopsis [26–28], are

among the best-characterized plant transcription factors
involved in plant abiotic stress tolerance, especially in
cold acclimation. The expression of the dehydration-
responsive element binding (DREB) protein/C-repeat
binding factor gene (CBF) is rapidly induced by low
temperature. The encoded proteins bind to the CRT/
DRE (C-repeat/dehydration responsive element) regula-
tory DNA motif in the promoters of cold-responsive
genes [29], thus inducing their expression, which results
in an enhanced cold or frost tolerance [30]. CBFs have
been described in a huge number of species, both mono-
and dicots. Usually several or many gene family mem-
bers have been identified in one species. Moreover, the
number of CBF genes may vary even in the same spe-
cies, in a genotype-dependent manner (copy number
variation). Many CBFs were described in the monocoty-
ledonous cereals (some 40 in bread wheat /Triticum aes-
tivum/, 20 in barley /Hordeum vulgare/). Although fewer
were described in woody species, their genome also en-
codes several (3–6) CBF genes. Their involvement in
cold adaptation has also been confirmed. A recent re-
view [24] summarizes the genetic regulation of cold
hardiness in trees.
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It is becoming more evident that CBF genes are also
involved in dormancy regulation, especially in the devel-
opment of endodormancy [31–34]. Benedict et al. (2006)
studied the kinetics and tissue specificity of 4 CBFs iden-
tified from Populus balsamifera subsp. trichocarpa and
concluded that CBFs are involved in dormancy develop-
ment and that their differential expression ensures spe-
cific roles for these ‘master-switches’ in the different
annual and perennial tissues [35].
The existence of CBF – DAM – dormancy ‘pathway’

has been suggested and, at least partially, shown by sev-
eral studies in Japanese pear [36, 37] and Japanese apri-
cot [38]. In his review, Horvath (2009) proposed a
theoretical model, ‘which can be developed that could
serve as a paradigm for further testing’ [39]. Wisniewski
et al. (2011) demonstrated that transgenic apple (Malus
x domestica) plants, expressing a peach (Prunus persica)
PpCBF1 gene showed not only an increased level of
freezing tolerance, but also a modified response to short
photoperiod, leading to the early onset of dormancy,
early leaf senescence, and delayed bud break [31]. As a
next step Wisniewski et al. (2015) analyzed CBFs, DAMs,
RGLs, and EBB transcription factor genes, involved in
the regulation of dormancy [32]. The expression of sev-
eral apple DAM genes - already associated with dor-
mancy development in woody Rosaceae plants -
exhibited different expression patterns. CBF binding
sites identified in the apple DAM promoters led to the
suggestion of a regulatory model connecting CBFs and
DAMs expression to endodormancy development [32].
DAM genes were first identified in Prunus. A mutant
peach, called ‘ever-growing’, was unable to enter endo-
dormancy even when plants were exposed to short pho-
toperiods or low temperatures [40–42].
DAM genes are members of the type II (MIKCc) sub-

family of MADS-box transcription factors. Their se-
quences contain four major domains, the MADS-box
(M), intervening (I-), keratin-like (K-), and C-terminal
(C-) domain. These domains are responsible for DNA
binding, protein dimerization, complex formations, and
transcriptional regulation. A detailed structural and
functional characterization of DAM genes can be found
in the reviews published by Horvath (2015) and Fala-
vigna et al. (2019) [43, 44]. In this latter publication, a
model is proposed, introducing the molecular network
of the regulatory genes involved in the dormancy cycle.
Expression patterns of the DAM genes were related to

endodormancy and were mainly presented in the Prunus
genus, among them peach (P. persica) ever-growing [45]
and peach cultivars [46], Japanese apricot (P. mume)
[47], and also in apple [48] or Japanese pear (Pyrus com-
munis) [49, 50]. DAM gene expression appears to be
linked to the stage of dormancy (see Falavigna et al.
(2019) for a review [44]). In most species, DAM gene

expression is induced during the dormancy induction
period but may also be involved in maintenance and re-
lease [46]. Based on amino acid sequence, poplar DAM1
and DAM2 expression were most closely associated with
leafy spurge MADS 27–29 and unlike the other DAM
genes, DAM1 and DAM2 were upregulated by dormancy
inducing short-day conditions in poplar (Chen (2008)
[51] as cited by Horvath et al. (2010) [52]). Interestingly
in a later transcriptome study these results were not
confirmed. Howe et al. (2015) examined several DAM-
like genes that were downregulated during endodor-
mancy [53]. One of the examined genes was the
Potri.002G105600, but in this study, the authors did
sampling only once per month.
Analysis of transgenic plants showed CBF genes

were also involved in the regulation of endodormancy.
The ectopic expression of a peach PpCBF1 gene in
apple resulted in short-day induced dormancy and in-
creased cold hardiness [31], and affected the expres-
sion levels of apple MdDAM1 and MdDAM3 genes in
buds [32]. Li et al. (2019) analyzed pear (Pyrus pyrifo-
lia) CBF and DAM genes and found multiple CBF
genes selectively regulate DAM genes and participate
in endodormancy regulation [37]. Interestingly, this
group found that “PpCBF1-PpDAM2 regulon mainly
responds to low temperature during endodormancy
regulation, with further post-translational regulation
by PpICE3”. In addition, the expression of ParCBF1
was found to be in close association with the decreas-
ing ambient temperatures in apricot (Prunus arme-
niaca), and the expression levels of ParDAM5 and
ParDAM6 changed according to ParCBF1 expression
rates [54].
Molecular evidence also supports the CBF - DAM

