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Abstract

Background: Drought stress is a major abiotic factor that affects rapeseed (Brassica napus L.) productivity.
Though previous studies indicated that long non-coding RNAs (IncRNAs) play a key role in response to
drought stress, a scheme for genome-wide identification and characterization of INncRNAs' response to drought
stress is still lacking, especially in the case of B. napus. In order to further understand the molecular
mechanism of the response of B. napus to drought stress, we compared changes in the transcriptome
between Q2 (a drought-tolerant genotype) and Qinyou8 (a drought-sensitive genotype) responding drought
stress and rehydration treatment at the seedling stage.

Results: A total of 5546 down-regulated and 6997 up-regulated mRNAs were detected in Q2 compared with
7824 and 10,251 in Qinyous, respectively; 369 down-regulated and 108 up- regulated IncRNAs were detected
in Q2 compared with 449 and 257 in Qinyous, respectively. LncRNA-mRNA interaction network analysis
indicated that the co-expression network of Q2 was composed of 145 network nodes and 5175 connections,
while the co-expression network of Qinyou8 was composed of 305 network nodes and 22,327 connections.
We further identified 34 transcription factors (TFs) corresponding to 126 differentially expressed IncRNAs in Q2,
and 45 TFs corresponding to 359 differentially expressed IncRNAs in Qinyou8. Differential expression analysis
of IncRNAs indicated that up- and down-regulated mRNAs co-expressed with IncRNAs participated in different
metabolic pathways and were involved in different regulatory mechanisms in the two genotypes. Notably,
some INncRNAs were co-expressed with BnaC07g44670D, which are associated with plant hormone signal
transduction. Additionally, some mRNAs co-located with XLOC_052298, XLOC_094954 and XLOC_012868 were
mainly categorized as signal transport and defense/stress response.

Conclusions: The results of this study increased our understanding of expression characterization of rapeseed
INcRNAs in response to drought stress and re-watering, which would be useful to provide a reference for the
further study of the function and action mechanisms of IncRNAs under drought stress and re-watering.
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Background

Drought is one of the vital factors limiting crop product-
ivity and survival. Due to the ongoing global climate
change, more and more research has focused on under-
standing the mechanisms of how crops resist drought
stress and improve their resistance level [1-8]. Plants
sense drought signals and produce second messenger
substances, such as Ca”*, phosphatidylinositol and react-
ive oxygen species (ROS) [9, 10], while causing an
increase in intracellular calcium ion concentration, initi-
ating a cascade network of protein phosphorylation
pathways. Finally, the target proteins are directly in-
volved in the protection of cells, or regulate the expres-
sion of a series of specific stress-related genes through
TFs (MYC/MYB, ABF, CBF/DREB, bZIP, etc.), thereby
protecting the cells and improving the resistance of
plants to adversity [11-13]. Although rapid develop-
ments in modern molecular biology have gradually un-
covered the molecular mechanisms of plant drought
resistance, developing drought-resistant plants to cope
with drought stress will remain a substantive challenge
in the future.

Long non-coding RNA (IncRNA) is a type of RNA
transcripts which is more than 200 nucleotides in length
and has no or limited protein coding abilities [14-16]. A
growing body of evidence has shown that IncRNAs exert
their regulatory effects on gene expression levels, in-
volving epigenetic regulation, transcriptional regulation,
and posttranscriptional regulation in the form of RNA
[17-25]. With the advantage of next-generation se-
quencing technologies and bioinformatics approaches,
many IncRNAs have been discovered in model plants,
such as Arabidopsis [26—29], wheat [30], maize [31-33]
and rice [34], indicating that IncRNAs play an important
role in various biological processes of plant development
and stress response. Recent research has confirmed that
IncRNAs respond to abiotic stresses [31, 35, 36], including
drought stress. For example, 664 drought-responsive
IncRNAs were analyzed in maize [31]. Under drought
stress, 2542 IncRNA candidates have been identified from
Populus trichocarpa, 504 of which were found to be
drought-responsive [37]. In Arabidopsis, 1832 IncRNAs
changed after 2h and/or 10 h of drought, cold, high-salt,
and/or abscisic acid (ABA) treatments [29]. In maize, 664
transcripts were confirmed as drought-responsive IncRNAs,
8 out of which were proved as precursors of miRNAs [31].
In rice, pre-miRNA expression profiling indicated that
miR171f is involved in the progression of rice root develop-
ment and growth, as well as the response to drought stress
[38]. In cotton, long intervening / intergenic noncoding
RNAs (lincRNAs) XLOC 063105 and XLOC 115463, were
involved in drought stress response by regulating neighbor-
ing genes [39]. Furthermore, 19 IncRNAs (17 lincRNAs and
2 natural antisense transcripts (NATs)) in foxtail millet
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responded to polyethylene glycol-6000 (PEG)-induced
drought stress, only one of the drought-responsive IncRNA
had synteny with its sorghum counterpart [40]. Qin et al.
(2017) identified an Arabidopsis IncRNA, drought-induced
IncRNA (DRIR), which responds to drought and salt stress.
DRIR can be significantly activated by drought and salt
stress as well as by abscisic acid (ABA) treatment [41]. In
addition, in cassava, 318 IncRNAs were identified, which
were responsive to cold and/or drought stress, and which
are associated with hormone signal transduction, biosyn-
thesis of secondary metabolites, and the sucrose metabol-
ism pathway [42]. Additionally, numerous IncRNAs
involved in the regulation of gene expression in response to
stress have been identified and characterized in Brassica
[43—46]. In Chinese cabbage (Brassica rapa ssp. chinensis),
4594 putative IncRNAs were identified to response to heat
stress, 25 of which were co-expressed with 10 heat respon-
sive genes [47]. In Brassica rapa L., 549 IncRNAs were
identified significantly altered their expression in response
to cold treatment, and short-term cold treatment induced
natural antisense transcripts (NATs) in BrFLC and BrMAF
genes which are involved in vernalization were identified
[48]. Summanwar et al. (2019) identified 530 differentially
expressed IncRNAs from the roots of clubroot-susceptible
and -resistant Brassica napus lines. Twenty-four differen-
tially expressed IncRNAs were identified from chromosome
A08 which has been reported to confer resistance to differ-
ent P. brassicae pathotypes [49]. In Brassica juncea, 1614
differentially expressed IncRNAs response to heat and
drought stress, and some IncRNAs were co-expressed with
TFs which are involved in abiotic stress response [50].
Rapeseed (Brassica napus L.) is an important oilseed
crop in the world [51]. It is vulnerable to drought, which in-
fluences the production of rapeseed substantially [52—54].
Although many IncRNAs have been found in different
plant species, indicating that IncRNAs can play an import-
ant role in response to abiotic stresses, a genome-wide
identification and characterization of responses of IncRNAs
to drought stress and rehydration treatments is still lacking,
especially in B. napus. In order to further understand the
molecular mechanisms of the response of B. napus to
drought stress and re-watering, we compared changes in
transcriptome between Q2 (a drought-tolerant geno-
type) and Qinyou8 (a drought-sensitive genotype) in re-
sponse to drought stress and rehydration treatments at
the seedling stage, and identified the IncRNAs involved
in drought stress and rehydration treatments. The
present study used a co-expression-based method, in
which IncRNA functions were predicted, based on the
functions of their co-expressed protein-coding genes
[55]. Therefore, the IncRNA-mRNA co-expression net-
work was constructed for pathway enrichment analysis.
Moreover, the IncRNA-mRNA co-expression network
of plant hormone signal transduction was analyzed to
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further explore the potential roles of differentially
expressed IncRNAs in response to drought stress and
re-watering.

