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Abstract

plants, is largely unknown.

of QQ and LYQQ compared to MZ.

Background: Shoot orientation is important for plant architecture formation, and zigzag-shaped shoots are a
special trait found in many plants. Zigzag-shaped shoots have been selected and thoroughly studied in Arabidopsis;
however, the regulatory mechanism underlying zigzag-shaped shoot development in other plants, especially woody

Results: In this study, tea plants with zigzag-shaped shoots, namely, Qiqu (QQ) and Lianyuangiqu (LYQQ), were
investigated and compared with the erect-shoot tea plant Meizhan (MZ) in an attempt to reveal the regulation of
zigzag-shaped shoot formation. Tissue section observation showed that the cell arrangement and shape of zigzag-
shaped stems were aberrant compared with those of normal shoots. Moreover, a total of 2175 differentially expressed
genes (DEGs) were identified from the zigzag-shaped shoots of the tea plants QQ and LYQQ compared to the shoots
of MZ using transcriptome sequencing, and the DEGs involved in the “Plant-pathogen interaction”, “Phenylpropanoid
biosynthesis”, “Flavonoid biosynthesis” and “Linoleic acid metabolism” pathways were significantly enriched. Additionally,
the DEGs associated with cell expansion, vesicular trafficking, phytohormones, and transcription factors were identified
and analysed. Metabolomic analysis showed that 13 metabolites overlapped and were significantly changed in the shoots

Conclusions: Our results suggest that zigzag-shaped shoot formation might be associated with the gravitropism
response and polar auxin transport in tea plants. This study provides a valuable foundation for further understanding the
regulation of plant architecture formation and for the cultivation and application of horticultural plants in the future.
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Background

In higher plants, the morphology of the plant mainly
depends on the development and orientation of the
shoots; therefore, plant shoots, which are usually nega-
tively geotropic, play a crucial role in morphological
architecture formation in many plants, such as landscape
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plants, fruit trees and other plants of economic interest.
The growth and development of shoots are regulated by
diverse factors, including light, temperature and phytohor-
mones [1, 2], but gravitropism is important for the upward
growth of shoots and is a determinant of the form and
posture of plants [3-5]. However, the molecular mechan-
ism by which shoot architecture formation in woody plants
is mediated by gravitropism remains largely unknown.

In plants, gravity is sensed by specialized cells called
statocytes, and then, a signal is transported to the
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elongation zone, leading to differential cell growth in the
elongation zone to reorient organ growth in response to
the gravity signal [6]. It is thought that sedimentable
amyloplasts play a critical role in gravity perception and
that endodermal cells containing sedimented amylo-
plasts function as statocytes in plant shoots [3, 7]. In
Arabidopsis, shoot responsiveness to gravitropism is reg-
ulated by a group of SHOOT GRAVITROPISM (SGR)
genes, of which at least nine SGR genes have been iso-
lated and functionally studied [3]. It has been established
that mutant sgr genes could reduce the plant gravitrop-
ism response by regulating endodermal cell develop-
ment, starch accumulation and amyloplast movement
[7-11]. Kato, et al. [8] and Morita, et al. [10] found that
both SGR2 and zigzag (ZIG)/SGR4 were involved in the
formation and function of the vacuole, suggesting that
vacuolar integrity participates in shoot gravitropism.
Interestingly, ZIG/SGR4 encodes Qb-SNARE VTI11,
which is involved in membrane trafficking between the
trans-Golgi network and the vacuole, and the stems of
zig/sgr4 mutants elongate in a zigzag fashion [8, 10, 11].

Plant shoot architecture formation is regulated by
plant hormones, especially auxin gradients, which are
integrated into almost all aspects of plant growth and
development [12, 13]. Shoot curvature is controlled by
auxin, and increased auxin levels promote cell elong-
ation at the bottoms of reoriented shoots, resulting in
upward bending. Therefore, the genes involved in auxin
transport and response, especially the polarly localized
PIN-FORMED (PIN) auxin efflux carriers, play crucial
roles in plant shoot formation [13, 14]. PIN-mediated
polar auxin transport has been well recognized as being
involved in the plant gravity response [3, 7, 15]. For
example, after gravistimulation, PIN3 and PIN7 are relo-
calized towards the gravity vector and trigger changes in
auxin flux [16]. Recently, several individual genes, such
as LAZYI1, LPA1, and WEEP, have been characterized
and recognized as new factors involved in plant architec-
ture regulation; these genes also depend on auxin and
gravity signalling [17-23], indicating that gravity re-
sponse and polar auxin transport play primary roles in
plant architecture development. However, previous
reports have mainly focused on model plants, and the
mechanism of architecture development in woody plants
remains largely unknown.