connection. The presence of CBF transcription binding
sites was reported in the putative promoter regions of
the leafy spurge DAM genes [52]. A model, illustrating a
potential interaction between DREBs (CBFs) and DAMs
was subsequently suggested [55]. An interaction of
PpCBF2 protein with the promoter of PpMADS13–1
gene was shown in pear by transient reporter assay [56].
Also in pear, yeast one-hybrid and transient assays
showed that PpCBF2 enhanced PpDAM1 and PpDAM3
transcriptional activity during the induction of dormancy
[38]. Zhao et al. (2018) showed that P. mume CBFs can
bind to the PmDAM6 promoter via alternative binding
sites and activate its expression [33, 34]. Japanese pear
PpCBFs were able to induce the expression of
PpDAM1–1 and PpMADS13–3 genes in transient re-
porter assays [56]. Different biochemical methods re-
vealed that pear PpCBF2 and PpCBF4 genes are able to
bind to the promoter of PpDAM1 gene, activating its ex-
pression, and revealed that PpCBF1, PpCBF2, PpCBF3,
PpCBF4 genes can activate PpDAM3 gene [37]. These

Boldizsár et al. BMC Plant Biology          (2021) 21:111 Page 3 of 18



results demonstrate the CBF - DAM signalling pathway
is involved in endodormancy development and also
demonstrate a certain level of CBF functional
redundancy.
Herein we use a system of two contrasting Populus hy-

brid cultivars differing in growth cessation and dor-
mancy acquisition which were previously distinguished
based on low night temperature under short photo-
period. The hypothesis that growth cessation and dor-
mancy induction is linked to leaf phytohormone levels,
bud PtDAM1 and bud PtCBFs gene expression in Popu-
lus will be evaluated.

Results and discussion
In our previous work [13] we studied the impact of
temperature on growth cessation, dormancy develop-
ment, and cold acclimation of four poplar cultivars.
These temperature regimes changed the kinetics of
dormancy development patterns with the 18/3 °C
treatment inducing the widest separation of dormancy
depth. Therefore, to elucidate if there is a relationship
between the expression levels of CBF genes and dor-
mancy in poplar, two cultivars differing in their dor-
mancy acquirement based on night temperature
responses were tested under short-day conditions in
our current research.

Dormancy development
Growth cessation
Growth cessation is the first indication of dormancy in-
duction [57] and was induced in both genotypes (Fig. 1).
Consistent with Kalcsits et al. (2009), a significantly earl-
ier and steeper drop could be observed in the ‘Okanese’
compared to ‘Walker’ cultivar, between the 3rd and the
4th week of dormancy inducing conditions. After the
5th week, no further growth was recorded. ‘Walker’
showed higher growth rate at every time-point, with the
exception of the 1st week. By the end of the experiment,
no significant difference was found between these two
cultivars (0.36 and 0.51 cm * week− 1 in Okanese and
Walker, respectively).

Dormancy induction
While growth cessation was a more sensitive indicator,
significant differences in the number of days to bud
break were found between the two cultivars from day 40
(Fig. 2). Okanese buds took 10 days to break bud at Day
0, while at the end of the experiment (i.e. on the 50th
and 60th day) this value was increased and levelled off at
13.5 and 14.1 days (respectively). Conversely, the dur-
ation of bud break was hardly changed in ‘Walker’ over
the whole 60 days treatment period, just a slight fluctu-
ation was recorded (Fig. 2). No difference was detected

Fig. 1 Shoot length increments (cm*week1) in the Okanese (circle) and Walker (triangle) cultivars under SD conditions (12/12 h, light/dark period)
at 18/3 °C temperature during the first 30 days, then 10/14 h for an additional 30 days. Error bars represent the ±SEM. N = 27. The values indicated
by different letters are significantly different at P < 0.05 level from each other
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between the first and the last days (days to bud break:
8.4 and 8.2 days, respectively).
The depth of dormancy was reflected by the parameter

ΔDBB (Differences between the first and last Days to
Bud Break) and dormancy was not induced at all in
‘Walker’ (ΔDBB = 0.2). Conversely in ‘Okanese’, the dor-
mant state started to be induced after 30 days. At the
end of the experiment, Okanese had a ΔDBB of 4.1 (Fig.
2). The data on growth cessation rate and the bud break
analysis indicates that ‘Okanese’ reached a deeper dor-
mant state than ‘Walker’. Our results are consistent with
the outcome of Kalcsits et al. (2009) [13], who reported
characteristic differences between these two cultivars –
‘Okanese’ was shown to be more capable of endodor-
mancy development under the 18/3 °C day/night
temperature treatment under 12 h and 10 h daylengths
although a larger difference was found between the two
cultivars (ΔDBB: 13.9) in that study.

Expression pattern of CBF genes
The expression patterns of six CBF genes were recorded
over the whole experiment. Samples were collected from
leaf and bud tissues every ten days, taking into account
the circadian rhythms of many CBFs, in the same period
of the day, i.e. 4–6 h after the start of the light period.
The expression of each gene in a given time-point was
normalized to the level measured at the beginning (i.e.
on the 0 day) of the given treatment.