Results

Phenotypes of rapeseed seedlings under drought stress
(DS) and re-watering (RW) treatments

Rapeseed seedlings responded differently under the DS
and RW treatments (Fig. 1). The fresh weight of Q2
under DS reached 70.43% of well-watered (WW), which
was significantly higher than that of Qinyou8. Addition-
ally, the fresh weight of Q2 under RW reached 82.76%
of WW, which was significantly higher than Qinyou8.
Therefore, we can see that the recovery ability of Q2 is
better than that of Qinyou8 after re-watering.

Differentially expressed IncRNAs and mRNAs under
drought stress and re-watering

In this study, RNAs were extracted from 12 samples
(two treatments, two test materials, three biological rep-
licates) and tested their quality before performing RNA
sequencing (Additional file 1). We acquired clean reads
by removing low-quality reads from the RNA-seq data.
The QC and GC contents were calculated from clean
data to assess the quality of the sequencing data
(Additional file 2). The clean datasets were mapped to
the Brassica napus L. genome. All results indicated that
the RNA-seq data were very reliable. The expression
level of all transcripts, including IncRNAs and mRNAs,
were identified using FPKM, which was systematically
estimated and the differential transcript analysis done
using cuffdiff with a threshold of g value <0.05. Com-
pared with the expression of IncRNAs in drought stress,
477 IncRNAs (369 down-regulated, 108 up-regulated) of
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Q2 and 706 IncRNAs (449 down-regulated, 257 up-
regulated) of Qinyou8 were differentially expressed after
re-watering (Fig. 2). In addition, there were 12,543
mRNAs (5546 down-regulated, 6997 up-regulated) and
18,075 mRNAs (7824 down-regulated, 10,251 up-
regulated) differentially expressed in Q2 and Qinyous,
respectively (Fig. 2).

qRT-PCR validation

To validate the expression data from RNA-seq, nine
IncRNAs which were differentially expressed in two ge-
notypes were selected for real-time RT-PCR analysis.
The squared of the pearson’s correlation coefficient (the
determinant coefficient) of IncRNAs expression level
was calculated. As shown in Fig. 3, the IncRNA expres-
sion level using RNA-seq was significantly (R* = 0.91519,
slope = 0.91646) correlated with those using qRT-PCR.
For example, the relative expression of XLOC_012868
was increased in Q2 but decreased in Qinyou8, which
was consistent with the RNA-seq result (Additional file
3). The real-time PCR results verify the expression pat-
terns obtained with transcriptome sequencing, indicating
that the IncRNAs expression profile based on RNA-seq
data is reliable.

Functions of differentially expressed IncRNAs based on
IncRNA-mRNA co-expression network

To further characterize the role of differentially
expressed IncRNAs, we used the IncRNA-mRNA
relationship pairs to construct interactive networks. Co-
expression network analysis indicated that the co-
expression network of Q2 was composed of 145 network
nodes and 5175 connections, while the co-expression
network of Qinyou8 was composed of 305 network

Fig. 1 Phenotypes of seedlings under different treatments. a The picture show seedlings under DS and RW treatments, respectively. Bar=1cm. b
Comparisons of fresh weight among the treatments. Experiments were repeated three times and vertical bars indicate standard errors. “*"
indicates the significance of the difference at the 0.05 level. WW = well-watered; DS = drought stress; RW = re-watering
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Fig. 2 The numbers of differentially expressed INncRNAs and mRNAs in two genotypes (Q2 and Qinyou 8) in response to drought stress and
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nodes and 22,327 connections. In Q2, there were 5175
IncRNA-mRNA pairs, including 1481 mRNAs and 145
IncRNAs, respectively (Additional file 4). Similarly, there
were 22,327 IncRNA-mRNA pairs in Qinyou8, which in-
cluded 3200 mRNAs and 305 IncRNAs, respectively
(Additional file 4). The IncRNA-mRNA pairs with the
same expression trend were much more than those with
the opposite expression trend in two genotypes. There
were 6 and 4 opposite-trend pairs in Q2 and Qinyous,
respectively, which suggested the candidate IncRNAs
function in drought and re-watering processes (Add-
itional file 5). It has been shown that one IncRNA may
regulate multiple protein-coding genes, and vice versa
[56—58]. From the co-expression network of Q2, we
know that 1 mRNA may correlate with 1 to 18 IncRNAs,
and that 1 IncRNA may correlate with 1 to 375 mRNAs.
Moreover, the co-expression network of Qinyou8 indi-
cated that 1 mRNA may correlate with 1 to 43 IncRNAs,
and 1 IncRNA may correlate with 1 to 375 mRNAs.
XLOC_071559 was the largest node in the network in
both genotypes, respectively.

Studies have shown that IncRNA can indirectly affect
the expression of mRNA, and can also directly bind to
mRNA, thus affecting translation [59-61], shearing [62,
63], and degradation of mRNA [64]. Currently, the
mechanism of interaction between IncRNA and mRNA
has not yet become clear. To reveal potential functions
of the differentially expressed IncRNAs under drought
stress and re-watering, we analyzed Gene Ontology
(GO) terms of target genes of differentially expressed
IncRNAs. This analysis was performed to determine the
major molecular functions, biological processes, and cel-
lular components with which the target genes of differ-
entially expressed IncRNAs were associated.