The tea plant (Camellia sinensis (L.) O. Kuntze), which
is native to southwestern China, is a perennial evergreen
woody plant in the family Theaceae [24, 25]. Its tender
leaves and buds are processed as a beverage for drinking
because tea leaves contain secondary metabolites that
are healthy for humans, and tea plants are currently cul-
tivated in over 60 countries around the world [26, 27].
Numerous studies have examined secondary metabolism
and stress-response mechanisms in tea plants; conversely,
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tea plant growth and development processes, such as
architecture formation, which is one of the key regulators
of tea yield [28], tea processing and even ornamental
value, remain to be revealed. Two tea plant cultivars,
namely, C. sinensis var. Qiqu (QQ) and C. sinensis var.
Lianyuanqiqu (LYQQ), both with zigzag-shaped shoots,
were selected and planted more than 80 years ago and
described in a previous study [28], but the molecular
mechanism of zigzag-shaped shoot formation remains
unknown. In this study, the stems of tea plants with
zigzag-shaped (QQ and LYQQ) and erect (C. sinensis var.
Meizhan, MZ) shoots were collected and investigated for
structural differences, transcription and metabolic regula-
tion using section observation, transcriptome sequencing
and metabolite detection, respectively, for the first time. In
total, 46.06 million reads were generated from nine sam-
ples, and the differentially expressed genes (DEGs) were
identified and compared. A total of 2175 DEGs, including
998 upregulated and 1177 downregulated genes, were
identified from the zigzag-shaped shoots of QQ and
LYQQ compared to the erect shoots of MZ. The candi-
date DEGs, including genes associated with vesicular
trafficking, cell expansion, transcription factors, and phy-
tohormones and diverse genes involved in the regulation
of plant growth and development, were seemingly related
to zigzag-shaped shoot formation in tea plant. The results
will contribute greatly to an improved understanding of
the molecular regulatory mechanism of zigzag-shaped
shoot formation in woody plants.

Results

Phenotypic characterization and stem ultrastructure
analysis of tea plants with erect and zigzag-shaped shoots
Under natural conditions, the trees of MZ, QQ and
LYQQ can grow upward uniformly (Additional file 1:
Fig. S1). The leaves of MZ and QQ are flat, while those
of LYQQ are folded inwards. In the MZ plant, the stems
grew straight up, exhibiting normal shoot morphology;
however, the shoots of both QQ and LYQQ tended to
bend at each node and elongate in a zigzag fashion
(Fig. la-c). Additionally, plants with zigzag-shaped
shoots had shorter stems and fewer leaves than erect
plants (Additional file 1: Fig. S2a), and the internode dis-
tance (between two nodes) in plants with zigzag-shaped
shoots was significantly shorter than that in erect plants
(Additional file 1: Fig. S2b). To precisely investigate the
differences in zigzag-shaped stems at the ultrastructure
level, we longitudinally dissected the stems of the QQ,
LYQQ and MZ tea plants. Observation of the stem lon-
gitudinal sections showed that the tissues were basically
normal, but the cell arrangement and shape differed be-
tween zigzag-shaped and erect stems (Fig. 1d-f). In QQ
and LYQQ, the cortex cells tended to be disordered and
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Fig. 1 Morphology and histological analysis of the shoots of MZ, QQ, and LYQQ. a to ¢, Tender stem morphology of MZ (a), QQ (b), and LYQQ
(c). Bars=1cm. d to i, Longitudinal sections of tender stems of MZ (d and g), QQ (e and h), and LYQQ (f and i). Bars = 500 um. ep, epidermis; co,
cortex; ca, cambium; xy, Xxylem; pi, pith

arranged loosely, and the cells in both the cortex and
pith exhibited aberrant shapes (Fig. 1g-i).

RNA sequencing, reference genome alignment and new
gene annotation

To investigate the regulation of zigzag-shaped stem for-
mation in tea plants at the transcriptional level, we uti-
lized RNA-Seq technology to analyse DEGs in the stems
of MZ, QQ and LYQQ plants. In total, 46.06 million

clean reads were generated from nine samples, and the
sequence data were deposited in the NCBI Sequence
Short Read Archive (SRA accession: PRJNA559220).
After removing adaptor sequences, duplicate sequences,
ambiguous reads and low-quality reads, a total of 16.37,
13.28, and 15.48 million high-quality clean reads
were generated for MZ, QQ and LYQQ, respectively
(Additional file 2: Table S1). The average amount of
clean reads per sample was 5.2 million. The Q20
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values ranged from 97.39 to 98.55%, and the Q30 values
ranged from 9226 to 95.07%. All the transcripts were
aligned to the reference genome, and the average propor-
tion of samples mapped to the genome was 76.38%. The
new genes were then aligned to the Nr and KEGG data-
bases for protein functional annotation. In total, 34,248,
34,374 and 33,598 genes were identified from MZ, QQ
and LYQQ, respectively, and 28,021 (82.58%), 27,441
(80.87%) and 27,982 (82.46%) genes were annotated
as known genes in MZ, QQ and LYQQ, respectively
(Additional file 2: Table S2). These results indicated
that the obtained high-quality transcriptomic data
could be used for further analysis.

Validation of differential expression data
To validate the reliability of the RNA-Seq results, 16
DEGs were randomly selected from the RNA-Seq data

Page 4 of 14

exhibited similar expression patterns to the RNA-Seq
data among the cultivars (Fig. 2), suggesting that our
transcriptomic data are reliable and valid.