Differences in the kinetics and spatial localization of
the overall CBF expression were observed between the
two cultivars. The highest levels of CBF expression
across the entire experiment were recorded in the bud
tissue, isolated from ‘Okanese’ on the 10th day (Fig. 3a)
and on the first day in ‘Walker’ leaf samples (Fig. 3d).
The expression levels in ‘Okanese’ poplar buds peaked at
the 10th day and were at least an order of magnitude
(10–20 fold) higher than in ‘Walker’ buds, and at any
other time during the experiment for all the CBFs (with
the exception of PtCBF5). There was differential expres-
sion of bud PtCBFs between the two cultivars in that
PtCBF1 and PtCBF5 showed the highest and lowest ex-
pression in ‘Okanese’ buds, respectively, while the re-
verse was observed in ‘Walker’. In ‘Walker’ leaves on the
1st day, PtCBF1 and PtCBF2 expression levels were
roughly equivalent to ‘Okanese’, however, ‘Walker’ leaf
expression of PtCBF3, PtCBF4, PtCBF5 and PtCBF6
spiked on the 1st day and were 150–200 times greater
than ‘Okanese’ (Fig. 3c, d).
The expression patterns of the unique CBF genes are

described in detail in the Supplemented Fig. 1. In bud
tissue, PtCBF2, PtCBF3 and PtCBF5 were induced only
in the beginning of the experiment, on the 10th day,
while PtCBF1 and PtCBF6 were induced not only at the
beginning but also at the end of the treatment, on the
50th and 60th (PtCBF1) or on the 40th day (PtCBF6).
The induction level was always an order of magnitude

Fig. 2 Dormancy development (characterized as days to bud break) of Okanese (circle) and Walker (triangle) cultivars under SD conditions (12/12
h, light/dark period) at 18/3 °C temperature during the first 30 days, then 10/14 h for an additional 30 days. Error bars represent the ±SEM. N = 40.
Different letters indicate statistically different (P < 0.05) number of days for the given cultivar
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higher in the ‘Okanese’ buds compared to ‘Walker’ for
each CBF. The repression of CBF genes was more
pronounced in the ‘Walker’ buds. A repressed period
was recorded in the middle of the experiment for
PtCBF1, PtCBF5 and PtCBF6 genes in ‘Walker’ buds,
while only one repressed stage was found in ‘Okanese’
in the mid period of PtCBF3 expression (Supp. Figure
1A, D, E and C).
By contrast in leaf tissue, two induction waves could

be observed in the leaf samples for all CBFs in ‘Walker’:
the first was at the beginning (on the 1st and 20th day),
while the second was at the end (50th and 60th day).

Induction waves were also found in ‘Okanese’ leaves, but
in the opposite direction, since repression of all CBFs
was detected in the period 1st-10th and 30th–40th and
finally on the 60th day. It is interesting to note the dif-
ferential responses between the cultivars in leaf tissues
in that CBF induction was found in ‘Walker’ leaves,
while repression was found almost in every case in ‘Oka-
nese’ leaves (Supp. Figure 1F-K). Thus, these two culti-
vars had similar but opposite PtCBF expression under
dormancy inducing conditions based on buds or leaves.
Differences in the CBF expression kinetics and levels

measured in the meristematic (bud, stem) and leaf

Fig. 3 Relative expression of PtCBF1, PtCBF2, PtCBF3, PtCBF4, PtCBF5 and PtCBF6 genes in the Okanese and Walker cultivars in buds (panel a-b) and
in leaves (panel c-d). Mean expression values were normalized per the expression level at the zero sampling time-point, separately for each
genotype. Error bars represent the ±SEM originating from 3 biological and 3 technical replicates

Boldizsár et al. BMC Plant Biology          (2021) 21:111 Page 6 of 18



tissues were studied in several cases in woody plants,
among them poplar. Benedict et al. (2006) described dif-
ferent CBF induction patterns in P. balsamifera Ssp. tri-
chocarpa showing that all four PtCBFs are cold-
inducible in leaves, while only two (PtCBF1 and PtCBF3)
were cold induced in the stem [35]. Under a short-
expression period (24 h), they concluded, ‘the perennial
driven evolution of winter dormancy led to the develop-
ment of specific roles for abiotic stress response regula-
tors, such as the CBFs, in annual and perennial tissues’.
CBF expression was followed in leaf and leaf bud tissues
in Prunus mume during one year by Zhao et al. (2018)
[33]. They also found a differential gene expression pat-
tern for all six CBFs studied, with specific induction kin-
etics. In that study, all six CBFs were induced in
vegetative buds, in the cold period (November – Janu-
ary); PmCBF4, PmCBF5 and PmCBF6 being the most in-
tensively expressed. These three CBFs were also the
most induced in the leaf tissues. But interestingly, in
leaves, the highest expression for all 6 CBFs was re-
corded during the warmest period, from June to July.
This finding is in accordance with our results, i.e. that
the CBF expression was much more intense in leaves of
the non-dormant cultivar, may indicate that their role in
the development in dormancy is organ-specific. Six
PmCBFs in 7 different organs were determined in P.
mume [33]. The induction levels were high in stems,
moderate in flower buds, leaf buds, and leaves, poor in
flowers, fruits, and seeds.
Gene duplication and multiplication produced a large

