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Abstract

Background: Maize is one of the most important staple crops and is widely grown throughout the world. Stalk
lodging can cause enormous Yyield losses in maize production. However, rind penetrometer resistance (RPR), which
is recognized as a reliable measurement to evaluate stalk strength, has been shown to be efficient and useful for
improving stalk lodging-resistance. Linkage mapping is an acknowledged approach for exploring the genetic
architecture of target traits. In addition, genomic selection (GS) using whole genome markers enhances selection
efficiency for genetically complex traits. In the present study, two recombinant inbred line (RIL) populations were
utilized to dissect the genetic basis of RPR, which was evaluated in seven growth stages.

Results: The optimal stages to measure stalk strength are the silking phase and stages after silking. A total of 66
and 45 quantitative trait loci (QTL) were identified in each RIL population. Several potential candidate genes were
predicted according to the maize gene annotation database and were closely associated with the biosynthesis of
cell wall components. Moreover, analysis of gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway further indicated that genes related to cell wall formation were involved in the
determination of RPR. In addition, a multivariate model of genomic selection efficiently improved the prediction
accuracy relative to a univariate model and a model considering RPR-relevant loci as fixed effects.

Conclusions: The genetic architecture of RPR is highly genetically complex. Multiple minor effect QTL are jointly
involved in controlling phenotypic variation in RPR. Several pleiotropic QTL identified in multiple stages may
contain reliable genes and can be used to develop functional markers for improving the selection efficiency of stalk
strength. The application of genomic selection to RPR may be a promising approach to accelerate breeding process
for improving stalk strength and enhancing lodging-resistance.
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Background

Stalk lodging can seriously influence photosynthesis and
substance transportation, and annually causes reductions in
maize yield ranging from 5 to 20% worldwide [1]. Several
factors, such as genetics, natural conditions, field manage-
ment, diseases and insect pests, can result in weak plant
standability and stalk lodging [2—-6]. Strong stalks can re-
duce the occurrence of lodging because stalk mechanical
strength is negatively correlated with stalk lodging [7-12].
Hence, stalk strength can be used to evaluate stalk lodging-
resistance. Several approaches have been developed to
measure stalk strength, including stalk bending strength,
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stalk crushing strength, and rind penetrometer strength
(RPR) [13-18]. Compared to other methods, RPR has obvi-
ous advantages in terms of its simple and efficient operation
and no requirement for destroying the structure of the stalk
and impacting plant growth [1, 14, 15, 19-21]. Conse-
quently, investigating RPR in multiple growth stages can be
viewed as an available and feasible strategy to determine
the optimal measurement period. In addition, RPR has been
significantly and positively correlated with stalk lodging-
resistance in previous studies [9, 14, 15, 22]. Moreover, pur-
poseful selection for RPR has been performed and has been
shown to be able to simultaneously improve stalk quality
and lodging-resistance [8, 15, 23-25].

As for the genetic architecture of RPR, previous stud-
ies have used association and linkage mapping to iden-
tify quantitative trait loci (QTL) with the purpose of
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developing functional markers to carry out marker-
assisted selection (MAS) to improve stalk strength. Spe-
cifically, multiple F,3 populations genotyped by simple
sequence repeats (SSR) markers have been used to dis-
sect the genetic basis of RPR, and then to compare the
efficiency of phenotypic selection and MAS. A total of
35 QTL have been detected that corresponded with
RPR, which clearly implies the complex nature of stalk
strength [1, 21]. Moreover, MAS for high RPR has been
shown to be more effective than phenotypic selection
when the QTL are derived from the same population ra-
ther than from separate populations [23]. In addition,
several recombinant inbred line (RIL) and double hap-
loid (DH) populations have been constructed to explore
RPR-related loci, and high-quality linkage maps have
been established using single nucleotide polymorphism
(SNP) markers. The potential candidate genes predicted
from these studies are directly or indirectly associated
with the biosynthesis of lignin and cellulose, illustrating
that cell wall components are likely involved in the de-
termination and formation of RPR [16, 19, 20, 26, 27].
On the other hand, a range of significantly associated
loci related to RPR have been detected in genome-wide
association study (GWAS) for maize nested association
mapping panel and natural population, further indicating
the great genetic complexity of RPR [28, 29]. Despite
that, genomic selection (GS) for stalk strength has rarely
been reported, and unsatisfactory prediction accuracies
have been obtained in previous studies [16, 28]. The pre-
dictive ability needs to be improved to be able to predict
stalk strength in a GS strategy for practical breeding
programs.

In this study, we focus on dissecting the genetic archi-
tecture of RPR and providing several useful pieces of ad-
vice for plant breeders to improve the selection
efficiency for stalk lodging-resistance. The datasets in
the present study that contained phenotypic data that
are evaluated in seven stages in two RIL populations and
genotypic data obtained from SNP array were used to
identify RPR-relevant loci and perform genomic selec-
tion. Our objectives were to (1) ascertain the optimal
measure stage for stalk strength; (2) dissect the genetic
architecture of RPR; (3) predict potential candidate
genes and biological pathway associated to RPR; and (4)
perform genomic selection by using multiple models to
enhance breeding efficiency and seeking a few advisable
measures for practical breeding schemes.

Results

Phenotypic variation and complex relationship between
stages in RPR

According to previous studies and research results from
our group [6, 10, 11, 30], the third stalk internode above
the ground was selected to investigate RPR to assess
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stalk strength (Fig. 1a). The RPR values evaluated in
multiple stages, environments and RIL populations ex-
hibited normal distributions, and the difference between
the smallest and largest values ranged from 1.90- to
3.33-fold for each stage (Additional file 1: Figure S1).
Additionally, the phenotypic correlation coefficients be-
tween V10 and the other stages were lower than those
between DTS and the stages after silking and much
lower than r, between stages after silking (Additional file
1: Figure S1). A phenotypic clustering analysis was per-
formed following the phenotypic variation of RPR in two
RIL populations (Fig. 1b). The RPR values in the seven
stages were classified into three groups, and the largest
cluster consisted of AS10, AS20, AS30, AS40 and AS50,
which belong to the reproductive growth phase. Stages
V10 and DTS were separately classified into other two
groups (Fig. 1b). On the other hand, the boxplot of RPR
of each RIL population was drawn using data from vari-
ous stages across environments. More precisely, RPR
increased from stage V10 to stage AS50 in each environ-
ment, and then a slight enhancement was obtained ran-
ging from stage DTS to subsequent stages (Fig. 1c). In
addition, RPR in stage V10 in 2012H was remarkably
higher than that in stage V10 in other environments.
Moreover, RPR evaluated from stage DTS to stage AS50
within 2012B was larger than that in other environments
in both RIL populations (Fig. 1c). Analysis of variance
was performed to estimate the broad-sense heritability.
The H” of RPR in stage V10 in each population was low-
est relative to the other stages. The broad-sense herit-
ability varied from stage to stage and was larger than
67.0% in all stages except stage V10 (Additional file 1:
Table S1).

Construction and quality of high-density linkage map

A total of 15,167 SNPs were retained after quality control
for genotypic data, and then a total of 11,691 SNPs passed
the chi-square test with a significance level over 0.05 in the
LR population (Fig. 2). A sliding-window approach was ap-
plied to assign bin markers, and a set of 2121 recombin-
ation bins were used to construct the genetic map. The
average physical length of the bin markers was 971 Kb, with
a minimal length of 5.1 Kb and a maximal length of 54.4
Mb (Additional file 1: Table S2). There were 19 bin
markers with a length of more than 10 Mb, and a total of
15 bins were located at centromeric or pericentromeric re-
gions distributed in ten chromosomes (Additional file 1:
Table S3). The other four recombination bins with a long
physical length, including Imk0203, Imk0979, Imk1002, and
Imk1453, were in regions with a lower SNP coverage be-
cause most of the SNPs in these regions were disqualified
by chi-square tests (Fig. 2, Additional file 1: Table S3). Re-
garding the analysis of genotypic data in the HO popula-
tion, a total of 756 SNPs were retained without segregation