Identification of DEGs and pathways in cultivar
comparisons

The DEGs in each cultivar pair were then determined
according to the parameters p value<0.01 and |log2FC| =
1. In total, 6232 DEGs, including 2969 upregulated and
3263 downregulated DEGs, were detected in MZ-vs-QQ
(Fig. 3a). GO enrichment analyses showed that most of
the DEGs were enriched in the terms ‘catalytic activity,
‘metabolic process’, ‘cellular process’, ‘binding’, ‘single-or-
ganism process’, and ‘membrane’ (Additional file 1: Fig. S3).
The DEGs were also subjected to KEGG pathway en-
richment analyses, which showed that the pathways
‘Biosynthesis of secondary metabolites’, ‘Plant-pathogen
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diarylheptanoid and gingerol biosynthesis’, ‘Monoterpenoid
biosynthesis’, ‘Biosynthesis of unsaturated fatty acids,
‘alpha-Linolenic acid metabolism’, and ‘Flavonoid biosyn-
thesis” were significantly enriched. Additionally, we found
that the zeatin biosynthesis pathway was enriched (Fig. 3b).
In the MZ-vs-LYQQ comparison, a relatively high number
of DEGs (7212), including 4002 upregulated and 3210
downregulated DEGs, were identified (Fig. 3a). All the
DEGs could be mapped to 132 KEGG pathways, and
the pathways “Phenylpropanoid biosynthesis’, ‘Cutin,
suberine and wax biosynthesis’, ‘Plant-pathogen inter-
action’, ‘Stilbenoid, diarylheptanoid and gingerol bio-
synthesis’, ‘Flavonoid biosynthesis’, ‘Biosynthesis of
secondary metabolites’, ‘Monoterpenoid biosynthesis’,
‘Glutathione metabolism’, and ‘Arginine and proline me-
tabolism’ were significantly enriched (Fig. 3b). A total of
6930 DEGs, including 3932 upregulated and 2998 down-
regulated DEGs, were detected in the QQ-vs-LYQQ com-
parison (Fig. 3a) and mapped to 132 pathways. The DEGs
in the pathways ‘Plant-pathogen interaction’, ‘Cutin, sub-
erine and wax biosynthesis’, ‘Biosynthesis of secondary
metabolites’, ‘Phenylpropanoid biosynthesis’, ‘Stilbenoid,
diarylheptanoid and gingerol biosynthesis’, ‘Brassinoster-
oid biosynthesis’ and ‘Monoterpenoid biosynthesis’ were
significantly enriched (Fig. 3b).

Identification of DEGs and pathways involved in zigzag-
shaped stem formation in tea plants

We generated a Venn diagram to compare the different cul-
tivars and showed that 1082 DEGs overlapped among the
MZ-vs-LYQQ, MZ-vs-QQ), and QQ-vs-LYQQ comparisons

(Fig. 4a). These DEGs were significantly enriched in the
pathways of “Plant-pathogen interaction”, “Stilbenoid, diaryl-
heptanoid and gingerol biosynthesis”, “Phenylalanine metab-
olism”, and “Tryptophan metabolism” (Additional file 1: Fig.
S4a). In addition, a total of 1255 DEGs, including 527 down-
regulated and 728 upregulated DEGs, were specifically
detected in the MZ-vs-LYQQ comparison (Fig. 4a). Among
the top 20 pathways, “Cysteine and methionine metabol-
ism”, “Cutin, suberine and wax biosynthesis”, “Taurine and
hypotaurine metabolism”, and “Other types of O-glycan
biosynthesis” were markedly enriched (Additional file 1:
Fig. S4b). Unexpectedly, the number of DEGs in the
MZ-vs-QQ set (949, including 494 downregulated and
455 upregulated) was lower than that in MZ-vs-LYQQ
(Fig. 4a), and the pathways “Glycosphingolipid biosyn-
thesis — globo series” and “Limonene and pinene deg-
radation” were significantly enriched (Additional file 1:
Fig. S4c). Additionally, a total of 1122 DEGs, including
593 upregulated and 529 downregulated DEGs, were
specifically expressed in QQ-vs-LYQQ (Fig. 4a), but
only the “Plant-pathogen interaction” pathway was signifi-
cantly enriched (Additional file 1: Fig. S4d). Moreover, a
total of 2175 DEGs, including 1177 downregulated and
998 upregulated DEGs, overlapped between MZ-vs-
LYQQ and MZ-vs-QQ specifically, indicating that these
DEGs might be associated with zigzag-shaped stem for-
mation in both QQ and LYQQ. KEGG analysis showed
that these DEGs were mainly involved in the “Plant-patho-
gen interaction”, “Phenylpropanoid biosynthesis”, “Flavon-
oid biosynthesis” and “Linoleic acid metabolism” pathways
(Fig. 4b). GO enrichment analysis showed that these DEGs
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were significantly enriched in 59 GO terms, of which the
most highly enriched components were categorized as
catalytic activity (465), metabolic process (381), binding
(323), cellular process (322), single-organism process
(285) and membrane (274) (Fig. 4c).

Identification of key DEGs regulating zigzag-shaped stem
formation

Based on the changes in expression in the comparisons
MZ-vs-QQ and MZ-vs-LYQQ, 76 DEGs potentially in-
volved in zigzag-shaped stem formation were identified
(Fig. 5). Among these DEGs, 19 were associated with cell
wall synthesis and cell expansion, of which seven, namely,
cellulose synthase (TEA032164.1, TEA030545.1), expansin
(TEA027164.1), leucine-rich repeat extensin-like protein 1
(XLOC_003301), chitinase-like protein (TEA022978.1)
and pectinesterase (XLOC_003301, and TEA004581.1),
were upregulated, whereas 12, especially xyloglucan endo-
transglucosylase/hydrolase (XLOC_007313, TEA019643.1,

