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Abstract

Background: Leaf mold disease caused by Cladosporium fulvum is a serious threat affecting the global production
of tomato. Cf genes are associated with leaf mold resistance, including Cf-16, which confers effective resistance to
leaf mold in tomato. However, the molecular mechanism of the Cf-16-mediated resistance response is largely
unknown.

Results: We performed a comparative transcriptome analysis of C. fulvum-resistant (cv. Ontario7816) and C. fulvum-
susceptible (cv. Moneymaker) tomato cultivars to identify differentially expressed genes (DEGs) at 4 and 8 days post
inoculation (dpi) with C. fulvum. In total, 1588 and 939 more DEGs were found in Cf-16 tomato than in Moneymaker
at 4 and 8 dpi, respectively. Additionally, 1350 DEGs were shared between the 4- and 8-dpi Cf-16 groups,
suggesting the existence of common core DEGs in response to C. fulvum infection. The up-regulated DEGs in Cf-16
tomato were primarily associated with defense processes and phytohormone signaling, including salicylic acid (SA)
and jasmonic acid (JA). Moreover, SA and JA levels were significantly increased in Cf-16 tomato at the early stages
of C. fulvum infection. Contrary to the previous study, the number of up-regulated genes in Cf-16 compared to Cf-
10 and Cf-12 tomatoes was significantly higher at the early stages of C. fulvum infection.

Conclusion: Our results provide new insight into the Cf-mediated mechanism of resistance to C. fulvum, especially
the unique characteristics of Cf-16 tomato in response to this fungus.
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Background
Tomato (Solanum lycopersicum L.) is the second most
important horticultural crop worldwide [1, 2] and an im-
portant model plant for fleshy fruit development and
plant-pathogen interactions. Leaf mold disease caused by
Cladosporium fulvum is considered to be one of the
most devastating diseases in tomato. C. fulvum is a non-
obligate, abiotrophic pathogenic fungus that infects foli-
age and occasionally petioles and stems [3–5]. Leaf mold

has long been prevalent in many countries and caused
serious economic loss, especially under high-
temperature and high-humidity conditions [6]. Cur-
rently, the most effective way is to cultivate C. fulvum-
resistant tomato varieties with resistance genes.
From a coevolutionary perspective, plants recognize

and respond to pathogens in several phases. In the first
phase, pathogen-associated molecular patterns (PAMPs)
are recognized by pattern recognition receptors (PRRs)
in plants, inducing PAMP-triggered immunity (PTI) and
preventing pathogen colonization [7, 8]. In the second
phase, successful pathogens bypass PTI and secrete ef-
fectors into plant cells, and the effector-triggered suscep-
tibility response (ETS) ensues. In the third phase, plants
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gradually evolve to produce NB-LRR (nucleotide-binding
site and leucine-rich repeat) proteins that directly or in-
directly recognize specific pathogen effectors, and induce
effector-triggered immunity (ETI). Finally, pathogens
successfully infect plants and induce ETS by inhibiting
or altering effectors that may be recognized by the plant
and generating new effectors that cannot be recognized
by the plant NB-LRRs. Simultaneously, plants again in-
duce ETI by generating new R genes that encode pro-
teins capable of identifying new effectors [9–11].
With respect to plant-pathogen interactions, different

pathogens carry avirulence (AVR) genes corresponding
to plant R genes and encode proteins that are recognized
by effector proteins [12]. These proteins are secreted
into the apoplastic space during infection and induce ei-
ther compatible or incompatible interactions between
fungi and infected plants [13]. Incompatible interactions
(chlorosis) lead to the hypersensitive response (HR)
when plants resist pathogens; compatible interactions
occur when the pathogens can grow and ramify, causing
necrosis in infected cells [14–17]. The tomato-C. fulvum
interaction follows a typical gene-for-gene relationship,
and the products of C. fulvum-resistance genes (Cf
genes) in tomato specifically recognize the products
encoded by the AVR genes in C. fulvum, leading to HR
[18, 19]. At least 24 Cf genes have been reported
since the discovery of the Cf-1 gene in the 1930s
[20, 21], and these genes have been introduced into
cultivated tomatoes [22–30].
Transcriptome sequencing (RNA-Seq) has strongly accel-

erated research on host-pathogen interactions in plants such
as rice [31], maize [32], cucumber [33], watermelon [34] and
strawberry [35]. Avr4/Cf-4- and Avr9/Cf-9-dependent
defense gene expression has been confirmed by cDNA-AFLP
(cDNA-amplified fragment length polymorphism) analysis
[36]. The Avr5 gene has been cloned through a combined
bioinformatic and RNA-Seq-based transcriptome sequencing
approach [18]. Cf-19-, Cf-12- and Cf-10-mediated resistance
to C. fulvum in tomato has been characterized using cDNA-
AFLP and RNA-Seq analyses [37–39]. However, few tran-
scriptomic studies have examined Cf-16-mediated resistance.
In this study, in addition to performing a transcrip-

tomic analysis, we measured the endogenous hormone
levels of resistant and susceptible tomato cultivars in re-
sponse to C. fulvum infection. Our results are not only
useful for understanding the mechanism of Cf-mediated
resistance to C. fulvum infection but also providing a
basis for cloning of the Cf-16 gene.