Liu et al. BMC Plant Biology (2020) 20:196

Page 3 of 16

B
HO AS20 AS30 LR
AS10 AS10
AS40 AS50
AS50 AS40
AS30 AS20
DTS DTS
- - - - V10 V10 - - - -
30 20 10 0 0 10 20 30
Height Height
H
L] [ ] e
61 ° [] ' ] ®eop
) : o ) .
o & 1 '
£ [ ]
E 4 8| )
54
14
o
14
; ; 4 HO E 20128 5 20124 E 20138
LR E5 2012H E5 20138
04
V10 DTS AS10 AS20 AS30 AS40 AS50
Stage
Fig. 1 Extensive phenotypic variation of rind penetrometer resistance in each RIL population. a Diagram of the RPR measurement. The cross-
sectional area of the probe is 1 mm?. b Hierarchical clustering of RPR evaluated in seven stages in each RIL population. Height is defined as the
Euclidean distance between clusters. ¢ Phenotypic variation of RPR measured in seven stages across multiple environments. HO: the high-oil
population (B73 x BY804); LR: the lodging-resistance population (Zheng58 x HD568); RPR: rind penetrometer resistance; V10: the tenth-leaf stage;
DTS: days to silking; AS10: 10 days after silking; AS20: 20 days after silking; AF30: 30 days after silking; AS40: 40 days after silking; AS50: 50 days
after silking; 2012B: Beijing in 2012; 2012H: Hainan in 2012; 2013B: Beijing in 2013

distortion (chi-square test, P>0.05), and then these
markers were used to construct genetic map and perform
further analyses. The linkage maps for the HO and LR pop-
ulations were constructed by the R package. The map
lengths were 1642.2 and 1519.5cM for each RIL popula-
tion, respectively. Moreover, the average genetic lengths be-
tween adjacent markers were 2.2 and 0.7 cM for the HO
and LR populations, respectively, which were equivalent to
approximately 2.6 and 0.97 Mb in physical length (Add-
itional file 1: Table S4). To evaluate the quality of the link-
age maps, plots were drawn to compare the order of
markers, which illustrated an excellent collinearity between
physical and genetic maps (Fig. 2, Additional file 1: Figure
S2). In addition, QTL mapping of cob color in the HO
population and silk color in the LR population were per-
formed to assess the power and accuracy of the genetic
maps of each population. The QTL for cob and silk color,
called pCI and pSI0 here, respectively, were detected with
the highest LOD values of 55.7 and 7.2 for the peaks

located at 47.8 and 138.1 Mb on chromosome 1 and 10, re-
spectively (Fig. 3). For pC1, a cloned gene, P1I (for pericarp
colorl), which conditions red flavonoid pigment and phlo-
baphene in the floral organs, including the kernel pericarp,
cob glumes, tassel glumes, and silk [31, 32], lies in this
QTL. A classical gene, R, located in the QTL pSI10 that
regulates anthocyanin pigmentation in tissues is corelated
with the color of the kernel pericarp and silk [33, 34].

QTL mapping of RPR in each RIL population

QTL mapping of RPR evaluated in seven stages in each
environment was performed using a high-quality genetic
map in the R package R/gt/ version 1.44-9 [35]. A total
of 66 QTL were detected for RPR in the HO population,
which included 26, 20, and 20 QTL identified in the
three environments. The physical lengths of the confi-
dence intervals for these QTL spanned from 0.83 to
29.11 Mb, with an average length of 6.54Mb. The
phenotypic variance of RPR explained by each QTL
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Fig. 2 Distribution of and analysis process for genotypic data in the LR (Zheng58 x HD568) population. The outmost layer with the scale
represents ten chromosomes in maize. a Distributed proportion of each polymorphic SNP within the RIL population. The red color represents the
ratio of individuals with genotypes derived from Zheng58; green color represents the ratio of individuals with genotypes derived from HD568;
gray color is the reference line for 0.5. b Distribution of chi-square values for each SNP within ten chromosomes. The green color denotes
unqualified markers with P values lower than 0.05. ¢ Density of qualified SNPs based on the chi-square test (1.0 Mb window size). The scale with
different colors is an indicator of the number of markers within the unit window size, and the numbers from inner to outer are 0 to 50 with
spacing of 10. d Physical distribution of bin markers on each chromosome. e Distribution of bin markers in the linkage map. Gray lines denote

the comparison of the order of bin markers shared between physical and genetic maps
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ranged from 1.95 to 13.61%, with a mean value of 7.01%
of the variation in RPR. The genetic effects for each
QTL were estimated ranging from - 0.24 to 0.29 (Add-
itional file 1: Table S5). Furthermore, the alleles derived
from BY804 decreased the stalk strength in RPR when
the value of the genetic effect was negative. On the other
hand, alleles from B73 improved RPR when the genetic
effect of the QTL was positive. A total of nine QTL
could individually explain more than 10% of the pheno-
typic variance in RPR, and four of these QTL were de-
tected in stage AS30 (Additional file 1: Table S5). In
addition, a total of three QTL were identified in 2013B
with overlapped confidence intervals and had higher
genetic effects, indicating this QTL could improve RPR
from 0.25 to 0.29 kg/mm?* (Additional file 1: Table S5).
As for the LR population, a total of 45 QTL were identi-
fied for RPR in the two environments, which contained
23 and 22 QTL. The confidence intervals for each QTL
spanned physical lengths from 0.70 to 64.49 Mb, with an
average length of 8.37 Mb; 38 of these were shorter than
14.0 Mb in physical length (Additional file 1: Table S6).
The phenotypic variance explained by each QTL for
RPR ranged from 1.85 to 14.06%, with a mean value of
6.31% of the variation in RPR. Moreover, the genetic ef-
fects of each QTL were calculated ranging from - 0.19
to 0.26 (Additional file 1: Table S6). Besides, if the value
of the genetic effect was positive, the alleles could derive
from HD568 and enhance stalk strength in RPR. How-
ever, alleles could exert a negative effect on RPR when
the genetic effect of QTL was negative (Additional file 1:
Table S6). There were three QTL related to RPR that
could singly explain more than 10% of the phenotypic
variance, and 2 of these QTL were identified in stage
AS10 (Additional file 1: Table S6). The relationship be-
tween the QTL number and broad-sense heritability was
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analyzed using BLUE values to perform QTL mapping
in each population. The number of QTL increased as
the broad-sense heritability estimated for RPR in each
stage increased across environments (Fig. 4a). On the
other hand, as the genetic correlation coefficient be-
tween stages increased, the number of overlapped QTL
for both stages increased (Fig. 4b). Finally, a total of 18
pleiotropic QTL (pQTL) were detected by integrating
the overlapped genomic region among 111 QTL for RPR
in two populations, which were located on chromosomes
1 to 9 (Table 1). In particular, pQTL6-2, whose confi-
dence interval encompassed 16 QTL that were identified
in the HO population across three environments, was lo-
cated on chromosome 6, with a physical length of 8.56
Mb. The phenotypic variance explained by this pQTL in
different situations ranged from 3.57 to 13.31% of vari-
ation in RPR, with a mean of 7.81%. Furthermore, the
genetic effects were estimated ranging from - 0.09 to -
0.24, with an average effect of —0.19 (Table 1, Fig. 5,
Additional file 1: Table S5). In addition, pQTL8 was
identified and had a physical length of 22.42 Mb that in-
cluded 9 QTL located on chromosome 8, of which eight
QTL were derived from the LR population and another
QTL was detected with a lower genetic effect in the HO
population (Table 1, Additional file 1: Figure S3, Add-
itional file 1: Table S5, S6).

GO enrichment and KEGG pathway analysis for candidate
genes

According to the available database for maize gene anno-
tation accessible at MaizeGDB, a total of 106 predicted
candidate genes with physical regions corresponding to
the confidence intervals of these QTL were selected and
annotated. Moreover, these candidate genes were deter-
mined according to the list of classical genes described in
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Table 1 Pleiotropic QTL (pQTL) for rind penetrometer resistance in two RIL populations

pQTL® ChrP Interval® (Mb) Physical Iengthd (Mb) No. of QTL Integrated QTL®

pQTL1-1 1 17.74-19.7 1.96 4 gAhbI-1, gAhf1, gChb1, gChgl

pQTL1-2 1 49.39-585 9.1 5 gAhel, gAhg1, qChcl, gChd1, qChel-1

pQTL1-3 1 212.31-234.79 2248 3 qBIf1-1, qClai, gBhg1

pQTL1-4 1 260.15-276.99 16.84 3 qChal-2, gChel-2, qChf

pQTL2-1 2 2297-31.29 832 4 gAhb2, gAhc2, gAhd2, qChb2

pQTL2-2 2 156.86-174.98 18.12 2 gAhg2, gAhe2

pQTL3-1 3 210.76-215.02 426 3 qChe3, gChd3, gChf3

pQTL3-2 3 224.13-22551 1.38 3 qClf3, qClg3, gClb3-2

pQTL4-1 4 89-12.03 313 4 qBIb4-1, qBlc4, qCld4, qCle4

pQTL4-2 4 177.15-189.04 11.89 5 qBhg4, qBla4, gBIf4, gClb4, gBIb4-2

pQTL5-1 5 46.08-69.55 2347 3 qCle5, qClf5-1, qClg5

pQTL5-2 5 208.1-2104 23 4 qClb5, qCIf5-2, qClc5, gCld5-2

pQTL6-1 6 118.15-137.9 19.75 7 qBhc6-1, gAhc6-1, gBhd6-1,
qBhf6-1, gBhg6-1, gAhf6—1, gAhg6-1