TEA031643.1), pectinesterase (TEA026842.1), reduced
wall acetylation 2 (XLOC_021264), expansin (TEA
012391.1), UDP-glycosyltransferase = 74B5  (TEA
020219.1) and isoamylase 3 (XLOC_040461), were
downregulated in both QQ and LYQQ (Fig. 5a and
Additional file 3: Table S3). Eighteen transcription fac-
tor genes, including the 13 downregulated genes floral
homeotic protein APETALA 1 (TEA017728.1), TIFY
(TEA012041.1), NAC transcription factor 010
(TEA026168.1), transcription factor ~APETALA2
(XLOC_053049), WUSCHEL-related homeobox 2
(TEA032867.1), ethylene-responsive transcription fac-
tor TINY (TEA027175.1), transcription factor MYB1R1
(TEA026206.1), squamosa promoter-binding-like protein
(TEA003577.1), transcription factor HEC1 (TEA030941.1),
transcription factor bHLH18 (TEA000681.1), transcription
factor SPATULA (TEA006216.1), growth-regulating factor 1
(TEA022970.1), and Scarecrow-like protein (TEA030046.1)
and the five upregulated genes transcription factor bHLH041
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Fig. 5 Seventy-six key DEGs identified as involved in zigzag-shaped stem formation in tea plants. DEGs associated with cell wall synthesis and cell
expansion (a), transmembrane factors (b), phytohormones (c), vesicular trafficking (d), and other plant growth and development genes (e) were
identified and analysed. The values of log2-fold changes in MZ-vs-QQ and MZ-vs-LYQQ were visualized using heat maps. Detailed information is
also listed in the electronic supplementary material (Additional file 3: Table S3)
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(TEA031877.1), transcription factor IBH1-like (TEA
009726.1), WRKY transcription factor 28 (TEA023233.1),
transcription factor DIVARICATA (TEA031729.1) and tran-
scription factor JUNGBRUNNEN 1 (TEA022287.1), were
identified (Fig. 5b and Additional file 3: Table S3). In
addition, 10 DEGs involved in auxin, jasmonic acid, and
salicylic acid metabolism and transport were also identified
in the list of key DEGs; interestingly, except for jasmonic
acid-amido synthetase (TEA020186.1), the remaining genes,
especially PIN3 (TEA019069.1), were downregulated in both
QQ and LYQQ (Fig. 5¢ and Additional file 3: Table S3). Fur-
thermore, seven DEGs involved in protein processing and

transportation on the endoplasmic reticulum and vesicles,
namely, vesicle-associated membrane protein 714 (XLOC_
031693), SEC1 family transport protein, signal peptidase
complex catalytic subunit SEC11A (TEA001395.1), SEC13B
(XLOC_004426),  SECA2 (XLOC_057225),  SEC6
(TEA030236.1), SEC11A (TEA001395.1), and SEC22
(XLOC_037235); the three vacuolar protein sorting-related
proteins VPS18 (TEA007337.1), VPS41 (TEA031089.1) and
VSR6 (TEA021222.1); and the vacuole membrane protein
KMSI1 (XLOC_036914) were identified from the MZ-vs-QQ
and MZ-vs-LYQQ comparisons (Fig. 5d and Additional file
3: Table S3). Among these DEGs, VPS18, VPS41, SEC11A
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and SEC1 were significantly repressed in both QQ
and LYQQ. Genes that regulate cell division (cell div-
ision cycle 20.1 and cell division control protein 6 B)
and plant development, such as shaggy-related protein
kinase, DEFECTIVE IN MERISTEM SILENCING 3
(XLOC_028596), RETICULATA-RELATED 3 (XLOC_
032980), TOPLESS-like (XLOC_028345), TOPLESS-
related protein (TEA008751.1), LAZY protein
(TEA031847.1) and LAZY 1-like (TEA001744.1), were
also identified, and all of these genes were downregu-
lated in both QQ and LYQQ (Fig. 5e and Additional
file 3: Table S3). Moreover, the DEGs VILLIN2 pro-
tein (VLN2) and actin-depolymerizing factor 2 (ADF2)
were suppressed in both QQ and LYQQ (Fig. 5e and
Additional file 3: Table S3).

Metabolic analysis and key metabolite identification

To investigate the metabolic pathways involved in
zigzag-shaped stem formation, the metabolites in the
stems of QQ, LYQQ and MZ were detected using
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UPLC-ESI-TOEF-MS/MS. In total, 752 metabolites clustered
into 97 KEGG pathways were identified from QQ, LYQQ
and MZ, and among these metabolites, 75, 84 and 86
metabolites showed significantly different levels in the MZ-
vs-QQ, MZ-vs-LYQQ and QQ-vs-LYQQ comparisons, re-
spectively (Additional file 1: Fig. S5). The Venn diagram
analysis showed that 13 metabolites overlapped between
MZ-vs-QQ and MZ-vs-LYQQ, which were our metabolites
of interest (Fig. 6a), and the results indicated that these dif-
ferential metabolites might be associated with zigzag-
shaped stem formation in tea plants. Based on their log2
fold change values, these differential metabolites were visu-
alized as a heat map in Fig. 6b. Quercetin O-acetylhexoside,
methyl gallate, D-pantothenic acid and L-glutamic acid
were upregulated in both QQ and LYQQ, whereas the
remaining metabolites, including fustin, 10-formyl-THF,
skimmin, LysoPC 20:4, LysoPC 18:1 (2n isomer), LysoPC
18:3 (2n isomer), 2-methylsuccinic acid, 2-isopropylmalate,
and caffeine, were significantly downregulated in tea plants
with zigzag-shaped shoots.
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Fig. 6 Identification of differential metabolites involved in zigzag-shaped stem regulation in tea plants. a Venn diagram analysis of differential
metabolites in the MZ-vs-QQ, MZ-vs-LYQQ, and QQ-vs-LYQQ comparisons. b Thirteen differential metabolites identified as overlapping between
MZ-vs-QQ and MZ-vs-LYQQ
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Discussion