The down-regulated mRNAs, co-expressed with
differentially expressed IncRNAs, were assigned to 32
and 34 significant terms in Q2 and Qinyous8, respectively
(Fig. 4a). For down-regulated mRNAs co-expressed with
differentially expressed IncRNAs in Q2, the most signifi-
cant GO terms for biological process were oxidation-
reduction process (GO:0055114), protein dephosphoryla-
tion (GO: 0006470), dephosphorylation (GO:0016311),
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Fig. 3 Validation of the expression levels of the INcRNAs using real-time quantitative polymerase chain reaction (RT-qPCR). The x-axis indicates the
log,(Fold change) as measured by RT-qPCR. The y-axis indicates the log,(Fold change) as measured by RNA sequencing (RNA-seq). The squared
of the pearson'’s correlation coefficient of relative expression measured by RNA-seq and RT-gPCR was 0.91519

response to abiotic stimulus (GO:0009628), response to
water stimulus (GO:0009415) and sucrose metabolic
process (GO:0005985). As far as molecular functions are
concerned, nucleic acid binding transcription factor
activity (G0O:0001071), sequence-specific DNA binding
transcription factor activity (GO:0003700), cofactor
binding (GO:0048037), sequence-specific DNA binding
(GO:0043565), phosphoric ester hydrolase activity (GO:
0042578), protein serine/threonine phosphatase activity
(GO:0004722) and phosphoprotein phosphatase activity
(GO:0004721) were the important significantly enriched
GO terms. The GO terms of transcription factor com-
plex (GO:0005667) and CCAAT-binding factor complex
(GO:0016602) were the most important significant terms
for cellular components. In Qinyou8, for down-regulated
mRNAs co-expressed with differentially expressed
IncRNAs, the important GO terms for biological process
were single-organism metabolic process (GO:0044710),
oxidation-reduction process (GO:0055114), protein
dephosphorylation (GO:0006470), response to abiotic
stimulus (GO:0009628), response to water stimulus (GO:
0009415) and protein serine/threonine phosphatase
activity (GO:0004722). As far as molecular functions are
concerned, three GO terms, namely, oxidoreductase ac-
tivity (GO: 0016491), nucleic acid binding transcription
factor activity (GO:0001071) and sequence-specific DNA

binding transcription factor activity (GO:0003700), dem-
onstrated significant enrichment. With respect to cellu-
lar components, transcription factor complex (GO:
0005667) and CCAAT-binding factor complex (GO:
0016602) were the most significantly enriched GO
terms.

The up-regulated mRNAs co-expressed with differen-
tially expressed IncRNAs were assigned to 23 and 31 sig-
nificant GO terms in Q2 and Qinyou8, respectively
(Fig. 4b). Of the enriched GO terms in the biological
process category for up-regulated mRNAs co-expressed
with differentially expressed IncRNAs in Q2, primary
metabolic process (GO:0044238) was the most dominant
group, followed by organic substance metabolic process
(GO:0071704), macromolecule metabolic process (GO:
0043170), protein metabolic process (GO:0019538), cel-
lular macromolecule metabolic process (GO: 0044260)
and cellular protein metabolic process (GO:0044267).
Among the molecular functions, structural molecule ac-
tivity (GO:0005198) and structural constituent of ribo-
some (GO:0003735) were the most dominant groups in
Q2. In the cellular component category, the significant
terms were cytoplasm (GO:0005737), cytoplasmic part
(GO:0044444), ribosome (GO:0005840), ribonucleopro-
tein complex (GO:0030529) and translation (GO:
0006412). Additionally, in Qinyou8, the GO terms of
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up-regulated mRNAs co-expressed with differentially
expressed IncRNAs, such as metabolic process (GO:
0008152), single-organism metabolic process (GO:
0044710), biosynthetic process (GO:0009058), organic
substance biosynthetic process (GO:1901576), cellular
biosynthetic process (GO:0044249), gene expression
(GO:0010467), translation (GO:0006412) and photosyn-
thesis (GO:0015979), were the most significantly
enriched GO terms in the biological process category.
With respect to molecular functions, structural molecule
activity (GO:0005198) and structural constituent of
ribosome (GO:0003735) were the dominant groups in
Qinyou8. In the cellular component category, cytoplasm

(GO:0005737), macromolecular complex (GO:0032991),
cytoplasmic part (GO:0044444), non-membrane-bounded
organelle (GO:0043228), ribonucleoprotein complex (GO:
0030529), ribosome (GO:0005840) and photosystem II
(GO: 0009523) were the dominant groups. These findings
suggest that stress-responsive IncRNAs may regulate
genes involved in many biological processes, including sig-
nal transduction, energy synthesis, molecule metabolism,
transcription and translation, in response to drought stress
and re-watering.

We also analyzed the statistical enrichment of the
mRNAs co-expressed with differentially expressed
IncRNAs in KEGG. There were 18 and 18 KEGG
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pathways identified significantly in Q2 and Qinyous,
respectively, using pathway enrichment analysis (p <
0.05). KEGG analysis showed that there were 19
pathways identified that significantly related to down-
regulated mRNAs co-expressed with differentially
expressed IncRNAs of Q2 (Fig. 5a), including plant hor-
mone signal transduction (ko04075), glycolysis/gluco-
neogenesis (ko00010), fatty acid metabolism (ko01212),
valine, leucine and isoleucine degradation (ko00280),
alanine, aspartate and glutamate metabolism (ko00250)
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and arginine and proline metabolism (ko00330). More-
over, 3 identified pathways significantly related to up-
regulated mRNAs co-expressed with differentially
expressed IncRNAs of Q2 (Fig. 5b), including ribosome
(ko03008), carbon fixation in photosynthetic organisms
(ko00710), and pyruvate metabolism (ko00620). In
Qinyou8, 17 pathways were identified that were signifi-
cantly related to down-regulated mRNAs co-expressed
with differentially expressed IncRNAs and 7 identified
pathways significantly related to up-regulated mRNAs
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co-expressed with differentially expressed IncRNAs.
The most down-regulated mRNAs co-expressed with
IncRNAs of Qinyou8 were significantly enriched for
protein processing in endoplasmic reticulum (ko04141),
fatty acid metabolism (ko01212), fatty acid degradation
(ko00071), alanine, aspartate and glutamate metabolism
(ko00250), galactose metabolism (ko00052), as well as
arginine and proline metabolism (ko00330) (Fig. 5c),
while the most up-regulated mRNAs co-expressed with
IncRNAs of Qinyou8 denoted their involvement in
ribosome (ko03010), photosynthesis (ko00195), and
photosynthesis - antenna proteins (ko00196) (Fig. 5d).