pQTL6-2 6 15847-167.03 856 16 gAhe6, gAhg6-2, GAhC6—2, GAhd6, gAhf6-2,
qBhb6, gBhc6-2, qBhd6-2, gBhe6, gBhf6-2,
qChdeé, gChgé, qBhg6-2, qChb6, qChc6, gChe6

pQTL7-1 7 13-4.06 276 2 gAhe7, gAhg7

pQTL7-2 7 152.95-157.9 495 2 qCla7-2, gBhb7

pQTL8 8 118.33-140.75 2242 9 qClf8, qBIb8, qBIc8, qBle8-2, qBlg8, qCic8,
qCle8, gBId8, gAha8

pQTLY 9 129.19-133.92 473 2 gAhc9, gAhd9

@ The name of pleiotropic QTL

P Chr.: number of chromosomes

¢ Interval: physical range of flanking markers

9 Physical length: physical distance between flanking markers

¢ The name of each QTL consists of information regarding the environment (A for 2012B; B for 2012H; C for 2013B), stage (a for V10; b for DTS; ¢ for AS10; d for
AS20; e for AS30; f for AS40; g for AS50), population type (h for high-oil population; | for lodging-resistance population), and number of the chromosome. V10: the
tenth-leaf stage; DTS: days to silking; AS10: 10 days after silking; AS20: 20 days after silking; AF30: 30 days after silking; AS40: 40 days after silking; AS50: 50 days

after silking. 2012B: Beijing in 2012; 2012H: Hainan in 2012; 2013B: Beijing in 2013

the annotation database, and the description of biological
function for the predicted genes was usually related to
substance transportation and cell growth (Additional file
1: Table S7). GO analysis of the candidate genes illustrated
that the enrichment items mainly included biological pro-
cesses related to metabolism, biosynthesis, response to
stress, and material transportation. In addition, the cell
components relevant to genes consisted of the plasma
membrane, Golgi apparatus, endoplasmic reticulum, and
cell wall (Fig. 6a). As for the KEGG analysis of the pre-
dicted genes, a total of 12 pathways were identified
(Fig. 6b). These pathways included the biosynthesis of sec-
ondary metabolites, starch and sucrose metabolism, plant
hormone signal transduction, galactose metabolism, etc.,
which could be related to the formation of the cell wall
and could contribute to the formation of RPR.

Improving genomic selection for RPR using models
considering fixed effects or multivariate

Prediction accuracies in the HO population using the
UV model ranged from 0.06 to 0.52, and a minimal

value was estimated using phenotypic data from
2012H. The ryp estimated in stage V10 in three envi-
ronments was lower than in other stages (Fig. 7a,
Additional file 1: Table S8). As for the performance
of the UV model in the LR population, ryp changed
from 0.38 to 0.58 in various stages across environ-
ments (Additional file 1: Table S8). However, im-
provement of ryp could be achieved relative to its
estimation by the UV model when the QTL detected
in each stage within different environments were con-
sidered as fixed effects in the GBLUP model. The
maximum difference of ryp between the UV and
FIXED models was 0.21 in stage V10 within 2012H.
In general, the ryp values based on the FIXED model
were higher than those calculated by the UV model.
Moreover, the changes of ryp evaluated by the FIXED
model ranged from 0.26 to 0.63 in the HO population
and from 0.41 to 0.61 in the LR population (Fig. 7a,
Additional file 1: Table S8). Compared to the FIXED
model, the ME model could further enhance the pre-
diction accuracy, for which the phenotypic data of
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RPR investigated in the first two environments were
used to construct auxiliary variates in the multivariate
model. The improvement of ry;p between the FIXED
and ME models ranged from 0.02 to 0.17 in each
stage (Fig. 7a). Furthermore, the proportions of re-
sidual variance estimated by the FIXED and ME
models were lower than those calculated by the UV
model, which ranged from 0.43 to 0.71 in each stage.
However, the proportions of residual variance

evaluated by the FIXED model were overall higher
than those in the ME model (Additional file 1: Table
S9). Additionally, cross-validation was performed by
the MS model using the RPR values evaluated in the
first six stages as auxiliary variates to predict RPR in
the seventh stage. The ryp was significantly increased
in both RIL populations relative to its value estimated
by the UV model (Fig. 7b). In addition, the propor-
tions of variance components corresponding to the
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auxiliary variates in the MS model were very high,
which can explain most of the phenotypic variance
(Additional file 1: Table S10).

Discussion

Stalk strength is a highly important agronomic trait in
maize because of its relationship with stalk lodging and
grain yield. However, RPR, as a crucial measurement
index, can efficiently and precisely evaluate stalk
strength to improve the lodging-resistance of breeding
lines. Hence, the genetic dissection of RPR can provide
powerful assistance for the selection of candidate lines
with high stalk strength based on functional molecular
marker detected by association and linkage mapping [1,
16, 20, 28, 29]. Furthermore, the utilization of genomic
selection can also accelerate the breeding process of
complex traits without phenotyping in later breeding
phases [36-39]. Taking full advantage of genomic

information led to better genomic prediction of RPR in
this study.

The relatively higher stalk strength in 2012B compared
to that in other environments is likely attributed to the
lower planting density in that environment, indicating
that a high planting density may reduce RPR, which is
consistent with a previous study [6]. According to the
ANOVA results, RPR has relatively high broad-sense
heritability, which is supported by several previous stud-
ies [1, 19, 20, 26, 27], illustrating that genetic effects can
account for the most proportion of phenotypic variance
in RPR, and that better selection of RPR can be achieved
in early generations if target lines are used as parents to
construct breeding populations to screen out varieties
with high stalk strength. However, RPR, a complex
quantitative trait, is controlled by multiple genes with
minor effects, which has been discussed in previous
studies [1, 19, 28, 29]. The breeding scheme of
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population recurrent selection may be more efficient for
the pyramid of favorable alleles related to RPR [8, 15,
25]. In brief, combining early generation selection and
population improvement can enhance the breeding
efficiency of selecting breeding lines with high stalk
strength. But a lower broad-sense heritability was
estimated in stage V10 in each RIL population, which may
be attributed to the fact that stage V10 is a vegetative
growth stage and nutrient and dry weights greatly increase
in this stage [40]. Individual plants have weak stalk
strength due to the rapid growth of the internodes, which
can be affected by nutrient deficiencies, heat, and drought
[41]. As illustrated by the ANOVA results in the present
study, nongenetic effects account for a higher proportion
of phenotypic variance of RPR in stage V10. According to
the results of the phenotypic clustering and correlation
analyses, stage V10 was individually separated from other
stages and was associated with other stages with lower
correlation coefficients, which further indicated that RPR
in various stages may be controlled by different genetic
factors and that the last six stages might have a similar
genetic basis. Nevertheless, DTS was not classified into
common subgroup with other stages after silking, which
was likely attributed to the fact that the latter stages
belonged to the phase of kernel development undergoing
grain filling to maturity. On the other hand, the difference
in RPR values between stages except for stage V10 was
small, as shown by the distribution boxplot of each RIL
population. Moreover, the broad-sense heritability in these
stages was relatively higher than it was in stage V10.
Hence, RPR measured in the silking phase or stage after
silking can be used to evaluate stalk strength, as shown by

several previous studies that had been provided evidence
directly and were performed in silking phase or a few
weeks after flowering [4, 20, 23, 26, 28, 29, 42]. Finally, in-
bred lines with high stalk strength in this study can be se-
lected as novel germplasms to make candidate crosses in
the future.