number of CBFs in many species. This redundancy
makes possible the divergence of functionality, and the
possibility for fine-tuning of adequate response for any
environmental stimuli, such as stress. As mentioned
above, 6 CBFs encoded in the P. mume genome exhib-
ited different expression kinetics during the year:
PmCBF1, PmCBF2, and PmCBF3 were up-regulated in
the stem tissues not only in the cold period but also in
late spring [34]. Additionally, low temperature up-
regulated 8 CBFs in Prunus mume which subsequently
induced all six DAM genes resulting in dormancy devel-
opment [36]. Under natural dormancy induction condi-
tions, 3 out of 4 CBFs showed similar expression trends
in Pyrus pyrifolia bud tissues, while PpCBF1 showed a
different induction kinetic [37]. During an artificial chill-
ing test, PpCBF1 was the only CBF highly expressed,
while PpCBF2 was repressed intensively, and the levels
of PpCBF3 and PpCBF4 were undetectable.
These results show that although CBF expression kin-

etics may be similar, differences in the individual expres-
sion patterns can be distinguished. Shortening the light
period by 2 h/day to account for the variance in nature
(at the same temperature regime) may have caused a
moderate functional polymorphism in our experiment.

PtCBF4 was detectable only in ‘Walker’ leaves, while
PtCBF1 and PtCBF6 were the most intensively expressed
genes in ‘Okanese’ buds. Whether they have different
functions, as was suggested for PpCBF4 [37] in pear, is
still unclear. It is also remarkable that PtCBF5 was the
only gene which was not induced during the CBF-burst
on the 10th day in ‘Okanese’ buds but was the most in-
tensively up-regulated in ‘Walker’ buds on the 1st day.
Therefore, we assume PtCBF5 is not related to dor-
mancy development.
Leaf samples of Populus balsamifera ssp. trichocarpa

genotypes originating from northern and southern popu-
lations were examined [58]. A growth chamber study
showed all PtCBF genes were induced by cold, indicating
functional redundancy. On the other hand, under field
conditions, a more diverse gene expression pattern was
described. The expression of PtCBFs increased as the
growing season progressed, but among the six genes,
only PtCBF3 was marginally differentially expressed
across latitudes. In our experiment, leaf samples also
showed a certain level of functional polymorphism, but
the most common outcome of the two systems is that in
leaves, no dormancy dependent expression pattern was
found, such a relation was present only in the bud
tissues.

PtDAM1 identification and its expression kinetics
DAMs (Dormancy-Associated MADS-Box) are well-
characterized genes in perennial plants, associated with
various components of the dormancy cycle but particu-
larly dormancy induction. DAM sequences had already
been published in woody plants, all containing K-box
and SRF-TF motifs [33, 59, 60]. The P. trichocarpa gen-
ome has been sequenced [61], however, it is still poorly
annotated. We have found 151 candidates for the DAM
genes. From these, we suggested the XP_024452024.1
protein entry (available at the NCBI protein database:
https://www.ncbi.nlm.nih.gov/protein/) as a putative
PtDAM1 product (Figs. 4 and 5). The XP_024452024.1
entry is corresponds to older versions as MADS7,
Potri.002G105600 at the PopGenIE database: https://
popgenie.org/). Howe et al. (2015) studied transcriptome
changes during endodormancy induction by microarray
in P. trichocarpa and found several DAM-like SVP genes
were differentially expressed but were downregulated
during endodormancy [53]. Since sampling was con-
ducted on a once per month basis, it is not clear if up-
regulated peaks were missed.
Having identified a PtDAM1 gene in Populus, we de-

cided to evaluate its potential role in dormancy develop-
ment, using cultivars known to be differentially
responsive to night temperatures. Therefore, primers
were developed to study the encoding PtDAM1 gene ex-
pression. Compared to the first sampling day, mild up-
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regulation of the identified putative XP_024452024.1 se-
quence was recorded in ‘Okanese’ leaves through the ex-
periment, while lower induction was found in ‘Walker’.
PtDAM1 was repressed from the middle of the experi-
ment (Fig. 6) and the expression of PtDAM1 was almost
unchanged throughout the 60 days in leaf tissues. The
bud tissues showed much more pronounced induction
than the leaf tissues. In more dormant ‘Okanese’, the
maximum expression (2.8-fold) was recorded on the
10th day then the induction gradually declined. Repres-
sion was recorded in both cultivars at the end of the
treatment. PtDAM1 induction in buds was weaker in the

first half of the treatment in ‘Walker’ (1.1–1.6-fold in-
duction) which did not enter endodormancy.
Similar expression trend for PmDAM1 gene was de-

scribed in Japanese apricot (Prunus mume) bud tissue,
but differently in the leaf samples [47]. In the vegetative
buds, expression of PmDAM1 (as well as PmDAM2 and
PmDAM3) was upregulated from June to July, i.e. long
before the start of growth cessation, then expression
started to decrease. We also showed an initial PtDAM1
induction in our system, well before the start of growth
cessation, or dormancy development. We found no char-
acteristic changes in leaf tissues, however, in Prunus