Plants are sessile and cannot move freely from their
habitat, even if they encounter adverse environments.
Generally, plant shoots grow upward, whereas roots
grow downward; therefore, shoot architecture is a deter-
minant of plant morphology. In tea plants, the shoots
play a substantial role in determining the horticultural
characteristics and tea yield, and almost all tea plant cul-
tivars exhibit straight stems. The two tea plants QQ and
LYQQ, with zigzag-shaped shoots, were identified and
planted previously; however, with advances in research,
there is increasing interest in the mechanism by which
QQ and LYQQ develop their zigzag-shaped shoots.
Zigzag-shaped shoots, which occasionally appear in gar-
den plants, are an unusual trait in woody plants, but
there is relatively little information regarding this fea-
ture. Similarly, in Arabidopsis, zig mutant stems elongate
in a zigzag fashion, curve upward at the internodes and,
interestingly, exhibit abnormal gravitropism in hypo-
cotyls and shoots [8—11].

To understand the cause of this anomalous zigzag-
shaped morphology, we observed stem sections using
optical microscopy. There were no aberrations in the
main tissue structures (Fig. 1). However, differences in
cell arrangement and shape were observed between the
zigzag-shaped stems of QQ and LYQQ and the MZ
stems, including the arrangement of cortex cells, which
were disordered and loosely arranged, and the cells in
the cortex and pith exhibited aberrant shapes (Fig. 1).
Consistent with our findings, similar cell shapes and ar-
rangements were found in the zig-I mutant stems of
Arabidopsis [8); however, different cell shapes and ar-
rangements were observed in the epidermal layer and
pith of Arabidopsis than in the cortex and pith of tea
plants; this may represent a difference between woody
plants and Arabidopsis. Thus, zigzag-shaped stems
might be caused by the anomalous shape, arrangement
and expansion of cells in tea plants.

To investigate the molecular mechanism of zigzag-
shaped stem formation in tea plants, shoots were collected,
and transcriptome sequence analysis was performed. In
total, 46.06 million clean reads were generated, and 6232,
7212 and 6930 DEGs were identified from MZ-vs-QQ,
MZ-vs-LYQQ and QQ-vs-LYQQ, respectively (Additional
file 2: Table S1 and Fig. 3b). These DEGs were mainly
enriched in several pathways, such as ‘Biosynthesis of
secondary metabolites’, ‘Plant-pathogen interaction’, and
‘Stilbenoid, diarylheptanoid and gingerol biosynthesis’, indi-
cating that these pathways might be associated with differ-
ences among cultivars (Fig. 3b). To gain insights into the
DEGs that specifically regulate zigzag-shaped stem develop-
ment, we made a Venn diagram of cultivar comparisons
and identified 2175 overlapping DEGs between MZ-vs-QQ
and MZ-vs-LYQQ, which were mainly enriched in the
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“Plant-pathogen interaction”, “Phenylpropanoid bio-
synthesis”, “Flavonoid biosynthesis” and “Linoleic acid
metabolism” pathways (Fig. 4). Among these path-
ways, the “Phenylpropanoid biosynthesis” pathway
serves as a source of metabolites in plants, is involved
in the biosynthesis of lignin, flavonoids, coumarins
and lignans, and plays a fundamental role in plant
structural support [29, 30]. It has been found that, in
Arabidopsis, mutation of the genes encoding cinnamate 4-
hydroxylase (C4H) and hydroxycinnamoyl-coenzyme A
shikimate:quinate hydroxycinnamoyl-transferase (HCT)
involved in this pathway resulted in changes in the struc-
tural, developmental, and reproductive phenotypes of Ara-
bidopsis plants [31-33]. Interestingly, the flavonols
quercetin and kaempferol have been shown to inhibit
polar auxin transport and to enhance consequent localized
auxin accumulation [34—36]. Recently, Kuhn, et al. [34]
suggested that flavonols could modulate auxin transport
by modifying the antagonistic kinase/phosphatase equilib-
rium. Therefore, flavonols could affect auxin transport in
zigzag-shaped shoots. On the other hand, Ramos, et al.
[37] found that the concentration of quercetin in the
upper half of longitudinally dissected 45-degree-inclined
radiata pine seedlings was higher than that in the lower
half and than that in non-inclined seedlings when seed-
lings were inclined for 1 month, indicating that quercetin
can accumulate in inclined shoots such as the internodes
of zigzag-shaped shoots. Consistently, we observed that a
C4H gene (TEA016772.1) was significantly differentially
expressed between MZ-vs-QQ and MZ-vs-LYQQ; more-
over, we found that skimmin (pmf0295) expression was
reduced in the MZ-vs-QQ (log2 FC: — 0.995) and MZ-vs-
LYQQ (log2 FC: -3.52) comparisons. Therefore, the
zigzag-shaped stems of tea plants might be partially re-
lated to flavonoids, especially flavonol-mediated auxin
transport.