Identification of TFs under drought stress and re-watering
Under drought stress, TFs can be used as regulators of
drought stress, and they would bind to cis-acting ele-
ments in the promoter region of related genes to regu-
late the expression of downstream genes [65]. In our
research we found that there were 334 differentially
expressed genes in Q2, and 487 differentially expressed
genes in Qinyou8; when compared to the TF database of
Arabidopsis, 211 TFs were found to be co-expressed in
two genotypes, and 12 TFs were conversely expressed in
two genotypes. In addition, 123 TFs that were specific-
ally expressed in Q2 were classified into 38 groups; 10 of
these TF families comprised 69.92% of these groups,
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including MYB (23 TFs), basic helix-loop-helix
(bHLH) (18 TFs), ERF (11 TFs), WRKY (8 TFs), PIF
(7 TFs), GATA (5 TFs), DIVARICATA (4 TFs), HSF
(4 TFs), NAC (3 TFs) and NFY (3 TFs) (Fig. 6a).
Moreover, 276 TFs, classified into 56 TF groups were
specifically expressed in Qinyou8, in which 11 TF
families accounted for 68.48% of 276 TFs; these in-
cluded MYB (26 TFs), basic helix-loop-helix (bHLH)
(36 TFs), ERF (18 TFs), WRKY (31 TFs), GATA (16
TFs), DIVARICATA (13 TFs), HSF (10 TFs), RAP (11
TFs), TCP (12 TFs), NFY (8 TFs) and TGT (8 TFs)
(Fig. 6b). Thirty-nine groups of TFs were co-
expressed in two genotypes, including NFY (31 TFs),
bHLH (27 TFs), WRKY (19 TFs), MYB (21 TFs), ERF
(22 TFs), and GATA (10 TFs) (Fig. 6¢c). Additionally,
6 groups conversely expressed between two genotypes
(con-expression TFs); these included bHLH (4 TFs),
NEY (4 TFs), DIVARICATA (1 TFs), ERE (1 TFs),
PIF (1 TFs) and TCP (1 TFs) (Fig. 6d). We also ana-
lyzed the relationship between the differentially
expressed IncRNAs and transcription factors. The se-
quence information of TFs was obtained and used for
co-expression analysis with IncRNAs. In Q2, 57 TFs
belonging to the 20 TF families were found co-
expressed with 57 differentially expressed IncRNAs
(Additional file 6), while there were 94 TFs belonging
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to the 24 TF families were found co-expressed with
172 differentially expressed IncRNAs in Qinyou8
(Additional file 6).

Discussion

Several recent studies have revealed that IncRNAs play an
important role in response to drought stress [31, 39, 41, 66].
Accordingly, we constructed IncRNA and mRNA libraries,
and annotated, identified, and verified those IncRNAs that
are involved in drought stress and re-watering.

Differential mRNAs and IncRNAs expression in two
contrasting genotypes under drought stress and re-
watering

In our research, we systematically identified and ana-
lyzed B. napus mRNAs and IncRNAs, which respond to
drought stress and rehydration. In the comparison
groups with two different genotypes, 5546 down-
regulated and 6997 up-regulated mRNAs were detected
in Q2 compared to 7824 and 10,251 in Qinyou8, re-
spectively; 369 down-regulated and 108 up-regulated
IncRNAs were detected in Q2 compared to 449 and 257
in Qinyou8, respectively. Interestingly, we found that
there were 229 IncRNAs (169 down-regulated, 44 up-
regulated) in both genotypes, among which, 1 IncRNA
XLOC_012868 was up-regulated in the drought-tolerant
genotype and down-regulated in drought-susceptible

Page 9 of 20

genotype; conversely, 15 IncRNAs were down-regulated
in the drought-tolerant genotype and up-regulated in
the drought-susceptible genotype (Fig. 7). From the
above, we know that the response of these two geno-
types is different under drought stress and rehydration
conditions. In Qinyou8, the number of differentially
expressed mRNAs and IncRNAs was significantly higher
than Q2.

Altered splicing is one of the mechanisms for IncRNA
transcripts to affect gene expression in many physio-
logical processes [67-69]. In Q2, 477 IncRNA transcripts
from 469 IncRNA genes were identified, in which 8
IncRNA coding genes were alternatively spliced. Simi-
larly, in Qinyou8, 706 IncRNA transcripts from 688
IncRNA genes were identified, in which 18 IncRNA cod-
ing genes were alternatively spliced (Additional file 7).
These alternately spliced IncRNA coding genes may be
involved in drought and re-watering processes.
Additionally, 9 identified IncRNAs were chosen for qRT-
PCR validation, and the results confirmed the sequen-
cing results.

Differentially expressed IncRNAs specifically enriched in
GO and KEGG pathways

With advances in next-generation sequencing technol-
ogy, many investigations have shown that IncRNAs exert
their regulatory effects on gene expression levels,

UP-Qinyu8
UP-Q2 198
44
63 0
1
0
rehydration conditions

Fig. 7 Venn diagram showing the number of unique and common differentially expressed IncRNAs in both genotypes under drought stress and

DOWN-Qinyu8
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including epigenetic regulation, transcriptional regula-
tion, and post-transcriptional regulation in the form of
RNA [19]. It is known that sequence-specific DNA bind-
ing transcription factor activity [42, 70], response to
stimulus [71], response to abiotic stimulus [70], biosyn-
thetic process [70], structural constituent of ribosome
[58], photosynthesis [72] and oxidoreductase activity
[72], which are regulated by some IncRNAs, have been
reported in response to abiotic stresses, and these GO
terms were identified in this study. To determine the
similarity and differences between the two genotypes,
the significantly enriched GO terms were compared. In
our study, there were more significant GO terms in
Qinyou8 than Q2 under drought stress and re-watering,
indicating that there were differences in responses to
drought stress and re-watering between the two geno-
types. We found that phosphoprotein phosphatase activ-
ity, protein metabolic process, and sequence-specific
DNA binding were significantly and specially enriched
in Q2, while single-organism metabolic process, photo-
synthesis, and oxidoreductase activity were significantly
and specially enriched in Qinyou8. Additionally,
IncRNAs have been recognized as powerful regulators of
pathways in response to drought stress, including ribo-
some, photosynthesis [73], and plant hormone signal
transduction [42, 74]. The ribosome pathway was simul-
taneously significant in both genotypes, and the differen-
tial IncRNA target genes were up-regulated in this
pathway. It is worth noting that the pathway of plant
hormone signal transduction was significantly and spe-
cially enriched in Q2, a total of 36 mRNAs co-expressed
with 41 IncRNAs were assigned to plant hormone signal
transduction.  Furthermore, many down-regulated
mRNAs co-expressed with IncRNAs involved in protein
processing in the endoplasmic reticulum, and up-
regulated mRNAs co-expressed with IncRNAs belonging
to photosynthesis were significantly and specially
enriched in Qinyou8. A total of 7 and 5 mRNAs co-
expressed with IncRNAs were assigned into photosyn-
thesis and photosynthesis-antenna proteins, respectively.
The genes involved in photosynthesis were generally
down-regulated by drought [75, 76]. Compared with the
DS treatment, photosynthesis (ko00195) and photosyn-
thetic antenna protein (ko00196) pathways were signifi-
cantly enriched in Qinyou8 under the RW treatment,
indicating that the short-term drought stress did not
cause significantly damage to photosynthesis of Q2, but
did some damage to Qinyou8. In Qinyou8, the genes in-
volved in photosynthesis (ko00195) and photosynthetic
antenna protein (ko00196) were up-regulated to restore
normal photosynthesis and thus restore growth. These
results indicate that IncRNAs could play a role in many
biological processes responding to drought stress and re-
watering through regulating gene network, and that up-
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and down-regulated mRNAs co-expressed with IncRNAs
participate in different metabolic pathways and are
involved in different regulation mechanisms. Taken to-
gether, our results suggest that the two different geno-
types implement divergent mechanisms to modulate the
response to drought stress and re-watering treatment.