Fig. 4 Phylogenetic relationships of PtDAM1 and other DAM proteins containing K-box and SRF-TF domains identified in woody plants.
Magnified box shows DAM1 proteins from different plant species where the putative PtDAM1 Populus sequence (XP 024452024.1) is highlighted
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mume, different kinetic patterns were described in this
organ [47]. Two seasonal expression trends were shown
for P. mume DAMs, PmDAM1 (together with PmDAM2
and PmDAM3) was rapidly up-regulated in spring, being
gradually down-regulated in autumn. This difference in
the expression in leaf tissue might be explained by the
two different experimental systems. In other studies in
peach (Prunus persica), differential DAM gene expres-
sion appeared to be related to dormancy induction or
fulfillment of the chilling requirement phases. Based on
the ever-growing peach mutant system, Li et al. (2009)
reported DAM1, DAM2 and DAM4 were the most likely
candidates associated with growth cessation and dor-
mancy induction [45]. Using the same system, Yamane
et al. (2011) showed under both field and controlled en-
vironment conditions and in leaves and stems, DAM5
and DAM6 gene expression levels were up-regulated
during endodormancy induction and downregulated
during endodormancy release which appeared to be tied
to chilling requirement satisfaction [62]. Furthermore,

DAM5 and DAM6 gene expression levels were higher in
high chill cultivars and reduced with chilling require-
ment satisfaction [63]. DAM5 and DAM6 genes were
negative regulators of bud break.

Dynamics of hormone changes during dormancy
development
Phytohormones have been long known to be involved in
the dormancy cycle [23, 25, 64–72]. Recently, mechanis-
tic relationships between phytohormones and dormancy
are being revealed [36, 73, 74].
In our study, due to the very small size of poplar buds

and only limited capacity of growth chambers, hormone
analysis was conducted only in leaf samples. Overall,
phytohormonal response in ‘Okanese’ was different than
in the ‘Walker’ poplar hybrid cultivar with most signifi-
cant distinction for Ox-IAA, phaseic Acid, DAM1, cis-
zeatin riboside-O-glucoside (cZROG) (Figs. 7 and 8). Ex-
posure of poplar plants to short photoperiod and low
night temperatures was associated with down-regulation

Fig. 5 Multiple alignment of DAM1 protein sequences. 4 representative DAM1 protein sequences of various tree species and the candidate
PtDAM1 (XP_024452024.1) were aligned by the MUSCLE alignment method. The consensus is indicated below the sequences and the homology
visualized by sequence logo. The characteristic SRF-TF (PF00319) and K-Box (PF01486) motifs are highlighted on the alignment with green and
purple, respectively

Boldizsár et al. BMC Plant Biology          (2021) 21:111 Page 9 of 18



of ABA content in leaves of both genotypes (Fig. 8).
However, an early (on the 1st day) transient elevation of
the ABA metabolite, phaseic acid, indicated enhanced
ABA degradation in the ‘Okanese’ cultivar, suggesting a

preceding short-term up-regulation of ABA content
early after temperature drop. This assumption is sup-
ported by the report on transient up-regulation of ABA
in cold-stressed wheat leaves [75]. The ethylene

Fig. 6 Relative expression pattern of PtDAM1 gene in the buds and leaves (circle and triangle, respectively) of the Okanese (solid) and Walker
(open) poplar cultivars. Error bars represent the SD of the technical replicates

Fig. 7 Top four contributing components of the PCA analysis are Ox-IAA, Phaseic Acid, DAM1, cis-zeatin riboside-O-glucoside (cZROG),
accounting for 26.6, 23.3, 12.3 and 9.9% of the variation, respectively. Each component is plotted in the function of the other three components
after standardization. The color saturation with the markers size indicates the sampling time of the poplar cultivars, between 0 and 60 days. Filled
triangles and circles show the results obtained for Walker and Okanese cultivars, respectively
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precursor ACC was elevated in both clones. Ruttink
et al. (2007) showed ethylene rise preceded ABA during
dormancy induction [64]. Jasmonate has been known to
be involved in several stress responses [76]. Inactivation
of the repressors of JA signaling pathway - jasmonate
ZIM-domain (JAZ) proteins, which physically interact
with ICE1 and ICE2 transcription factors, results in up-
regulation of CBFs [77]. CBF genes promote gibberellin
deactivation and thus growth inhibition [78]. In our
study in leaf tissue, JA levels were suppressed in both ge-
notypes during the entire experimental period, and more
in ‘Okanese’. However, JA level in leaves need not cor-
relate with its content in buds. Moreover, JAZ inactiva-
tion may be achieved by their interaction with DELLA
proteins [79, 80], which accumulate at low temperature
and are stabilized by gibberellin down-regulation. In
contrast to JA, SA levels were increased at the beginning
of the experiment, one week longer in ‘Okanese’. This
agrees with the positive effect of SA on plant cold toler-
ance [81]. After the 3rd week, the SA content was un-
changed in both cultivars, however, the concentration
was lower in the less cold-hardy ‘Walker’. Benzoic acid,
the precursor of SA and other phenolic compounds, was
elevated during the experiment; in ‘Okanese’ until dor-
mancy initiation, in ‘Walker’ during the whole experi-
ment. These changes demonstrate differences in
hormonal dynamics between the clones during leaf sen-
escence (Fig. 8).