Genetic maps of each RIL population were constructed
by the R package based on the Kosambi mapping function.
Classical and cloned genes, including PI [31, 32] and RI
[33, 34], were detected in each RIL population, indicating
that these constructed linkage maps had high quality and
accuracy to allow subsequent analysis of QTL mapping.
The broad-sense heritability of RPR varied from stage to
stage and was positively correlated with the number of
QTL detected in each stage. It is implied that more QTL
can be identified to better dissect the genetic basis of com-
plex traits if a high broad-sense heritability is estimated for
the target traits. On the other hand, more overlapped and
common QTL for RPR can be obtained between different
stages when the genetic correlation coefficient of both
stages is increasingly large. In general, the higher the
genetic correlation between traits, the more common the
QTL, which may be illustrated by the fact that these traits
were controlled by alike or linked genes or had common
metabolic pathways [43]. The position and number of QTL
detected in each experimental population were generally
different across stages and environments. It is implied that
discrepant genetic mechanisms may exist for RPR, which
has been investigated in various situations, and it is further
indicated that gene expression may be characterized by
spatiotemporal specificity and is activated at specific times
during plant development. Besides, the phenotypic variance
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explained by each detected QTL was lower than 15%,
which was consistent with the results of other studies [1,
19], indicating that RPR is controlled by multiple alleles
with minor effects and that there is a lack of major QTL
for this trait. However, there were 18 pleiotropic QTL with
overlapped genomic regions that were identified in
multiple stages. In particular, pQTL6-1 in the HO
population was repeatedly detected 16 times in different
stages across environments. In addition, the pleiotropic
QTL, namely, pQTLS, was identified 9 times across various
phases and environments, including 8 times in the LR
population and one time in the HO population. This
phenomenon illustrates that certain alleles related to RPR
are steadily expressed across stages during the develop-
ment of maize and contribute to the formation of stalk
strength throughout the entire growth period. From
another perspective, several QTL detected in this study,
including gAhbI-2, qAhg2, qAhe2, qBhe2—-1, and gBhc3,
were identified and consistent with previous studies in
which discrepant populations and genotypic data were
used to perform association or linkage mapping to explore
the genetic architecture of RPR [20, 27-29], which provides
further support for the topic mentioned above that some
QTL associated with RPR are steadily expressed in diverse
experimental populations. These loci in the genome may
be regarded as candidate genomic regions and can likely be
used to perform fine mapping and identify functional genes
to dissect the genetic mechanism of RPR. Additionally, the
relatively obvious difference in QTL mapping for RPR
among the experimental populations was determined
according to the results of this study and other previous
studies [1, 19, 21, 26]. A reasonable explanation of this
difference is as follows: first, RPR is regarded as a complex
quantitative trait with an intricate genetic mechanism.
There may be epistatic effects in which a QTL can
interact with one QTL in this experimental popula-
tion and with another locus in other genetic back-
ground, so that the QTL will produce different
genetic effects in different populations; the second
explanation is that the QTL related to target traits
can be legitimately detected following segregation and
recombination within this region. In other words, the
associated QTL cannot be identified in a situation in
which both parents of an experimental population
have identical alleles at a QTL; the third explanation
is that many QTL with minor genetic effects will not
be detected repeatedly because they likely lack suffi-
cient statistical power for QTL mapping [1, 44].
Hence, further research is needed to break RPR into
a few direct components or sub-factors that can be
used to more effectively dissect the genetic basis and
explore candidate genes for stalk strength with the
purpose of providing advice for marker-assisted
breeding.
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As an efficient approach for exploring the genetic
architecture of target traits, linkage mapping has been
widely applied to identify QTL and explore functional
genes in molecular genetics research. The identified
QTL can be used to develop molecular markers to assist
the practical breeding and accelerate the selection
process. Several primary candidate genes were found in
the MaizeGDB database that corresponded to RPR in
this study. One candidate gene within pQTL6-2 with
the gene model ID GRMZM2G031200 is located on
chromosome 6 with a physical position of 164.69 Mb.
The homologs of this gene in Arabidopsis encode
regulated transcription factors, namely, secondary wall-
associated NAC domain proteinl (SND1), which is
required for the normal biosynthesis of the secondary
wall and is a critical transcriptional switch to activate
this developmental program. The SND1 combines with
other transcription factors to constitute a transcriptional
network that regulates downstream targets that affect
the biosynthesis of the secondary wall in fibers [45].
Moreover, two candidate genes were detected within the
genomic region of pQTL6-1 consisting of seven RPR-
related QTL with the model IDs GRMZM2G027723 and
GRMZM2@G135108 that are relevant to the formation of
cell wall components. The first gene is ZmCesA-2, which
is required to produce cellulose and is involved in
primary wall biosynthesis [46, 47]. The another gene,
namely ZmPox3, is a critical gene in the process of lignin
biosynthesis and is involved in  monolignol
polymerization and exerts a positive effect on cell wall
digestibility [48]. In addition, a candidate gene located in
pQTL4-2, ZmFBL41, has the biological function of
resistance to banded leaf and sheath blight and indirectly
influences the accumulation of lignin. This gene encodes
an F-box protein (ZmFBL41) that interacts with the pro-
tein ZmCAD, and its knockout has a negative effect on
ZmCAD degradation and thus promotes lignin biosyn-
thesis and restricts lesion expansion [49]. These descrip-
tions indicate that candidate genes corresponding to cell
wall components may regulate and determine the forma-
tion of RPR. On the other hand, several studies have
reported the results of QTL mapping for cell wall com-
ponents [26, 50-52], and some of these QTL have over-
lapped confidence intervals with the QTL identified in
this study. Regarding pQTL6-2 detected in the HO
population, its genomic region is consistent with the
physical position of QTL associated with lignin, acid de-
tergent fiber (ADF), neutral detergent fiber (NDF), acid
detergent lignin/NDF, and in vitro dry matter digestibil-
ity (IVDMD) identified in previous studies [50, 51, 53—
55]. Based on the results of related studies, pQTL4-2
has a physical region that overlaps with other loci that
are associated with IVDMD and lignin [49, 51], and the
interval of pQTLS is consistent with the QTL related to
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IVDMD, which have negative relationships with lignin
content [26, 52]. Hence, this evidence implies that cer-
tain QTL have pleiotropic effects and can control both
RPR and the content of cell wall components, which
likely indicates that RPR is closely associated with cell
wall components, such as cellulose, hemicelluloses, and
lignin, consistent with the results of previous studies [20,
26, 28]. In addition, the results of the GO and KEGG
analyses provide further support for the abovementioned
scenario because the enrichment items and metabolic
pathways associated with cellar components and the for-
mation of the cell wall were identified in this study. Con-
sequently, candidate genes relevant to RPR are likely
involved in the regulation and control of cell wall com-
ponents, which may exert an important effect to im-
prove RPR.

Genomic selection has been recognized as an efficient
approach to select for complex traits in comparison with
conventional marker-assisted selection [37, 38, 56, 57].
In the present study, the prediction accuracy estimated
in each stage and population was obviously different
when the UV model was used to perform cross-
validation, which was likely attributed to the different es-
timates of broad-sense heritability in various situations.
This phenomenon is in accordance with previous studies
illustrating that broad-sense heritability is an important
factor that impacts the evaluation of prediction accuracy
[58-61]. The information on functional loci identified by
linkage mapping can be used as fixed effects in the GS
model to improve the predictive ability of models, which
was performed in this study and in previous research
[62-65]. However, the prediction accuracy was increased
when the fixed effects model was implemented using the
QTL that explained the proportion of phenotypic vari-
ance lower than 10%, which was consistent with a previ-
ous study [66]. This result illustrates that QTL related to
target traits have the potential ability to improve predic-
tion accuracy and should be assigned important roles in
the models. A remarkable improvement of prediction ac-
curacy was achieved in this study when the multivariate
model was applied to perform the GS. Several previous
studies have shown that using correlated traits as auxil-
iary variates in the GS model can efficiently enhance the
prediction accuracy and is obviously superior to the uni-
variate model [67-71]. The increase of prediction accur-
acy estimated by the FIXED and multivariate models is
mainly attributed to the higher proportion of genetic
variance captured by these models than in the univariate
model, as shown in the present study and previous re-
searches [67, 72]. Another explanation may be that
multivariate models likely capture both additive and
nonadditive interaction effects by using auxiliary covari-
ates in the models [73]. In brief, information on genetic
dissection or additional auxiliary variates can be

Page 11 of 16

integrated into improved models to enhance the selec-
tion efficiency of complex agronomic traits, such as
yield, RPR and other resistance-relevant traits. Hence,
several advices for GS-assisted breeding programs can
be concluded to improve selection efficiency and further
enhance the genetic gain per breeding cycle. Regarding
the target traits with complex genetic architecture, the
first point is that the information of functional markers
developed based on cloned genes or validated QTL can
be applied to modified models to improve the precision
of the estimated marker effects; the second point is that
the information from genetic correlated traits can be
used to achieve a higher prediction accuracy for the tar-
get trait, namely, by using other traits as auxiliary vari-
ates in statistical models; and the last point is that
historical data accumulated by breeding experiments can
be used to capture the interaction effects between the
environment and genotype for the purpose of increasing
the predictive ability of GS models. These points may
allow better selection of candidate lines with good per-
formance in practical GS-assisted breeding schemes.