It is well recognized that a zigzag-shaped inflorescence
stem results from the mutation of zig (zigzag)/sgr4, which
encodes VPS10 interacting 11 (VTI11), a Qb-SNARE in-
volved in vesicle transport between the trans-Golgi net-
work and vacuole that causes abnormal gravitropism in
Arabidopsis when mutated [8, 10, 11, 38, 39]. SNAREs
play an important role in membrane fusion at the vacuole
and are involved in the regulation of amyloplast sedimen-
tation in response to gravity and in cell shape develop-
ment [11, 39]. ZIG can form a complex with other types
of SNARE proteins, including SYP22/SGR3/VAM3, SYP5,
and VAMP727, most likely at the prevacuolar compart-
ment and vacuole [11, 40-42]. Although ZIG and the
other SGR genes were not significantly expressed, 11
genes mainly involved in vesicular trafficking were identi-
fied (Fig. 5d and Additional file 3: Table S3). Among these
genes, both vacuolar protein sorting-associated protein
genes (VPS18 and VPS41) were repressed in QQ and
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LYQQ), whereas the expression levels of vesicle-associated
membrane protein 714 (VAMP714) and vacuolar-sorting
receptor 6 (VSR6) were increased in QQ and LYQQ. It
has been established that the phenotype of zig-1 could
be partially suppressed by mutations in the zig suppres-
sorl (ZIP1), ZIP2, ZIP3 and ZIP4 genes in Arabidopsis
[38, 43, 44]. Niihama, et al. [44] reported that ZIP2,
which encodes an AtVPS41/AtVAM2 protein, is in-
volved in protein sorting to the vacuole in Arabidopsis,
and the zip2 mutation is a missense mutation. These
results indicate that zigzag-shaped stem formation is
mainly related to abnormal gravitropism responses me-
diated by membrane trafficking. Additionally, we also
found that six SEC family genes were significantly
expressed in the MZ-vs-QQ and MZ-vs-LYQQ compari-
sons (Fig. 5d and Additional file 3: Table S3); these genes
are crucial for SNARE complex assembly and preprotein
translocation [45, 46]. Interestingly, we found that both
LAZY genes (TEA031847.1, TEA001744.1) were markedly
repressed in QQ and LYQQ (Fig. 5d and Additional file 3:
Table S3). It is well known that loss-of-function mutation
of LAZY1 enhances polar indole-3-acetic acid (IAA) trans-
port and reduces shoot gravitropism and therefore regu-
lates the growth angle of lateral branches in rice,
Arabidopsis and maize [17-19, 21, 47]; however, the func-
tion of LAZY in woody plants remains to be elucidated.
Therefore, we propose that the development of zigzag-
shaped stems in tea plants might be associated with a
change in the shoot gravitropism response, especially one
affecting the disruption of membrane trafficking to vacu-
oles, although the ZIG/SGR4 gene did not exhibit a signifi-
cant change in expression.

The plant hormone auxin is important for organ
growth and cell morphogenesis. In this study, seven
DEGs involved in auxin metabolism, transport and sig-
nalling were identified by comparison of the MZ-vs-QQ
and MZ-vs-LYQQ sets, and all of the genes were down-
regulated in QQ and LYQQ (Fig. 5¢ and Additional file
3: Table S3). Numerous studies have suggested that
polar auxin transport, which is primarily determined by
polar localization of PIN auxin efflux carriers, controls
plant tropism in roots and shoots and plays essential
roles in plant growth [13, 48, 49]. Gerttula, et al. [50]
proposed that PIN expression in different cambium cells
results in auxin transport towards the cambium in the
top and bottom of the stem to trigger wood formation
in response to gravity in woody stems. Consistent with
this finding, we found that the expression of PIN DEGs
was repressed in QQ and LYQQ (Fig. 5¢ and Additional
file 3: Table S3); these changes in expression in QQ and
LYQQ might alter the polar transport of auxin and then
affect the auxin gradients between stem sides; therefore,
the shoots exhibit bending. Wu, et al. [51] reported that
rice VLN2, a type of actin-binding protein involved in
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microfilament regulation, affects the recycling of PIN2
and polar auxin transport, and vin2-defective mutant
plants exhibited a hypersensitive gravitropic response
and twisted roots and shoots at the seedling stage. In
this study, we also found that VLN2 (TEA030753.1)
was markedly repressed in QQ and LYQQ (Fig. 5e
and Additional file 3: Table S3), suggesting that
zigzag-shaped stems in tea plants might be related to
polar auxin transport and the gravitropism response.

Moreover, cell expansion might exert a compressive
force, leading to bending of the stem. Our results
showed that genes involved in cell expansion and cell
wall synthesis, such as expansin, REDUCED WALL
ACETYLATION, and xyloglucan endotransglucosylase/
hydrolase protein, were differentially expressed (Fig. 5a
and Additional file 3: Table S3), resulting in alteration of
cell expansion and elongation. In addition, wall-associ-
ated kinase (WAK) genes were also differentially
expressed in MZ-vs-QQ and MZ-vs-LYQQ), suggesting
that WAK-mediated cell expansion and signalling path-
ways might be required for zigzag-shaped stem forma-
tion in tea plants. It is possible that cell expansion in the
stems can produce a force that can lead to zigzag-
shaped shoots. Importantly, cell expansion and differen-
tiation predominantly rely on auxin [12, 52, 53]; thus,
the mechanism of auxin regulation in zigzag-shaped
shoot development needs to be studied precisely in the
different tissue sides of zigzag-shaped stems.