The auxin, indole-3-acetic acid (IAA), had varying
levels across the 60-day treatment in both cultivars.
However, the main IAA catabolite, Ox-IAA, had a
more consistent response, being up-regulated in ‘Oka-
nese’ and down-regulated in ‘Walker’, which indicates
stronger IAA deactivation in ‘Okanese’ leaves. Dor-
mancy initiation, associated with substantial suppres-
sion of growth rate, was accompanied by IAA down-
regulation, which was not observed in the non-
dormant clone (Fig. 8). Baldwin et al. (2000) showed
that while the auxin naphthaleneacetic acid was not
required for bud scale development, its absence was
critical [82].
The whole cytokinin pathway was downregulated in

Okanese compared to Walker: the precursors iPRMP
and tZR increased only in Walker, the active form (iP)
decreased only in Okanese, and the deactivated form
iP7G was accumulating in Okanese and decreasing in
Walker. Other compounds did not show any major
changes between both trees (Fig. 9).
Cytokinin analysis clearly showed that promotion of

dormancy in ‘Okanese’ was associated with a general de-
crease of cytokinin biosynthesis and profound elevation
of their deactivation products in leaves (Figs. 7 and 9,
Supp. Figure 2). Collectively, these results provide new
evidence that the degradation of growth-promoting phy-
tohormones such as IAA and cytokinins may be an im-
portant mechanism of endodormancy induction.

Fig. 8 Heatmap of the levels of ethylene, abscisic acid, jasmonate, salicylic acid, auxin and their metabolites in the leaves of Walker and Okanese
poplar cultivars. Colour scale represents the log2 transformation of the ratio between concentration measured at the given sampling time and
concentration measured on day 0
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The relation between PtCBFs and PtDAM1 expression,
hormone level and the development of dormancy
A CBF-burst occurred on the 10th day of the short
photoperiod and low night temperature treatment in
‘Okanese’ bud tissues, while in ‘Walker’ CBF levels were
an order of magnitude lower (Fig. 3). In ‘Okanese’ which
was able to enter endodormancy (Fig. 2), CBF1 had the
highest relative expression at the initiation of dormancy.
PtDAM1 expression peaked in ‘Okanese’ exactly on the
same 10th sampling day (Fig. 6). By contrast, ‘Walker’
which did not attain endodormancy (Fig. 2) had a lower
CBF expression on the 1st day (Fig. 3), while PtDAM1
expression was also low and unchanged during the ex-
periment (Fig. 6). Growth rate started to decline in both
cultivars by the 3rd week, but at a much faster rate in
‘Okanese’ (Fig. 1). These findings support the possible
relationship between PtCBF1, PtDAM1 induction and
endodormancy development.
The dormancy-associated phytohormone, ABA, was

surprisingly down-regulated in leaves of ‘Walker’ and
even more downregulated in ‘Okanese’. However, the

concentration of the ABA degradation intermediate,
phaseic acid, increased in ‘Okanese’ while it was reduced
in ‘Walker’ and therefore, an ABA induction peak in
‘Okanese’ leaves may have been missed (Fig. 8). Recent
evidence indicates a role of DAM1 in activating NCED3
through binding to its promoter and upregulating ABA
biosynthesis in Japanese pear [83]. The same study
found high concentrations of ABA can also reduce
DAM1 in a feedback regulatory loop. DAM proteins are
similar to SVP (Short Vegetative Phase), one of the flow-
ering time regulators in Arabidopsis. In kiwifruit, Wu
et al. (2017) [84] performed a transcriptomic analysis
and found AcSVP2 may mimic ABA action [85]. They
further indicated that SVP2 was mediated by ABA to de-
crease meristem activity and prevent premature bud
break. DAMs also appear to play a regulatory role in the
ABA signaling pathway [85]. Thus, there is increasing
evidence that CBF and DAM gene actions are linked
with phytohormonal concentration and action in dor-
mancy. The reverse has also been demonstrated in that
Knight et al. (2004) earlier showed ABA to upregulate

Fig. 9 Heatmap of the levels of cytokinin metabolites in the leaves of Walker and Okanese poplar genotypes. Colour scale represents the log2
transformation of the ratio between concentration measured at the given sampling time and concentration measured on day 0. The up to down
order of the presented hormones is following the metabolic pathway from precursors (iPRMP, tZR, cZR) through active (iP, tZ, cZ) to deactivated
(CK O-glucosides and N-glucosides) forms
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CBF expression [86]. Singh et al. (2019) reported that
SVL is the ortholog of SVP in aspen (Populus tremula x
tremuloides), which mediates photoperiodic dormancy
induction via callose synthase, operating downstream of
ABA [74]. Singh et al. (2018) also showed ABA induced
the expression of the DAM/SVL gene in hybrid aspen
[87]. For an excellent recent review, see Liu and Sherif
(2019) [25].
In a recent study, analysis of a transformant hybrid

aspen (Populus tremula x tremuloides) showed that ex-
pression of SVL, a negative regulator of bud break, was
down-regulated in hybrid aspen buds after low
temperature treatment. It was noted that nonetheless,
SVL is similar to DAM genes, clustering closer to SVP in
Arabidopsis and apple than to hybrid aspen or peach
DAM genes [74, 87]. Interestingly, SVL induced the ex-
pression of callose synthase and negatively regulated the
gibberellin pathway. Moreover, CBF14 and CBF15 up-
regulated the GA2ox5 gene which deactivates gibberel-
lins in barley [88].
Dormancy is known to be induced primarily by