Conclusions

Stalk lodging severely impacts plant standability and grain
yield in maize. Stalk strength is an important agronomic
trait and has a crucial effect on the improvement of
lodging-resistance in modern maize breeding, and strong
stalks can contribute to reduce lodging and achieve a har-
vestable yield. In the present study, phenotypic values
evaluated in three environments and genotypic data iden-
tified by SNP array from two RIL populations were used
to perform genetic dissection and genomic selection for
rind penetrometer resistance. RPR has high genetic com-
plexity and varies from stage to stage. Higher broad-sense
heritability was obtained when RPR was investigated in
the silking phase and stages after silking; these stages
could be selected to better evaluate RPR for candidate
lines. According to the QTL mapping results, RPR as a
quantitative trait is controlled by multiple genes with
minor effects. However, several QTL hotspots were identi-
fied in multiple stages across different environments,
which might be able to be applied to develop functional
markers to implement MAS for the selection of breeding
lines. Furthermore, the annotation of candidate genes was
based on the MaizeGDB database, and these candidates
were usually involved in the regulation and formation of
cell wall components. In addition, various models consid-
ering fixed effects or auxiliary variates were implemented
to perform cross-validation, which achieved a remarkable
improvement in prediction accuracy compared to the uni-
variate model. Finally, the illustration of linkage mapping
and genomic selection can provide pertinent suggestions
for improving stalk strength and further enhancing
lodging-resistance in maize breeding.
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Methods

Plant materials

This experiment was performed using two RIL popula-
tions. The first was derived from crossing B73 and
BY804, which consisted of 188 RILs. B73 is a famous
elite line developed from the Iowa Stiff Stalk Synthetic
population. BY804 is a special inbred line with a high
kernel oil content, which was derived from a Beijing
high-oil population. This RIL population was obtained
from China Agricultural University. Another RIL popu-
lation was composed of 215 lines, which were derived
from a lodging-resistant maize hybrid with the elite in-
bred lines Zheng58 and HD568 as parents. Zheng58 is a
famous inbred line that is the parent of the widely grown
maize hybrid Zhengdan958. HD568 was purposefully se-
lected with the criterion of high stalk strength. Finally,
these two RIL populations are abbreviated as HO (high-
oil) and LR (lodging-resistance) for simplicity.

Field trial and phenotyping

A randomized incomplete block design with two repli-
cates was implemented for the trial in each year. For the
HO population, an experiment was primarily performed
in Beijing in the summer of 2012, in which all lines were
sown in a single row and the planting density was 49,
500 plants per hectare. In addition, both RIL populations
were evaluated in Hainan Province in the winter of 2012
and Beijing in the summer of 2013. Furthermore, each
line was assigned to a single-row plot, and the planting
density was 60,000 plants per hectare. The RPR in seven
stages, including the tenth-leaf stage (V10), days to silk-
ing (DTS), and 10 to 50 days after silking (AS10, AS20,
AS30, AS40 and AS50), was evaluated in the middle of
the flat side of the third stalk internode aboveground
with an electronic rind penetrometer (AWOS-SLO04,
Aiwoshi Science & Technology Co. Ltd. Company,
Hebei, China). In this experiment, two to five randomly
selected plants were used to investigate RPR measure-
ments, and the RPR of each line was determined by the
mean of ten measures.

Phenotypic data analysis
Analysis of variance, broad-sense heritability and best
linear unbiased estimation.

Analysis of variance (ANOVA) was performed using
the aov function in the R package stats version 3.6.0 (R
Core Team, 2019). The linear model is as follows:

Vik = W+ g +ej+ge;+ i)t Eijks

where y;; is the phenotypic values of target trait, u is
the grand mean, g is the genetic effect of the i geno-
type, ¢ is the environmental effect of the j* environ-

ment, ge; is the interaction effect between the i
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genotype and the j* environment, r;; is the effect of the
k™" replicate, and g;x is the residual error. Broad-sense
heritability was estimated according to the formula:

H? = 6202 + /e + 02 re),

2
2
genotype, genotype by environment interaction and ran-
dom error, respectively, and r and e are the numbers of
replicates and environments, respectively. In addition,
the R package [me4 version 1.1-21 was used to perform
the best unbiased linear estimation (BLUE) for the gen-
etic effects with the following mixed linear model
(MLM) [74, 75]:

where o O'ée, and o2 are the variance components of

Vi = K+ 8 1€ + geij + Tjk + Eijks

which all components were described based on Liu
et al. (2019) [76]. The phenotypic values of RPR deter-
mined in the winter of 2012 and the summer of 2013
were jointly used to perform ANOVA and estimate the
BLUE values. The BLUE values were used to perform
QTL mapping to detect the relationship between H* and
the QTL number.

Construction of the hierarchical clustering of RPR in
various stages

For the construction of the hierarchical clustering of
RPR in two RIL populations, the BLUE values of each
stage were first standardized to a zero mean and unit
variance according to the following formula:

Yij = (X,]—mean(X,))/sd(X,),

where Yj; is the transformed value, X;; is the BLUE
values of the i”* genotype in the /”* stage, mean() is de-
fined as the mean value, and sd() is the standard devi-
ation. Furthermore, the transformed values of RPR in
each stage were used to calculate the Euclidean distances
between all pairs of stages, which was performed by the
euclidean method with the dist function in the R pack-

age stats version 3.6.0. The formula is as follows [43]:

1/2

Dyp = (Z ?:I(YiA_YiB)2) )

where D, is the value of the Euclidean distance be-
tween stages A and B; Y, and Y;p are the transformed
values of the i”* genotype in stages A and B, respectively;
and n is the individual numbers of two RIL populations.
The hclust function was used to construct the hierarch-
ical clustering tree based on the distance values of all
pairs of seven stages.
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Phenotypic and genetic correlation

The phenotypic correlation (r,) is a measurement of the
association between the phenotypic values of individuals
for a pair of targeted traits. The genetic correlation (r,)
is a parameter of genetics that can be used to evaluate
the degree of association in genetic variation between
two traits. The correlation coefficients are estimated by
the following formulae [77-79]:

ry = covp(A, B)/\/VpaVpB;
g = covg(A, B)/\/VeaVes;

where cov,() and cov,() are the phenotypic and genetic
covariances between traits, respectively, and V, and V,
are the phenotypic and genetic variances of target traits,
respectively. Phenotypic and genetic correlation analyses
were performed using the cor function in the R package
stats version 3.6.0 (R Core Team, 2019) and the asreml
function in the R package ASReml version 3.0 [80], re-
spectively. Phenotypic data of RPR evaluated in each en-
vironment were utilized to estimate the phenotypic
correlation coefficient. However, the RPR values deter-
mined in the winter of 2012 and the summer of 2013
were used to perform an analysis of genetic correlation.

Genotypic data analysis

Genotyping and quality control

For the HO population, all inbred lines were used for
genotyping with the MaizeSNP3K array, which is a sub-
set of the Illumina MaizeSNP50 BeadChip [81]. Markers
with missing rates greater than 0.20 and minor allele fre-
quencies (MAFs) less than 0.05 were removed. However,
the maize 55K SNP array [82] was used to genotype all
the RILs in the LR population. The process of quality
control for genotypic data in LR population was based
on Liu et al. (2019) [76]. Moreover, chi-square tests were
performed for all the SNPs in each population with the
aim of filtering out markers with segregation distortion
(P <0.05) in the two RIL populations.

Construction of the bin map and QTL mapping

Bin markers were detected and aligned with the sliding-
window approach, which was applied to identify variant
calling errors and evaluate the ratio of SNP alleles de-
rived from the parents. The detailed method of bin map
construction was described as Liu et al. (2019) [76],
which was based on several studies [83, 84]. The genetic
maps of both RIL populations were constructed by the
Kosambi mapping function in the mstmap function in
the R package ASMap version 1.0-4 [85]. QTL related
to RPR were detected by composite interval mapping
using the cim function in the R package R/gtl version
1.44-9 [35]. The threshold of logarithm of the odds
(LOD), confidence interval of each QTL, and pleiotropic
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QTL were analyzed and determined according to several
studies [76, 83]. Furthermore, the most likely candidate
genes within the confidence interval were consulted and
selected from the maize genetics and genomics database
(MaizeGDB, https://www.maizegdb.org/). Because fewer
qualified markers were retained in the HO population,
these SNPs were directly used to construct a linkage
map and perform further analyses without detecting bin
markers. However, the bin markers could be checked
and used to perform subsequent analyses in the LR
population.