Analysis of plant signal transduction using IncRNA-mRNA
co-expression network

Regulation on the co-expression network may be the
possible mechanisms in response to stress for IncRNAs
[18, 31]. Although a large number of IncRNAs were
identified to be related with many biological processes, a
limited number of IncRNAs were screened out to con-
tribute to plant hormone signal transduction by using
IncRNA-mRNA co-expression analysis. In Q2, the co-
expression network of plant hormone signal transduc-
tion contained 157 matched IncRNA-mRNA pairs,
including 41 IncRNAs and 36 mRNAs (Fig. 8a and Add-
itional file 8). The co-expression network of plant hor-
mone signal transduction of Qinyou8 was composed of
120 IncRNAs and 51 mRNAs with 352 matched
IncRNA-mRNA pairs (Fig. 8b and Additional file 8). The
IncRNAs involved in plant hormone signal transduction
had the same expression direction with the target genes
in two genotypes, proving the expression of IncRNAs
promoted the function of the target genes. In this path-
way, target genes of differentially expressed IncRNAs
were involved in auxin, cytokinin, gibberellin, and absci-
sic acid signaling pathways in both genotypes. Some tar-
get genes of differentially expressed IncRNAs related to
the ethylene and salicylic acid signaling pathways were
specifically expressed in Q2, while target genes of differ-
entially expressed IncRNAs involved in the two signaling
pathways of BR and jasmonic acid were specifically
expressed in Qinyou8. Among these signaling pathways,
more of the mRNAs, which co-expressed with differen-
tially expressed IncRNAs, were associated with the ABA
signaling pathways than those of other phytohormones,
which is consistent with previous studies that had con-
sidered ABA to be an early warning signal for plant re-
sponses to drought stress [77, 78].

Auxin (IAA) as a phytohormone, is essential for sig-
naling, transport, growth and development of a plant
[79]. Auxin binds to the TRANSPORT INHIBITOR
RESPONSE 1/AUXIN SIGNALLING F-BOX proteins
(TIR1/AFBs) and the AUXIN/INDOLE-3-ACETIC ACID
(Aux/IAA) proteins. When the level of IAA is low, the
Aux/IAA protein forms a heterodimer with the auxin re-
sponse factor (ARF) to inhibit gene transcription. Con-
versely, the Aux/IAA protein is degraded, which results in
derepression of the ARF transcriptional regulation and ex-
pression of the auxin response gene [80]. Currently, IAA
early response genes mainly include AUXIN/INDOLE-3-
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ACETIC ACID (Aux/IAA), Gretchen Hagen 3 (GH3) and
Small Auxin-Up RNAs (SAUR), which are auxin-induced
primitive expression genes [81]. Among them, Aux/IAA
protein plays a very important role in the IAA signal
transduction pathway, and it acts as a transcriptional re-
pressor in the signal transduction pathway [82]. The GH3
gene encodes an auxin-binding enzyme that acts as a feed-
back regulator of auxin by reducing the level of beneficial
auxin [83]. In Q2, the co-expression network of IAA sig-
nal transduction contained 21 matched IncRNA- mRNA
pairs, including 16 IncRNAs and 3 mRNAs. In Qinyous,
the co-expression network of IAA signal transduction
contained 56 matched IncRNA- mRNA pairs, which in-
cluded 46 IncRNAs and 12 mRNAs. Drought stress and
re-watering regulated the expression of Aux/IAA (1 differ-
entially expressed mRNA co-expressed with IncRNAs in
Q2, and 6 differentially expressed mRNAs co-expressed

with IncRNAs in Qinyou8), and GH3 (1 differentially
expressed mRNA co-expressed with IncRNAs in Q2, and
3 differentially expressed mRNAs co-expressed with
IncRNAs in Qinyou8) genes in the two genotypes. In Q2,
down- regulated XLOC_042431, XLOC_071559, XLOC_
095305, XLOC_100682, XLOC 019521 and XLOC_
042894, targeting down-regulated BnaC06g05090D (en-
coding Aux/IAA), possibly take part in regulating the IAA
signal transduction pathway in a positive way. Further-
more, down-regulated XLOC_098397, XLOC_034532 and
XLOC_038342, targeting down-regulated BnaA05g147
80D (encoding GH3), facilitating the level of beneficial
auxin. It is suggested that down regulation of these
IncRNAs expression in Q2 led to enhance IAA signal,
which may accelerate vegetative growth by cell enlarge-
ment. In Qinyou8, up-regulated XLOC_017878, XLOC_
042549, and XLOC_028678, targeting up-regulated
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BnaC01g06240D, BnaC03g78000D, and BnaC08g43830D
(encoding Aux/IAA), respectively. Additionally, up-
regulated XLOC_017878, targeting up-regulated BnaA
09g42140D and BnaC08g34560D (encoding GH3). Up
regulation of these IncRNAs expression in Qinyou8 led to
weakened IAA signal, which may inhibit vegetative
growth.

Cytokinin (CK) plays an important role in various
physiological functions in plants, such as promoting cell
division, inducing shoot formation and promoting its
growth [79]. Cytokinin signaling is based on a two-
component signaling system (TCS), which is mainly
composed of Arabidopsis histidine kinases (AHKs), Ara-
bidopsis histidine phosphotransfer proteins (AHPs) and
Arabidopsis response regulators (ARRs). Firstly, the cyto-
kinin receptor binds to cytokinin and then to autophos-
phorylates. Subsequently, it transfers the phosphate
group to a phosphotransferase of the cytoplasm through
transmembrane transport; the phosphorylated AHPs can
then enter the nucleus and transfer the phosphate group
to the response regulator, thereby inducing gene expres-
sion and regulating plant growth and development [84].
The type-B response regulators (B-ARR) function as
positive regulators of cytokinin signaling, while the type-
A response regulators (A-ARR) function as a down-
stream signal that acts as the negative regulators of
cytokinin signaling and also inhibits the signal transmis-
sion of B-ARR [85]. In Q2, the co-expression network of
CK signal transduction contained 7 matched IncRNA-
mRNA pairs, including 7 IncRNAs and 3 mRNAs.
Down-regulated BnaA01gl7750D is involved in encod-
ing B-ARR gene, was targeted by down-regulated
XLOC_075476 and XLOC_074677, indicating that
down-regulated XLOC_075476 and XLOC_074677 are
likely to weakened CK signal, which may inhibit the
seedling growth of Q2. In Qinyou8, the co-expression
network of IAA signal transduction contained 27
matched IncRNA- mRNA pairs, which included 25
IncRNAs and 5 mRNAs. Down-regulated BnaCO06g
18770D is involved in encoding A-ARR gene, was tar-
geted by 9 down-regulated IncRNAs. It is suggested that
9 down-regulated IncRNAs of Qinyou8 are likely to en-
hance CK signal, which may benefit rapeseed seedling
growth.