temperature in some fruit species, such as apple and
pear [89]. Increasing evidence highlights the role of
temperature, especially in the case of northern woody
cultivars. While the main regulator of growth cessation
and dormancy induction in woody species is short
photoperiod, it may be moderated by, and interact with
temperature [17]. The increasing confirmation of direct
regulation by cold-induced CBFs on DAM gene expres-
sion [34, 37, 56], Niu et al. (2016) provided evidence and
proposed a model in which CBF induces DAM and
DAM downregulates FT which then suppresses growth
and stimulates the development of dormancy [38]. Liu
and Sherif (2019) further outlined a model integrating
multiple phytohormonal networks regulated by DAM
[25]. Key among them was the direct suppression by
DAM of cytokinins, gibberellins and direct activation by
DAM of ABA and callose deposition. Our study provides
additional evidence that cytokinin and IAA degradation
may be an important regulatory mechanism to endodor-
mancy induction.

Conclusion
In this study, the differences between the early induction
of growth cessation and the depth of endodormancy be-
tween two tested poplar cultivars under short photo-
period and low night temperature treatment are
associated with the differential expression levels of CBF1
and PtDAM1 genes in buds as well as degradation of
growth-promoting phytohormones auxin and cytokinins
in leaves. However, since other DAM genes were not ex-
amined, we cannot rule out the possibility of other DAM
gene involvement.

Methods
Plant material and dormancy induction conditions
Two hybrid poplar clones, Walker (Populus deltoides
var. occidentalis × Populus petrowskyana) and Okanese
(P. ‘Walker’ × P. petrowskyana) (kindly supplied by Raju
Soolanayakanahally, Agriculture and Agri-Food Canada)
were used in this study - under the same growing condi-
tions as described in Kalcsits et al. (2009) [13]. Briefly,
hardwood cuttings were planted in KEKKILÄ DSM 3W
(Kekkilä Oy, Finland) propagation media (rich in peat
and perlite). Approximately 20 cm long cuttings were
placed in each pot (20 × 20 × 20 cm). Before planting, the
basal cuttings were dipped in INCIT-8 (Bioplant) rooting
stimulating powder. The medium was kept moist during
rooting. The hardwood cuttings were grown under LD
(18/6 h light/dark) at 22/20 °C and at 75% RH in PGR15
growth chambers (Conviron PGR15, Controlled Envi-
ronments Ltd., Winnipeg, MB, Canada). Then plants
were moved and grown in a greenhouse under natural
light at 20 ± 5 °C, fertilized with Peters Professional 20–
10-20 (N-P-K) fertilizer (diluted to 100 ppmN) once a
week. Only the 4 strongest, healthiest branches were left
on each plant. The rooting and growth period lasted two
months. Subsequently, when the branches reached 30–
40 cm length, the plants were transferred into dormancy
inducing conditions in growth chambers of SD condi-
tions (12/12 h, light/dark period) at 18/3 °C temperature
for 30 days. The length of the light period was then de-
creased further to 10-h day length for an additional 30
days (60 days in total). These temperature and light con-
ditions ensured dormancy separation responses between
Okanese and Walker [13].

Dormancy assessment
Dormancy development was measured using the bud-
break method adapted from Kalcsits et al. (2009) [13]. In
brief, small cuttings with two buds were collected from
two pots from each genotype. For each genotype and
every sampling time-point, 20 branches were cut, so the
budburst on 40 buds was examined at given time-point.
Cuttings were put in water in glass tubes and kept under
LD conditions (18-h daylength) at continuous 22 °C.
Samples were collected in every 10th day over the 60
days long experimental induction period. Bud-break was
defined as the point when the first leaves started to
emerge from the dormant bud, a longer time to bud-
break indicates a higher level (i.e. deeper) dormancy.
The depth of dormancy (ΔDBB) was calculated accord-
ing to Kalcsits et al. (2009) as the difference between the
days to bud break between the last and the first sam-
pling days [13].
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Growth cessation assessment
The length of the growing branches was measured from
the base to the apex every week. Seven pots with 4
branches were measured per genotype. Growth rates
(cm*week− 1) were calculated, and when the growth rates
(almost) reached zero, the plants were considered to
have stopped their growth period. For these examina-
tions, we use different plants than for gene expression
and hormone analysis. These plants were not wounded
during the whole experiment.