Analysis of GO enrichment and KEGG pathway

Gene ontology (GO) enrichment analysis was performed
using singular enrichment analysis (SEA) by AgriGO
version 2.0 (http://systemsbiology.cau.edu.cn/agriGOv2/
index.php) with the Fisher statistical test method and
Yekutieli multitest adjustment method at a significance
level of P < 0.05 [86]. Additionally, the slim of GO func-
tion was summarized by GOSlimViewer (https://agbase.
arizona.edu/cgi-bin/tools/goslimviewer_select.pl) of
AgBase [87]. For Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway annotation, KOBAS version 3.0
(http://kobas.cbi.pku.edu.cn/index.php) was used to per-
form an analysis of the functional gene set enrichment
with Fisher statistical method and the Benjamini and
Yekutieli FDR (false discovery rate) correction method
(P <0.05). Significant GO items and KEGG entries were
extracted to draw plots.

Genomic selection

A 5-fold cross-validation scheme with 100 replicates was
used to assess the performance of each model and calcu-
late the prediction accuracy (ryp), which was the correl-
ation coefficient between genomic-estimated breeding
values (GEBVs) and phenotypic values. Three models
were used to perform cross-validation, which were de-
veloped from the genomic best linear unbiased predic-
tion (GBLUP) model. The univariate model (UV) is
essentially a general form of the GBLUP model, and the
mixed model is as follows [88, 89]:

y=1l,pu+u+e,

where y is a vector (1 x 1) of phenotypic values, 1, is a
vector (1 x 1) of ones, y is the overall mean, u is the ran-
dom effects that obeys a normal distribution N(0,G aﬁ),
o2 is the genetic variance, G is the genomic relationship
matrix among all genotypes calculated following VanRa-
den (2008) [88], ¢ is a vector (n x 1) of random terms
with a normal distribution N(0,1 ag), and I is an identity
matrix. In addition, # is the number of individuals. For
the GBLUP model including fixed effects (FIXED), the

formula can be described as [76]:
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y=XB+u+te,

where B is the vector (nx 1) of fixed effects, X is the
(n x p) design matrix, and the other parameters are iden-
tical to the description mentioned above. All markers
with peak LOD value of QTL in each target trait were
selected to construct the X design matrix, and p denotes
the number of target markers. However, the G matrix is
calculated by the design matrix containing m-p markers,
where m is the number of all markers in each RIL popula-
tion. Finally, the multivariate model was developed from
the univariate model, and the model was as follows [67]:

y=lputu+v+e,

where y is a vector (n x 1) of the target variate, v is the
random effects for auxiliary variates with a normal dis-
tribution N(0,G, ¢2), o? is the variance component of v,
and the other parameters are identical to the description
mentioned above. The G, is the multivariate relationship
matrix, which was calculated as follows: G, = nM,M,’/
trace(M,M,’), where M, =[y1,y2....Yir-Ve1)» ¥i IS a
scaled vector (n x 1) of the phenotypic values of the it
environment or stage that were standardized to zero
mean and unit variance, ¢ is the number of all variates,
and trace denotes the sum of all diagonal elements. The
phenotypic data of the t-1 environments or stages are
recognized as auxiliary variates in the model. If auxiliary
variates were derived from multiple environments, the
multivariate model would be abbreviated as ME. For
auxiliary variates derived from multiple stages, the
model was represented as MS for short. These models
were fitted using the R package BGLR version 1.0.8 [90],
and the iteration of the Gibbs sampler was set to 10,000,
with the first 5000 samples discarded as burn in.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512870-020-2270-4.

Additional file 1 : Table S1. Analysis of variance (ANOVA) and broad-
sense heritability for rind penetrometer resistance of various stages across
environments in two RIL populations. Table S2. Summary of the bin
map of LR population (Zheng58 x HD568). Table S3. Summary of the
bins that were greater than 10.0 Mb in length in LR population

(Zheng58 x HD568). Table S4. Summary of the high-density genetic map
derived from two RIL populations. Table S5. QTL for rind penetrometer
resistance in high-oil population (B73 x BY804). Table S6. QTL for rind
penetrometer resistance in lodging-resistance population (Zheng58 x
HD568). Table S7. Candidate genes annotation. Table $8. Comparison of
prediction accuracies between models. Table S9. Proportion of variance
components estimated by UV, FIXED and ME models. Table S10. Propor-
tion of variance components estimated by UV and MS models. Figure
S1. Phenotypic correlation of rind penetrometer resistance between all
pairs of stages within each environment in two RIL populations. (A) to (Q)
High-oil population (B73 x BY804) in Beijing in 2012, Hainan in 2012 and
Beijing in 2013. (D) to (E) Lodging-resistance population (Zheng58 x
HD568) in Hainan in 2012 and Beijing in 2013. V10: the tenth-leaf stage;
DTS: days to silking; AS10: 10 days after silking; AS20: 20 days after silking;
AF30: 30 days after silking; AS40: 40 days after silking; AS50: 50 days after

Page 14 of 16

silking. Figure S2. Comparison of the physical map and genetic map
constructed with bin markers in the high-oil population (B73 x BY804).
The x-axis refers to the linear order of bins based on physical positions in
the maize reference genome, and the y-axis denotes the order of bins
based on genetic distance in the linkage map; LG: linkage group; Chr.:
chromosome. Figure S3. lllustration of pQTL8 identified in various situa-
tions. Violin plots denote the difference between genotypes derived from
each parent; HO: the high-oil population (B73 x BY804); LR: the lodging-
resistance population (Zheng58 x HD568); RPR: rind penetrometer resist-
ance; V10: the tenth-leaf stage; DTS: days to silking; AS10: 10 days after
silking; AS20: 20 days after silking; AF30: 30 days after silking; AS40: 40 days
after silking; AS50: 50 days after silking; 2012H: Hainan in 2012; 2013B:
Beijing in 2013.

Abbreviations

ANOVA: Analysis of variance; AS10 to AS50: 10 to 50 days after silking;

BLUE: Best linear unbiased estimation; DTS: Days to silking; GO: Gene
ontology; GS: Genomic selection; GWAS: Genome-wide association study;
HO: High-oil; KEGG: Kyoto encyclopedia of genes and genomes;

LOD: Logarithm of the odds; LR: Lodging-resistance; MAF: Minor allele
frequency; MAS: Marker-assisted selection; QTL: Quantitative trait loci;

RIL: Recombinant inbred line; RPR: Rind penetrometer resistance; SNP: Single
nucleotide polymorphism; SSR: Simple sequence repeats; V10: Tenth-leaf
stage

Acknowledgments

The authors thank the anonymous reviewers for valuable comments and
suggestions that improved the manuscript, Dr. Wenbin Zhou, Institute of
Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS) for
technical assistance, and students and assistants for help in phenotyping,
and X. Yang and J. Li's laboratories at China Agricultural University for help
with population development. Thanks to Y. Zhou for reasonable suggestions.

Authors’ contributions

CH and HW conceived and designed the experiments and supervised the
research project. Phenotypic and genotypic data were investigated by XL,
and completed with the assistance of XH, KL, ZL, and YW. The analyses of
data were performed by XL. Then, XH, KL, ZL, and YW provided some
valuable and useful suggestions. This paper was written by XL and HW with
support from CH. All authors discussed the results and contributed to the
final manuscript. All authors read and approved the final manuscript.

Funding

This research was supported by the National Key Research and Development
Program of China (Grant No. 2017YFD0101201), the Agricultural Science and
Technology Innovation Program at CAAS, and the National Basic Research
Program of China (973 Program) (Grant No. 2014CB138200).

Availability of data and materials

Data supporting the results can be found in Additional file T and any other
datasets used and/or analyzed during the current study is available from the
corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 24 October 2019 Accepted: 29 January 2020
Published online: 07 May 2020

References

1. Flint-Garcia SA, Jampatong C, Darrah LL, McMullen MD. Quantitative trait
locus analysis of stalk strength in four maize populations. Crop Sci. 2003;43:
13-22.


https://doi.org/10.1186/s12870-020-2270-4
https://doi.org/10.1186/s12870-020-2270-4

Liu et al. BMC Plant Biology

20.

21.

22.

23.

24.

25.

26.

27.

(2020) 20:196

Ennos AR, Crook MJ, Grimshaw C. The anchorage mechanics of maize, Zea
mays. J Exp Bot. 1993;44:147-53.

Esechie HA, Rodriguez V, Al-Asmi H. Comparison of local and exotic maize
varieties for stalk lodging components in a desert climate. Eur J Agron.
2004;21:21-30.

Ma D, Xie R, Liu X, Niu X, Hou P, Wang K, et al. Lodging-related stalk
characteristics of maize varieties in China since the 1950s. Crop Sci. 2014;54:
2805-14.

Mihm JA. Breeding for host plant resistance to maize stem-borers. Int J Trop
Insect Sci. 1985,6:369-77.