In this study, 20 transcription factors (TFs) belonging
to different TF families, including two ARFs, were differ-
entially expressed in MZ-vs-QQ and MZ-vs-LYQQ, and
most of these TFs were significantly repressed in QQ
and LYQQ (Fig. 5b and Additional file 3: Table S3).
Almost all of these genes had homologues associated
with plant growth and developmental regulation in other
plants. For instance, DIVARICATA (TEA031729.1), a
MYB-type TF, could interact with WOX to control
wood formation in poplar [54]; overexpression of IBHI
causes erect leaves in rice and dwarfism in Arabidopsis
[55]; and HEC1 coordinates with WUS to promote stem
cell proliferation in the shoot meristem [56, 57]. In Paul-
ownia kawakamii, antisense suppression of PkMADSI, a
regulator of shoot morphogenesis, resulted in zigzag-
shaped shoots [58]. Interestingly, in some transformants
of antisense PkMADS]I, the main shoot apex appeared to
be used up early during leaf formation, and then, the ax-
illary bud of the youngest leaf took over the function of
the apical meristem, resulting in the formation of one
leaf per node and the zigzag-shaped growth habit for the
stem, indicating that central and lateral meristem fates
regulated by a variety of TFs may relate to zigzag-shaped
shoot formation. Recently, several genes that regulate
architectural phenotypes in woody plants, such as
ARBORKNOX 2 (ARK2) in Populus [50] and GA
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INSENSITIVE DWAREF 1C (GIDIC), Tiller Angle Control
1 (TACI) and WEEP in peach [23, 59, 60], have been iso-
lated; however, most of these genes are related to the plant
gravitropic response, and none of these genes encode TFs.
Additionally, among the nine SGR genes, SGRI and SGR7
encode scarecrow (SCR) and GRAS family TFs, respect-
ively. We found that the SCR gene (TEA030046.1) was
markedly repressed in QQ and LYQQ (Fig. 5b and
Additional file 3: Table S3). Plant growth and develop-
ment are directed by a TF-mediated complex network in-
tegrated with plant hormones, enzymes and other cellular
components; therefore, as-yet-unknown TFs may be in-
volved in the regulation of plant architectural phenotypes.

Conclusion

In the current study, we investigated the mechanism of
zigzag-shaped shoot formation in tea plants using com-
parative transcriptomics and metabolomic analysis. The
results showed that zigzag-shaped stem development in
tea plants might be regulated by a complex network in-
volving vesicular trafficking, phytohormones, cell expan-
sion, secondary metabolism, and diverse transcription
factors. Importantly, zigzag-shaped shoot formation
might be closely related to alterations in the gravitropic
response and polar auxin transport in tea plants. Our
findings provide insights into zigzag-shaped shoot for-
mation in tea plants and serve as a valuable foundation
for further investigations of architecture formation in
woody plants.

Methods

Plant materials

The tender stems (between the first and third leaves
from the apical bud) of tea plants with erect (C. sinensis
var. Meizhan, MZ) and zigzag-shaped (C. sinensis var.
Qiqu, QQ; C. sinensis var. Lianyuanqiqu, LYQQ) shoots
were collected from the germplasm resource garden of
Wuyi University, Wuyishan City, Fujian Province, China,
in October 2018. A portion of each sample was immedi-
ately frozen in liquid nitrogen and then stored at — 80 °C
until use for transcriptome sequencing and metabolite
analysis. The remaining samples were fixed in cold fixa-
tive solution (4°C) for section observation. All samples
were examined in triplicate and used as biological
replicates.

Tissue section observation

Longitudinal stem sections were sliced and stained as
previously described by Ile, et al. [61] with minor modifi-
cations. At least seven stems from each tea plant cultivar
were cut into fragments (< 0.5cm) and fixed in fixative
solution over 72h at 4°C. The stems were dehydrated
by transferring them sequentially through a series of in-
creasing concentrations of ethanol (75 to 100% absolute
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ethanol), followed by 100% ethanol, ethanol:xylene (2:1),
ethanol:xylene (1:1), ethanol:xylene (1:2), pure xylene,
pure xylene (each for 1h), xylene: Paraplast (1:1) for 24
h, and molten Paraplast (melting point 65°C) for 48 h
and finally embedded in freshly molten Paraplast. Central
longitudinal sections of 5 um thickness per stem were cut
using a disposable-blade rotary microtome (RM2016,
Leica, Shanghai, China), allowed to stand overnight and
dried at 40°C for 4 h. Sections were dewaxed in xylene,
hydrated gradually in decreasing concentrations of ethanol
(from 100 to 70%) and stained with safranine (1.0% for
2.5h) followed by Fast Green (1.0% for 8s) in ethanol.
After staining, the stem sections were observed under a
Leica DMi8 inverted microscope (Leica, Shanghai, China).