Gene expression studies
The youngest fully expanded leaf and mid branch bud
samples (about 3 plants per every sampling point
altogether 12 leaves and buds were collected) for gene
expression studies were collected 4–6 h after the start
of the photoperiod and frozen immediately in liquid
nitrogen and kept at − 80 °C till RNA extraction. Sam-
ples were homogenized by TissueLyser II (Qiagen)
equipment (29 Hz, 1:30 min), twice. Then 700 μl pre-
warmed elution buffer (3% CTAB, 1.4 M NaCl, 200
mM EDTA, 100 mM Tris-HCl, 2% PVPP, 2% β-
mercaptoethanol and 80 μg/ml proteinase K) were
added to the homogenates. The tubes were kept at
65 °C for 10 min. Then 700 μl phenol-chloroform-
isoamyl alcohol (25:24:1) were added. After 5-min
centrifugation at 12000 RPM the upper phase was
transferred into new tubes. Chloroform-isoamyl alco-
hol (24:1) was added, and after a new centrifugation
step (5 min at 12000 RPM), the RNA was precipitated
by the addition of 0.1 volume of Na-acetate (3 M, pH
5.2) and 2 volume of absolute ethyl alcohol. The mix-
ture was uploaded to Direct-zol™ RNA MiniPrep kit
columns (Zymo Research, Corp., Irvine, CA, USA)
and the RNA isolation process was finished according
to the manufacturer’s instructions. The residual DNA
was digested by DNase enzyme and pure RNAs were
used for cDNA synthesis. cDNAs were transcribed by
M-MLV-RT enzyme (Promega Corporation, Madison,
WI, USA) and Oligo (dT)18 Primers (Thermo Fisher
Scientific Inc., Wilmington, MA, USA). 1500 ng RNA
were transcribed into cDNA in 25 μl final volume,
then diluted to the final volume of 100 μl. 1.0 μl
cDNA solution was used for every qRT-PCR. The
gene expression levels were determined with the
CFX96 Touch™ Real-Time PCR Detection System
(Bio-Rad Hungary Ltd., Budapest, Hungary) using the
2x qPCRBIO SyGreen Blue, Mix Separate ROX (PCR
Biosystems Ltd., London, United Kingdom) in 10 μl
final volume. All the primer sequences, (listed in the
Supplemented Table 1), with exception of PtDAM1,
were collected from the work of Menon et al. (2015)
[58]. The normalized relative gene expression levels
were calculated by the ΔΔCt method [90]. Ct values

were normalized to the Ct values of the housekeeping
Pt18S rRNA gene (Supp. Table 1). Expression level,
measured at a given time point, was compared to the
expression level measured on the first day for each
genotype. The raw ΔΔCt values are included in the
Supplemented Table 2.
The relative expression values (fold change) were con-

verted to log2 values, clustered and visualized with the
Gitools software on the Supplemented Fig. 2 [91].

Identification of PtDAM1 gene
For sequence analysis, the Populus trichocarpa reference
genome assembly was retrieved from the NCBI Assem-
bly server (https://www.ncbi.nlm.nih.gov/assembly) at
proteome level (GCF_000002775.4). Pfam and Hidden
Markov Model (HMM) based protein domain search
was performed using hmmscan packages of HMMER 3.0
software [92]. The protein collection from the poplar
proteome was aligned using a MUSCLE alignment
method (Fig. 5) and inferred using Maximum-likelihood
phylogenetic tree by MEGA6 software package [93].
Based on the Bayesian Information Criterion (BIC) the
best-fit, Jones-Taylor-Thornton (JTT +G) substitution
pattern was chosen for the phylogenetic reconstruction.
One thousand bootstrap pseudo-replicates were used to
test the reliability of the inferred tree.

Hormone analysis
The youngest fully expanded leaf samples (ca 50mg FW)
were purified and analyzed according to Dobrev and
Kamı́nek (2002), Dobrev and Vankova (2012) and Svači-
nova et al. [94–96]. Frozen samples were homogenized
and extracted with cold (− 20 °C) methanol/water/formic
acid (15/4/1, v/v/v). The following isotope-labelled in-
ternal standards (10 pmol/sample) were added: 13C6-IAA
(Cambridge Isotope Laboratories); 2H4-SA (Sigma-Al-
drich); 2H3-PA,

2H3-DPA (NRC-PTI); 2H6-ABA,
2H5-JA,

2H5-transZ,
2H5-transZR,

2H5-transZ7G,
2H5-transZ9G,

2H5-transZOG, 2H5-transZROG, 2H5-transZRMP, 2H3-
DZ, 2H3-DZR,

2H3-DZ9G,
2H6-iP,

2H6-iPR,
2H6-iP7G,

2H6-iP9G,
2H6-iPRMP (Olchemim). Phytohormones were

separated with a reverse phase-cation exchange SPE col-
umn (Oasis-MCX, Waters) into the acid fraction by elu-
tion with methanol [auxins, abscisic acid (ABA), salicylic
acid (SA), jasmonic acid (JA)], and into the basic fraction
by elution with 0.35M NH4OH in 60% methanol [cytoki-
nins (CKs)]. Fractions were analyzed using HPLC (Ultim-
ate 3000, Dionex) coupled to a 3200 Q TRAP hybrid
triple quadrupole/linear ion trap mass spectrometer (Ap-
plied Biosystems). Hormone quantification was performed
by the isotope dilution method with multilevel calibration
curves (r2 > 0.99). Data processing was performed with the
Analyst 1.5 software package (Applied Biosystems). Raw
data are included in the Supplemented Table 3.
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Statistical analysis
One-way ANOVA and Scheffe post hoc test were per-
formed using SPSS 22.0. Because of the unequal vari-
ances, Levene’s test, the Brown-Forsythe follow up
robust tests of equality of means were used. The princi-
pal component analysis (PCA) results were obtained by
using the Scikit-learn Python module (version 0.23) [97]
and Python 3.8. Following mean and variance
standardization of the dataset, linear dimensionality re-
duction was performed by applying singular value de-
composition with six extracted components.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12870-021-02828-7.

Additional file 1: Supplemented Figure 1 Relative expression levels in
buds (panel A-E) and in leaves (panel F-K) of the PtCBF1, PtCBF2, PtCBF3,
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pression level was undetectable.
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