Xue J, Zhao Y, Gou L, Shi Z, Yao M, Zhang W. How high plant density of
maize affects basal internode development and strength formation. Crop
Sci. 2016;56:3295-306.

Colbert TR, Darrah LL, Zuber MS. Effect of recurrent selection for stalk
crushing strength on agronomic characteristics and soluble stalk solids in
maize. Crop Sci. 1984;,24:473-8.

Dudley JW. Selection for rind puncture resistance in two maize populations.
Crop Sci. 1994;34:1458-60.

Jampatong S, Darrah LL, Krause GF, Barry BD. Effect of one- and two-eared
selection on stalk strength and other characters in maize. Crop Sci. 2000;40:
605-11.

Kamran M, Cui W, Ahmad |, Meng X, Zhang X, Su W, et al. Effect of
paclobutrazol, a potential growth regulator on stalk mechanical strength,
lignin accumulation and its relation with lodging resistance of maize. Plant
Growth Regul. 2018,84:317-32.

Kang MS, Din AK, Zhang Y, Magari R. Combining ability for rind puncture
resistance in maize. Crop Sci. 1999;39:368-71.

Gou L, Huang J, Zhang B, Li T, Sun R, Zhao M. Effects of population density
on stalk lodging resistant mechanism and agronomic characteristics of
maize. Acta Agron Sin. 2007;10:1688-95.

Thompson DL. Stalk strength of corn as measured by crushing strength and
rind thickness. Crop Sci. 1963;3:323-9.

Sibale EM, Darrah LL, Zuber MS. Comparison of two rind penetrometers for
measurement of stalk strength in maize. Maydica. 1992,37:111-4.

Martin SA, Darrah LL, Hibbard BE. Divergent selection for rind penetrometer
resistance and its effects on European corn borer damage and stalk traits in
corn. Crop Sci. 2004;44:711-7.

Hu H, Liu W, Fu Z, Homann L, Technow F, Wang H, et al. QTL mapping of
stalk bending strength in a recombinant inbred line maize population.
Theor Appl Genet. 2013;126:2257-66.

Zuber MS, Grogan CO. A new technique for measuring stalk strength in
corn. Crop Sci. 1961;1:378-80.

Ma Q-H. The expression of caffeic acid 3-O-methyltransferase in two wheat
genotypes differing in lodging resistance. J Exp Bot. 2009,60:2763-71.

Hu H, Meng Y, Wang H, Liu H, Chen S. Identifying quantitative trait loci and
determining closely related stalk traits for rind penetrometer resistance in a
high-oil maize population. Theor Appl Genet. 2012;124:1439-47.

Li K, Yan J, Li J, Yang X. Genetic architecture of rind penetrometer resistance
in two maize recombinant inbred line populations. BMC Plant Biol. 2014;14:
152.

Flint-Garcia SA, McMullen MD, Darrah LL. Genetic relationship of stalk
strength and ear height in maize. Crop Sci. 2003;43:23-31.

Gou L, Huang J, Sun R, Ding Z, Dong Z, Zhao M. Variation characteristic of
stalk penetration strength of maize with different density-tolerance varieties.
Trans Chin Soc Agric Eng. 2010;26:156-62.

Flint-Garcia SA, Darrah LL, McMullen MD, Hibbard BE. Phenotypic versus
marker-assisted selection for stalk strength and second-generation
European corn borer resistance in maize. Theor Appl Genet. 2003;107:1331-
6.

Butrén A, Malvar RA, Revilla P, Soengas P, Ordés A, Geiger HH. Rind
puncture resistance in maize: inheritance and relationship with resistance to
pink stem borer attack. Plant Breed. 2002;121:378-82.

Albrecht B, Dudley JW. Divergent selection for stalk quality and grain yield
in an adapted x exotic maize population cross. Crop Sci. 1987;27:487-94.
Meng Y, Li J, Liu J, Hu H, Li W, Liu W, et al. Ploidy effect and genetic
architecture exploration of stalk traits using DH and its corresponding
haploid populations in maize. BMC Plant Biol. 2016;16:50.

Zhang Y, Liang T, Chen M, Zhang Y, Wang T, Lin H, et al. Genetic dissection
of stalk lodging-related traits using an IBM Syn10 DH population in maize
across three environments (Zea mays L.). Mol Gen Genomics. 2019;294:
1277-88.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

42.

43.

45.

46.

47.

48.

49.

50.

51

52.

53.

Page 15 of 16

Peiffer JA, Flint-Garcia SA, Leon ND, McMullen MD, Kaeppler SM, Buckler ES.
The genetic architecture of maize stalk strength. PLoS One. 2013,8:e67066.
Zhang Y, Liu P, Zhang X, Zheng Q, Chen M, Ge F, et al. Multi-locus
genome-wide association study reveals the genetic architecture of stalk
lodging resistance-related traits in maize. Front Plant Sci. 2018,9:611.

Feng G, Liu Z Wu Y, Li Y, Huang C. Primary study on correlation between
corn variety lodging resistances and its stem puncture-pull strength. J Maize
Sci. 2010;18:19-23.

Grotewold E, Athma P, Peterson T. A possible hot spot for Ac insertion in
the maize P gene. Mol Gen Genet. 1991,230:329-31.

Zhang F, Peterson T. Comparisons of maize pericarp colorT alleles reveal
paralogous gene recombination and an organ-specific enhancer region.
Plant Cell. 2005;17:903-14.

Scanlon MJ, Stinard PS, James MG, Myers AM, Robertson DS. Genetic
analysis of 63 mutations affecting maize kernel development isolated from
Mutator stocks. Genetics. 1994;136:281-94.

Walker EL. Paramutation of the r7 locus of maize is associated with
increased cytosine methylation. Genetics. 1998;148:1973-81.

Arends D, Prins P, Jansen RC, Broman KW. R/QTL: high-throughput multiple
QTL mapping. Bioinformatics. 2010;26:2990-2.

Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value
using genome-wide dense marker maps. Genetics. 2001;157:1819-29.
Crossa J, Pérez-Rodriguez P, Cuevas J, Montesinos-Lopez O, Jarquin D. de
los Campos G, et al. genomic selection in plant breeding: methods, models,
and perspectives. Trends Plant Sci. 2017;22:961-75.

Desta ZA, Ortiz R. Genomic selection: genome-wide prediction in plant
improvement. Trends Plant Sci. 2014;19:592-601.

Jonas E, de Koning D-J. Does genomic selection have a future in plant
breeding? Trends Biotechnol. 2013;31:497-504.

Hume DJ, Campbell DK. Accumulation and translocation of soluble solids in
corn stalks. Can J Plant Sci. 1972;52:363-8.

Hanway JJ. Growth stages of corn (Zea mays L.). Agron J. 1963;55:487-92.
Xue J, Gou L, Shi Z, Zhao Y, Zhang W. Effect of leaf removal on
photosynthetically active radiation distribution in maize canopy and stalk
strength. J Integr Agric. 2017;16:85-96.

Pan Q, Xu Y, Li K, Peng Y, Zhan W, Li W, et al. The genetic basis of plant
architecture in 10 maize recombinant inbred line populations. Plant Physiol.
2017;175:858-73.

Beavis WD. QTL analyses: power, precision, and accuracy. In: Paterson AH,
editor. Molecular dissection of complex traits. Boca Raton: CRC Press; 1998.
p. 145-62.

Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z-H. A battery of transcription
factors involved in the regulation of secondary cell wall biosynthesis in
Arabidopsis. Plant Cell. 2008,20:2763-82.

Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, et al.
Genetic evidence for three unique components in primary cell-wall
cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci. 2007;104:
15566-71.

Holland N, Holland D, Helentjaris T, Dhugga KS, Xoconostle-Cazares B,
Delmer DP. A comparative analysis of the plant cellulose synthase (CesA)
gene family. Plant Physiol. 2000;123:1313-24.

Guillet-Claude C, Birolleau-Touchard C, Manicacci D, Rogowsky PM, Rigau J,
Murigneux A, et al. Nucleotide diversity of the ZmPox3 maize peroxidase
gene: relationships between a MITE insertion in exon 2 and variation in
forage maize digestibility. BMC Genet. 2004;5:19.

Li N, Lin B, Wang H, Li X, Yang F, Ding X, et al. Natural variation in ZmFBL41
confers banded leaf and sheath blight resistance in maize. Nat Genet. 2019;
51:1540-8.

Wang Q, Li K, Hu X, Shi H, Liu Z, Wu Y, et al. Genetic analysis and QTL
mapping of stalk cell wall components and digestibility in maize
recombinant inbred lines from B73xBy804. Crop J. 2019; https://doi.org/10.
1016/.¢j.2019.06.009.