Gibberellin (GA) plays an important role in all stages
of plant growth and development, and it participates in
various physiological processes that regulate plant
growth and development. One of the most significant ef-
fects is the promotion of internode elongation, which
promotes plant growth [86]. GIBBERELLIN INSENSI-
TIVE DWARFI1 (GIDI) receptor is a soluble protein that
is localized to both cytoplasm and nucleus. GID1 protein
can specifically bind to active GA and further bind with
DELLA protein to form GID1-GA-DELLA [87]. By
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mediating the degradation of or inhibiting the activity of
DELLA protein, the GID1-GA-DELLA disinhibits
DELLA protein from the GA reactive system, and then
activates the GA reactive gene [88]. When GA is at a
low level, GID1 does not bind to GA, allowing the
DELLA protein to bind to the gibberellin responsive
gene and inhibit its activity, thereby inhibiting plant
growth. When GA is at a high level, GID1 can sense the
GA signal, forming GID1-GA-DELLA to degrade
DELLA protein, which inhibits the repressing of DELLA
on GA signaling [89]. In Q2, the co-expression network
of GA signal transduction contained 8 matched
IncRNA-mRNA pairs, including 8 IncRNAs and 4
mRNAs. In Qinyou8, the co-expression network of GA
signal transduction contained 31 matched IncRNA-
mRNA pairs, which included 30 IncRNAs and 4 mRNAs.
Two mRNAs (BnaA07gl19530D and BnaCnng55170D)
co-expressed with IncRNAs, which were down-regulated
in both genotypes and which respond to drought stress
and re-watering, were annotated to GIDI. Down-
regulated GIDI genes prevented the formation of com-
plexes with GA and DELLA proteins, resulting in the
binding of the DELLA protein to the gibberellin re-
sponse gene, thereby inhibiting seedling growth.

Abscisic acid (ABA) as a signal molecule for plants to
perceive stress [90], plays an important role in prevent-
ing plant water loss, regulating stomatal opening, and
maintaining the balance of cell permeability [90]. ABA
binds its receptor PYR/PYL/RCAR (pyrabactin resistant/
PYR-like/regulatory component of ABA) and inhibits
the activity of PP2C (protein phosphatases type-2C),
which leads to the autophosphorylation of downstream
SnRK2 (sucrose non-fermenting 1-related subfamily 2
kinases) and the phosphorylation of downstream ABF
transcription factors, regulating the expression of stress-
related genes [91, 92]. BnaC07g44670D is homologous
to gene ABF (AT4G34000) in Arabidopsis thaliana,
which has been reported to be an important gene in-
volved in ABA signaling [93]. In Q2, the co-expression
network of ABA signal transduction contained 119
matched IncRNA-mRNA pairs, including 37 IncRNAs
and 24 mRNAs. In Qinyou8, the co-expression network
of ABA signal transduction contained 207 matched
IncRNA-mRNA pairs, which included 73 IncRNAs and
25 mRNAs. In our research, we identified that IncRNAs
that co-expressed with BnaC07g44670D, differed be-
tween the two genotypes. XLOC_074677, XLOC_
093758, XLOC_044363 and XLOC_076449, which co-
expressed with BnaC07g44670D, were down- regulated in
the two genotypes. XLOC_081156 which co-expressed
with BnaC07g44670D, was only down-regulated in
Qinyou8. These findings suggest that altered IncRNAs
may be involved in “plant hormone signal transduction”
and regulated differently in the two genotypes. The up-
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regulation of ABF in response to drought stress can trig-
ger stomatal closure and seed dormancy [94]. The down-
regulation of ABF in response to re-watering led to weak-
ened ABA signal, which may alleviate rapeseed seedling
growth inhibition by ABA.

Transcription factors functioned under drought stress and
re-watering

Transcription factors have been confirmed to play a cru-
cial role in regulating drought stress in plants [89, 95,
96]. Previously, MYB [97, 98], bHLH [99, 100], WRKY
[101], ERF [102], NEY [103], GATA [104], PIF [105,
106], ABA-INDUCIBLE BHLH-TYPE TRANSCRIP-
TION FACTOR (AIB) [107], HSF [108], and bZIP [109]
had been proposed as being responsive to abiotic
stresses. In this study, these TFs were induced to express
under drought stress and re-watering.

Studies have shown that MYB was involved in re-
sponse to abiotic stress, which could be induced by
ABA, to participate in the regulation of waxy synthesis
pathway of drought stress response [110], and that it
promoted the drought resistance of plants by promoting
stomatal closure and reducing leaf water loss [111, 112].
At present, the research on the possible role of bHLH
TFs in plant response to drought stress mainly focuses
on stomatal development, trichome development, root
hair development, and abscisic acid (ABA) sensitivity
[99]. The bHLH-type transcription factor AtAIB
depended on ABA signal transduction pathway to par-
ticipate in the drought resistance response in Arabidop-
sis [113]. It was found that overexpression of
OsbHLHI148 in rice induced up-regulation of OsDREB,
OsJAZ and other related genes involved in stress re-
sponse, and in the jasmonic acid signaling pathway, indi-
cating that OsbHLHI148 regulated the expression of
jasmonic acid signaling pathway-related genes as a start-
ing response factor during drought stress [114]. Among
expressed TFs, the most specifically expressed in Q2 and
Qinyou8 were MYB and bHLH, respectively. It may be
one of the important reasons for the different regulation
modes of the two genotypes’ response to drought stress
and re-watering. Nuclear factor Y (NF-Y) is composed
of three distinct subunits (NF-YA, NF-YB, and NF-YC).
We found that the Arabidopsis thaliana NFYAS5 tran-
script is strongly induced by abscisic acid (ABA)-
dependent manner under drought stress, and, the over-
expressing of NFYA5 in Arabidopsis thaliana resisted
drought stress by controlling stomatal aperture so as to
reduce leaf water loss [115]. In this study, NFY
accounted for the largest proportion of co-expressed
TFs in the two genotypes, respectively. In summary, the
two genotypes have different ways of responding to
drought stress and re-watering, which is conducive to
understanding the molecular regulatory mechanism in
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response to drought stress, and strengthening our un-
derstanding of drought regulatory network.