UPLC-ESI-MS/MS analysis and differential metabolite
identification

A total of 100 mg of powder from crushed freeze-dried
samples was weighed and extracted overnight at 4 °C with
1.0 ml of 70% aqueous methanol containing 0.1 mg/L lido-
caine as an internal standard. Following centrifugation at
10,000xg for 10 min, the supernatant was absorbed and
filtered (SCAA-104, 0.22-um pore size; ANPEL, Shanghai,
China) before liquid chromatography-tandem mass
chromatography (LC-MS/MS) analysis. Quality control
samples were mixed with all the samples to ensure the
reproducibility of the entire experiment. The extracted
compounds were analysed using an ultra performance
liquid chromatography-electrospray ionization-tandem
mass spectrometry (UPLC-ESI-MS/MS) system (UPLC,
Shim-pack UFLC SHIMADZU CBM30A; MS/MS,
Applied Biosystems 6500 QTRAP) [62]. For compounds
separation, column, mobile phases, and operation parame-
ters were chosen or set following the description by Xu
et al. [63]. The effluent was further transported to an ESI-
triple quadrupole-linear ion trap (QTRAP)-MS.

Analyst 1.6.1 software was employed for metabolite
identification. Details on data filtering, peak detection,
alignment, calculations, and differential metabolite iden-
tification were described by Tang et al. [64]. Particularly,
metabolites with T-test P values < 0.05 and VIP > 1 were
considered as differential metabolites and mapped to
KEGG metabolic pathways for pathway enrichment ana-
lysis (FDR < 0.05) [65].

RNA isolation, library construction, lllumina sequencing,
and data processing

The total RNA from each sample, which consisted of at
least 30 shoots collected from over 10 tea individuals, was
extracted using the RNAprep Pure Plant Kit (TIANGEN,
Beijing, China). The total RNA quantity and integrity were
evaluated and estimated using an Agilent Bioanalyzer
2100 system (Agilent, Santa Clara, CA, USA) and a Nano-
Drop™ ultraviolet spectrophotometer (Thermo, Waltham,
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MA, USA), respectively. cDNA libraries were constructed
using the NEBNext Ultra RNA Library Prep kit (Gene,
Beijing, China) and sequenced using an Illumina HiSeq
TM 2500 instrument (Genedenovo Biotechnology Co.,
Guangzhou, China). High-quality clean reads were ac-
quired by removing adaptor sequences, reads containing
more than 10% unknown nucleotides (N), and low-quality
reads containing more than 50% low-quality (Q value<20)
bases; then, the Q20 and Q30 values, GC content, and se-
quence duplication levels of the clean reads were calcu-
lated. The clean reads of each sample were then mapped
to the tea plant genome by TopHat2 [66] (version
2.0.3.12).

Gene abundances were quantified with RSEM soft-
ware, and the unigene expression levels were quantified
using fragments per kilobase of transcript per million
mapped reads (FPKM) values [67]. To identify DEGs
across samples or groups, the edgeR package (http://
www.rproject.org/) was used, and genes with |log2FC]|
>1 and FDR <0.05 were identified as DEGs. DEGs were
then subjected to enrichment analysis of GO functions
and KEGG pathways using the GOseq R package [68]
and KOBAS software [69], respectively.

Quantitative real-time PCR validation

To validate the reliability of the gene expression analysis
in this study, 16 genes were selected for real-time qPCR
analysis. Total RNA samples were used for cDNA syn-
thesis according to the method recommended by the
SuperScript® III Reverse Transcriptase kit manufacturer.
Information about the primers used for qRT-PCR ana-
lysis is listed in Additional file 4: Table S4. qRT-PCR
was performed using SYBR Premix Ex Taq™ II (TaKaRa,
Dalian, China) in a CFX96 Touch real-time PCR system
(BIO-RAD, California, USA) according to the manufac-
turer’s protocol, and amplification was performed as pre-
viously reported [70]. The results were calculated using
the 2722¢T method [71] with the CsPTBI1 gene as a con-
trol [72]. Each sample was examined in triplicate.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512870-020-2311-z.

Additional file 1: Figure S1 Growth architectures of MZ (a and d), QQ
(b and e) and LYQQ (c and f) in a natural tea garden. The shoots of QQ
and LYQQ exhibit a zigzag shape. Figure S2 Stem morphology (a) and
inter-node length (b) analysis of MZ, LYQQ and QQ. Mature stems were
collected on February 2020. The length of the inter-node between the
third and fourth nodes (red lines) was determined (n = 5). ** indicates a
significant difference at the 0.01 level. Figure $3 GO enrichment analysis
of DEGs identified from the comparisons MZ-vs-QQ (a), MZ-vs-LYQQ (b),
and QQ-vs-LYQQ (c). Figure S4 KEGG enrichment analysis of DEGs identi-
fied from the comparisons MZ-vs-LYQQ_MZ-vs-QQ _QQ-vs-LYQQ (a), MZ-
vs-LYQQ (b), MZ-vs-QQ (c) and QQ-vs-LYQQ (d). Figure S5. Differential
metabolites identified from MZ-vs-QQ, MZ-vs-LYQQ, and QQ-vs-LYQQ.
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Additional file 2: Table S1 Summary of the RNA-Seq data derived from
MZ, QQ, and LYQQ. Table S2 Statistics of the number of detected genes
in each cultivar.

Additional file 3: Table S3 Seventy-six key DEGs identified to be in-
volved in zigzag-shaped stem formation in tea plants.

Additional file 4: Table S4 DEGs and primers used for qRT-PCR valid-
ation of the transcriptome.
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