Wang H, Li K Hu X, Liu Z, Wu Y, Huang C. Genome-wide association
analysis of forage quality in maize mature stalk. BMC Plant Biol. 2016;16:1-
12

Barriere Y, Méchin V, Lefevre B, Maltese S. QTLs for agronomic and cell wall
traits in a maize RIL progeny derived from a cross between an old
Minnesotal3 line and a modern lodent line. Theor Appl Genet. 2012;125:
531-49.

Courtial A, Jourda C, Arribat S, Huguet S, Reymond M, Grima-Pettenati J, et
al. Comparative expression of cell wall related genes in four maize RILs and



Liu et al. BMC Plant Biology

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.
69.
70.

71.

72.

73.

74.

75.

76.

(2020) 20:196

one parental line of variable lignin content and cell wall degradability.
Maydica. 2012,57:56-74.

Courtial A, Méchin V, Reymond M, Grima-Pettenati J, Barriere Y.
Colocalizations between several QTLs for cell wall degradability and
composition in the F288 x F271 early maize RIL progeny paise the question
of the nature of the possible underlying determinants and breeding targets
for biofuel capacity. BioEnergy Res. 2014;7:142-56.

Li K, Wang H, Hu X, Liu Z, Wu Y, Huang C. Genome-wide association study
reveals the genetic basis of stalk cell wall components in maize. PLoS One.
2016;11:20158906.

Voss-Fels KP, Cooper M, Hayes BJ. Accelerating crop genetic gains with
genomic selection. Theor Appl Genet. 2019;132:669-86.

Cerrudo D, Cao S, Yuan Y, Martinez C, Suarez EA, Babu R, et al. Genomic
selection outperforms marker assisted selection for grain yield and
physiological traits in a maize doubled haploid population across water
treatments. Front Plant Sci. 2018;9:366.

Zhang A, Wang H, Beyene Y, Semagn K, Liu Y, Cao S, et al. Effect of trait
heritability, training population size and marker density on genomic
prediction accuracy estimation in 22 bi-parental tropical maize populations.
Front Plant Sci. 2017;8:1916.

Combs E, Bernardo R. Accuracy of genomewide selection for different traits
with constant population size, heritability, and number of markers. Plant
Genome. 2013;6:1-7.

Liu X, Wang H, Wang H, Guo Z, Xu X, Liu J, et al. Factors affecting genomic
selection revealed by empirical evidence in maize. Crop J. 2018;6:341-52.
Heffner EL, Jannink J-L, Sorrells ME. Genomic selection accuracy using
multifamily prediction models in a wheat breeding program. Plant Genome.
2011;4:65-75.

Bernardo R. Genomewide selection when major genes are known. Crop Sci.
2014;54:68-75.

Boeven PHG, Longin CFH, Leiser WL, Kollers S, Ebmeyer E, Wirschum T.
Genetic architecture of male floral traits required for hybrid wheat breeding.
Theor Appl Genet. 2016;129:2343-57.

Spindel JE, Begum H, Akdemir D, Collard B, Redofa E, Jannink J-L, et al.
Genome-wide prediction models that incorporate de novo GWAS are a
powerful new tool for tropical rice improvement. Heredity. 2016;116:395—
408.

Sarinelli JM, Murphy JP, Tyagi P, Holland JB, Johnson JW, Mergoum M, et al.
Training population selection and use of fixed effects to optimize genomic
predictions in a historical USA winter wheat panel. Theor Appl Genet. 2019;
132:1247-61.

Arruda MP, Lipka AE, Brown PJ, Krill AM, Thurber C, Brown-Guedira G, et al.
Comparing genomic selection and marker-assisted selection for Fusarium
head blight resistance in wheat (Triticum aestivum L.). Mol Breed. 2016;36:84.
Wang X, Li L, Yang Z, Zheng X, Yu S, Xu C, et al. Predicting rice hybrid
performance using univariate and multivariate GBLUP models based on
North Carolina mating design Il. Heredity. 2017;118:302-10.

Calus MP, Veerkamp RF. Accuracy of multi-trait genomic selection using
different methods. Genet Sel Evol. 2011;43:26.

Jia Y, Jannink J-L. Multiple-trait genomic selection methods increase genetic
value prediction accuracy. Genetics. 2012;192:1513-22.

Guo G, Zhao F, Wang Y, Zhang Y, Du L, Su G. Comparison of single-trait and
multiple-trait genomic prediction models. BMC Genet. 2014;15:30.

Engle BN, Corbet NJ, Allen JM, Laing AR, Fordyce G, McGowan MR, et al.
Multivariate genomic predictions for age at puberty in tropically adapted
beef heifers. J Anim Sci. 2019,97:90-100.

Lehermeier C, Schon C-C, de los Campos G. Assessment of genetic
heterogeneity in structured plant populations using multivariate whole-
genome regression models. Genetics. 2015;201:323-37.

Okeke UG, Akdemir D, Rabbi I, Kulakow P, Jannink J-L. Accuracies of
univariate and multivariate genomic prediction models in African cassava.
Genet Sel Evol. 2017;49:88.

Yang J, Mezmouk S, Baumgarten A, Buckler ES, Guill KE, McMullen MD, et al.
Incomplete dominance of deleterious alleles contributes substantially to
trait variation and heterosis in maize. PLoS Genet. 2017;13:21007019.

Bates D, Machler M, Bolker B, Walker S. Fitting linear mixed-effects models
using Ime4. J Stat Softw. 2015,67:1-48.

Liu X, Wang H, Hu X, Li K, Liu Z, Wu Y, et al. Improving genomic selection
with quantitative trait loci and nonadditive effects revealed by empirical
evidence in maize. Front Plant Sci. 2019;10:1129.

77.

78.

79.

80.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Page 16 of 16

Searle SR. Phenotypic, genetic and environmental correlations. Biometrics.
1961;17:474-80.

Hill WG. Genetic correlation. In: Maloy S, Hughes K, editors. Brenner's
encyclopedia of genetics. 2nd ed. San Diego: Academic Press; 2013. p. 237-
9.

Hazel LN. The genetic basis for constructing selection indexes. Genetics.
1943;28:476-90.

Butler DG, Cullis BR, Gilmour AR, Thompson R. ASRem!-R reference manual
(version 3). Brisb State Qld Dep Prim Ind Fish. 2009.

Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, et al.
A large maize (Zea mays L) SNP genotyping array: development and
germplasm genotyping, and genetic mapping to compare with the B73
reference genome. PLoS One. 2011,6:¢28334.

Xu C, Ren Y, Jian Y, Guo Z, Zhang Y, Xie C, et al. Development of a maize
55 K SNP array with improved genome coverage for molecular breeding.
Mol Breed. 2017;37:20.

Zhou Z, Zhang C, Zhou Y, Hao Z, Wang Z, Zeng X, et al. Genetic dissection
of maize plant architecture with an ultra-high density bin map based on
recombinant inbred lines. BMC Genomics. 2016;17:178.

Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, et al. High-throughput
genotyping by whole-genome resequencing. Genome Res. 2009;19:1068—-
76.

Taylor J, Butler D. R package ASMap: efficient genetic linkage map
construction and diagnosis. J Stat Softw. 2017,79:1-28.

Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, et al. agriGO v2.0: a GO analysis
toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017;
45:122-9.

McCarthy FM, Wang N, Magee GB, Nanduri B, Lawrence ML, Camon EB, et
al. AgBase: a functional genomics resource for agriculture. BMC Genomics.
2006;7:229.

VanRaden PM. Efficient methods to compute genomic predictions. J Dairy
Sci. 2008,91:4414-23.

Bernardo R. Best linear unbiased prediction of maize single-cross
performance. Crop Sci. 1996;36:50-6.

Pérez P, de los Campos G. Genome-wide regression & prediction with the
BGLR statistical package. Genetics. 2014;198:483-95.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Phenotypic variation and complex relationship between stages in RPR
	Construction and quality of high-density linkage map
	QTL mapping of RPR in each RIL population
	GO enrichment and KEGG pathway analysis for candidate genes
	Improving genomic selection for RPR using models considering fixed effects or multivariate

	Discussion
	Conclusions
	Methods
	Plant materials
	Field trial and phenotyping
	Phenotypic data analysis
	Construction of the hierarchical clustering of RPR in various stages
	Phenotypic and genetic correlation
	Genotypic data analysis
	Genotyping and quality control

	Construction of the bin map and QTL mapping
	Analysis of GO enrichment and KEGG pathway
	Genomic selection

	Supplementary information
	Abbreviations
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