LncRNA HID1 (HIDDEN TREASURE 1) has been
proved to be an important participant in seeding light
morphogenesis by regulating PIF3 (phytochrome-inter-
acting factor 3) expression [116]. In Chinese cabbage
(Brassica rapa ssp. chinensis), some TFs were cis-
regulated by the response of IncRNAs to heat stress [47].
Under water stress and during recovery, 189 TFs corre-
sponded to 163 differentially expressed IncRNAs in C.
songorica, and there was a bZIP gene predicted to be the
target gene of an IncRNA (MSTRG.17203.1) [72]. These
studies indicated that there was a regulatory relationship
between IncRNAs and TFs. In total, 57 and 94 TFs
related to 20 and 24 different families showed co-
expression with IncRNAs in two genotypes, respectively.
Though, the number of TFs and TF families co-
expressed in Qinyou8 higher than Q2, but the occur-
rence pattern was comparable. The TFs related to the
HSF, NF-YA, ERF, bHLH, MYB, GATA, and bZIP fam-
ilies were highly represented in Q2. Similarly, HSF, NEF-
YA, ERF, bHLH, MYB, WRKY, and bZIP TF families
were more enriched in Qinyou8. Among specifically
expressed TFs in Q2, a PAT1 gene (BnaC07g49170D)
was predicted to be XLOC_096112 target gene and a
TGA3 (BnaC05g17700D) was predicted to be XLOC_
032712 target gene. In Qinyou8, a bHLH69 gene
(BnaC01g07430D) was predicted to be a target gene for
10 IncRNAs. In our research, we also found that a bZIP
gene (BnaA09g03330D) was predicted to be a target
gene for 7 IncRNAs in Q2 and two bZIP genes
(BnaA09g03330D and BnaA09g19470D) were predicted
to be the target genes for 35 IncRNAs in Qinyou8. This
result suggested that the regulation of IncRNAs might
play crucial roles in response to drought stress. This
would be the next step to explore.

Other IncRNAs involved in drought stress and re-watering
Some other candidate functional and regulatory
IncRNAs have been detected in response to drought
stress and re-watering. We identified that XLOC_052298
and XLOC_094954 were down-regulated in the tolerant
genotype and up-regulated in the susceptible genotype,
XLOC_012868 was up-regulated in the tolerant geno-
type and down-regulated in the susceptible genotype. It
was noticed that some mRNAs which were co-located
with three IncRNAs, were mainly categorized into two
categories, ie. signal transport and defense/stress
response.

Drought signals may be perceived by changes in mem-
brane receptor activity. At this time, extracellular signals
are converted into intracellular signals, which can lead
to the production of second messengers such as Ca**,
sugars, ROS and IP; delivery systems [117], triggering
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phosphorylation/dephosphorylation reactions and trans-
mitting information, thereby activating specific transcrip-
tion factors. After binding to the corresponding cis-acting
elements, transcription factors regulate the expression of
drought-stress-responsive genes [118]. Serine/threonine
protein phosphatase is one of the major enzymes that
catalyze the dephosphorylation of proteins [119]. A previ-
ous study has demonstrated that serine/threonine protein
phosphatase is related to the regulation of anti-reverse
signal transduction induced by abscisic acid in plants [120,
121]. As the core component of BR signaling, the BES1/
BZR1 transcription factors are activated by the BR signal,
bind to the E-box (CANNTGQG) or BRRE element (CGTG
T/CG) of the growth and development-related genes pro-
moter and regulate target gene expression [122—124]. BRs,
an important plant hormone, improves drought resistance
of plants by improving plant osmotic regulation and influ-
encing the activities of antioxidative enzymes [125, 126].
Under drought stress, the accumulation of soluble sugars,
such as trehalose, has the function of stabilizing the pro-
teins and cell membranes, which is beneficial for the regu-
lation of the balance between the osmotic pressure and
the outside of the plant cells [127, 128]. Plants with re-
duced gibberellin (GA) activity, and therefore reduced
transpiration, suffer less from leaf desiccation, thereby
maintaining higher capabilities and recovery rates [129].
In this study, BnaC02g25020D, BnaC02g25150D and
BnaC02g25200D, which co-locate with XLOC_052298,
were associated with alpha-trehalose-phosphate synthase,
peroxidase, and the BES1/BZR1 homolog protein, respect-
ively. BnaC09g24140D, which co-locates with XLOC_
094954, was associated with serine/threonine-protein
phosphatase. BnaA03g47140D and BnaA03g47400D,
which co-locate with XLOC_012868, were associated with
superoxide dismutase, gibberellin oxidase, respectively.
BnaA03g47370D and BnaA03g47380D, which co-locate
with XLOC_012868, were associated with bHLH. There-
fore, we believe that these IncRNAs may be related to
drought stress and re-watering. However, our knowledge
about the potential functions of these dysregulated
IncRNAs in response to drought, remains limited. Thus,
further investigation is of.
great importance.

Conclusion

In this study, 5546 down-regulated and 6997 up-
regulated mRNAs were detected in Q2, as compared to
7824 and 10,251 in Qinyou8, respectively; 369 down-
regulated and 108 up-regulated IncRNAs were detected
in Q2, compared with 449 and 257 in Qinyou8, respect-
ively. In addition, the interaction networks between
IncRNAs and mRNAs were constructed and the function
of IncRNAs was then investigated based on the IncRNA-
mRNA in-teraction networks. This study found that 4
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IncRNAs were annotated significantly to the ABA signal-
ing pathway within a KEGG pathway “plant hormone
signal transduction”, in Q2, under drought stress and re-
watering. Eight mRNAs, which co-locate with three
IncRNAs, were mainly categorized into signal transport
and defense/stress response under drought stress and
re-watering. At the same time, the photosynthesis-
associated genes were commonly up-regulated by
drought stress and re-watering treatment in Qinyou8. In
conclusion, the foregoing outcome indicates that
drought stress and re-watering affects the expression of
some IncRNAs, and the inter-regulation of IncRNAs and
mRNAs may elicit response to drought stress and re-
watering. While these findings provide newfound infor-
mation regarding the potential role of IncRNAs in
response to drought stress and re-watering, further
research is required to elucidate the molecular mecha-
nisms of significantly dysregulated IncRNAs. The co-
expression network suggests that the inter-regulation of
IncRNAs and mRNAs is involved in responses to
drought stress and re-watering.

Methods

Plant materials, growth conditions, and treatments

Seeds of two contrasting rapeseed (Brassica napus L.)
genotypes, Q2 (drought-tolerant) and Qinyou8 (drought-
sensitive) were obtained from Oil Crops Research Institute
(OCRI), Chinese Academy of Agricultural Sciences
(CAAS), Wuhan, China. These two contrasting rapeseed
genotypes were selected by analyzing the photosynthetic
rate, chlorophyll content, carotenoid content, malondial-
dehyde content, and antioxidants activity of leaves under
water stress [130, 131]. Under drought stress, Q2 had a
relatively higher net photosynthetic rate, the relative
water content (RWC), chlorophyll content, carotenoid
content, and antioxidants activity in leaves than
Qinyou8 [130-133].

The experiment was conducted in a greenhouse at
25°C, with a photoperiod of 16h of light and 8h of
darkness, in June 2017, and a humidity rate of 83%. The
detailed preparation of the seeds and soils in pots were
according to in Xiong et al. [132]. All pots were watered
to 75% FC for 18 d (the three-leaf stage) with daily
watering, before being subjected to drought stress. Ex-
periment treatment conditions were as follows: (1)
18 days old plants were subjected to water deficit by
leaving them un-watered for 8days (set as drought
stress, DS); (2) 18 days old plants were subjected to
water deficit by leaving them un-watered for 7 days
down to 35% FC [133] and then re-watered for 1 day to
75% FC (set as re-watering, RW). The experiment was
carried out using a completely randomized design with
three replications. After 8 d of treatment, the 3rd leaves
were separately sampled from 5 individuals under each
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treatment from each replicate (12 samples in total) and
quickly stored individually in liquid N.

Determination of physiological parameters

The uniform seedlings of each replicate under the WW,
DS and RW treatments were used to measure fresh
weight.

RNA extraction, library construction, and lllumina
sequencing

The process of RNA extraction and purity were accord-
ing to Hu et al. [94]. A amount of 3 ug RNA per sample
were used to generate cDNA libraries and sequenced.
The qualified cDNA libraries were constructed by PCR
enrichment and sequenced on a HiSeq X Ten with a
sequencing read length of PE125. The 12 gene expres-
sion libraries were named DSQ2-1, DSQ2-2, DSQ2-3,
RWQ2-1, RWQ2-2, RWQ2-3, DSQinyous—1, DSQi-
nyou8-2, DSQinyou8-3, RWQingyou8—1, RWQinyou8-
2, and RWQinyu8-3. The library preparation and deep
sequencing were performed by the Novogene Bioinfor-
matics Technology Cooperation (Beijing, China). All the
clean reads, obtained after the quality-control process,
were deposited in the NCBI Sequence Read Archive with
the ID PRJNA574049 for data analysis, as given in the
following section.

Mapping to the reference genome

Reference genome and gene model annotation files were
downloaded from a genome website (http://brassicadb.
org/brad/datasets/pub/Genomes/) directly. Index of the
reference genome was built using bowtie v2.0.6 and
paired-end clean reads were aligned to the reference
genome using TopHat v2.0.9

Quantification of gene expression level

Cuffdiff was used to calculate FPKMs (fragments per
kilo-base of exon per million fragments mapped) of both
IncRNAs and coding genes in each sample [134]. Values
were calculated based on the length of the fragments
and reads count mapped to this fragment. Gene FPKMs
were computed by summing the FPKMs of the tran-
scripts in each gene group.

Differential expression analysis

Cuffdiff provides statistical routines for determining dif-
ferential expression in digital transcript or gene expres-
sion data using a model based on the negative binomial
distribution [134]. The expression strength of each gene
was measured by the FPKM method [134] and calcu-
lated through averaging expression data of three repli-
cates. The differentially expressed IncRNAs and mRNAs
between samples were confirmed by Cufflinks software
with the shreshold of q value <0.05 and a |log2(FPKM)
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ratio| 2 1. The calculation of g value was according to
Trapnell et al. [134]. The treatments of RWQ2/DSQ2
and RWQinyou8/DSQinyou8 were performed.

Construction of the INcRNA-mRNA co-expression network
LncRNA-mRNA co-expression networks were con-
structed to identify the interactions between protein-
coding genes and IncRNAs according to the normalized
signal intensities of the specific expression in genes and
IncRNAs [135]. We constructed the IncRNA-mRNA co-
expression network according to Wang et al. (2018)
[136]. Firstly, the expression values of the differentially
expressed IncRNAs and mRNAs were obtained.
Secondly, the correlation between the differentially
expressed IncRNAs and mRNAs was evaluated using the
Pearson’s correlation coefficient (PCC) from matched
mRNA and IncRNA expression profile data. The
IncRNA-mRNA pairs with |PCC value >0.95| and p<
0.05 were selected as co-regulated IncRNA-mRNA pairs.
Subsequently, the network was constructed, in which
nodes were IncRNAs or mRNAs. In total, the IncRNA-
mRNA co-expression networks were initially con-
structed based on co-expressed IncRNA-mRNA pairs in
each comparison (RWQ2/DSQ2, RWQinyou8/DSQi-
nyou8). Ultimately, to visually display the relationship
between IncRNAs and target protein-coding RNAs, the
interactive networks were constructed using Cytoscape
software (3.7.1), (an open source software platform for
visualizing complex networks available from http://
cytoscape.org/).

Function classification of the target genes of differentially
expressed IncRNAs

Gene Ontology (GO) enrichment analysis of the target
genes which co-expressed with differentially expressed
IncRNAs were implemented using the GOseq R package,
in which gene length bias was corrected. GO terms with
corrected p value less than 0.05 were considered signifi-
cantly enriched with differential expressed genes. We
used KOBAS software to test the statistical enrichment
of the target genes which co-expressed with differentially
expressed IncRNAs in KEGG pathways. The most
enriched KEGG was enlisted in order according to the
corrected p value. A corrected p value <0.05 was re-
quired for differences to be considered statistically
significant.

qRT-PCR analysis

After treated with RNase—free DNase, the RNA samples
were used to generate cDNA by using the RevertAid
First Strand cDNA Synthesis Kit (Fermentas, USA).
Real-time PCR was performed on the ABI 700 platform
with the SYBR Green PCR Master Mix system (Takara
Co. Ltd., Japan). The 10 pl reaction volume in each well
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contained 0.5ng cDNA, 2.5ul of a mixture containing
1.2 uM each of the forward and reverse primers and 5 ul
of master mix. The PCR amplification procedures were
as: one iniative cycle of 30s at 95°C; followed by de-
naturation at 94°C for 30s, primer annealing at 60 °C
for 30s, and then extension at 72 °C for 1 min; finally, an
extra extension at 72°C for 10min. The primer se-
quences for the randomly selected IncRNAs were shown
in Additional file 9. Each PCR reaction were repeated
three times independent and the expression strength of
each IncRNA was set as their average value.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512870-020-2286-9.

Additional file 1. RNA-seq data for 12 samples.

Additional file 2. RNA amount obtained from each treatment for RNA-
seq analysis.

Additional file 3. Relative expression data measured by gRT-PCRs and
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co-expression results.
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