Results
Microscopic analysis of C. fulvum invasion in two tomato
cultivars
The C. fulvum infection process in Cf-16 tomato or
Moneymaker leaves was observed by light microscopy

(Fig. 1). As shown in Fig. 1a and g, no difference was
found between Cf-16 tomato and Moneymaker at 0 dpi.
Our results showed that conidiospores germinated at 2–
3 dpi (Fig. 1b), with hyphae growing into the stomata in
both Moneymaker and Cf-16 tomato leaves at 4 dpi (Fig.
1c). The hyphae then emerged through the stomata of
Moneymaker leaves at 8 dpi (Fig. 1d), with the growth
and number of emergent hyphae continuing to increase
through 10 dpi, and the last few infected cells starting to
undergo necrosis at 10–21 dpi (Fig. 1e, f). In contrast, a
small number of HR areas appeared at 8 dpi in Cf-16 to-
mato (Fig. 1h), which had gradually grown at 10 dpi
(Fig. 1i). In addition, hyphal growth was restricted to
necrotic areas (Fig. 1j) until more necrotic lesions ap-
peared in both mesophyll cells and leaf veins between 12
and 21 dpi (Fig. 1k). Obviously, plants carrying the Cf-16
resistance gene showed a strong HR after infection with
C. fulvum, whereas the susceptible plants (i.e., Money-
maker) showed continuous hyphal growth. Based on
these observations, we collected samples from each
treatment at 4 and 8 dpi for RNA-Seq and qRT-PCR
(quantitative real-time PCR) analyses.

Analysis of hormone response to C. fulvum infection
To explore hormone response to C. fulvum infection,
HPLC-MS/MS (high-performance liquid chromatography-
tandem mass spectrometry) was used to measure SA and
JA levels. As shown in Fig. 2a, the SA content increased
rapidly in Cf-16 tomato after inoculation, peaking from 4 to
8 dpi before decreasing to the original level at 8–16 dpi.
Moreover, the SA content of Moneymaker gradually in-
creased after inoculation, with a higher value than that of
its control group at 0–3 dpi before decreasing to the mini-
mum level observed at 12 dpi. In Cf-16 tomato, the JA con-
tent rapidly increased after inoculation, peaking from 0 to 3
dpi, and then rapidly decreased between 4 and 21 dpi; how-
ever, the JA level was generally higher than that detected
for the control groups of Cf-16 tomato and Moneymaker
after infection (from 2 to 16 dpi). In Moneymaker, the JA
content increased after infection to a maximum at 3 dpi
and then gradually decreased (Fig. 2b). Overall, the SA and
JA levels in Moneymaker were greater after infection than
those observed in its control group at 0–3 dpi. These re-
sults suggest that SA and JA levels rapidly increase during
the early stages of infection and that these hormones play
important roles in regulating the plant response to the
pathogen and enhancing the defense of Cf-16 tomato in-
fected with C. fulvum.

RNA sequencing and transcript identification
To obtain transcriptome profiles of Cf-16 tomato and
Moneymaker following C. fulvum infection, we per-
formed RNA-Seq analysis at 4 and 8 dpi, with three bio-
logical replicates performed at each time point for each
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treatment. In this study, an average of ~ 6.87 Gb of clean
data were generated for each sample using the BGISEQ-
500 platform (Additional file 9: Figure S1, Add-
itional file 1: Table S1). As shown in Additional file 1:
Table S1, the quality scores of more than 98% of the
reads were ≥ 20%, and more than 91% of the clean reads
had quality scores of ≥30%. After the reads were filtered,
64.15–72.64 million clean reads were generated, and at
least 93.29% of these reads were mapped to the tomato
reference genome, among which more than 78.26% were
aligned to unique locations. Ultimately, 18,514 novel
transcripts were obtained, with 12,790 unknown splicing
events in known genes, 2047 novel coding transcripts
without any known features, and 3677 transcripts for
long noncoding RNAs.

DEGs in response to C. fulvum
DEGs from Cf-16 tomato and Moneymaker in response
to C. fulvum at 4 and 8 dpi were identified based on an
adjusted P-value of ≤0.001 and a log2 fold change of ≥2.
FPKM (fragments per kilobase of exon per million frag-
ments mapped) values for all genes and the fold changes
and adjusted P-values for DEGs are shown in Add-
itional file 2: Table S2 and Additional file 3: Table S3,
respectively.

In the control groups, 3298 and 2464 DEGs were ob-
served between Cf-16 tomato and Moneymaker at 4 and
8 dpi, respectively. Among the samples collected after
infection with C. fulvum at 4 and 8 dpi, 2242 and 3095
DEGs were identified between Cf-16 tomato and
Moneymaker, respectively (Table 1). Compared with the
respective control groups, 8526 DEGs were identified in
Cf-16 tomato (including 5110 up-regulated and 3416
down-regulated genes) at 4 dpi, 6938 in Moneymaker
(including 4213 up-regulated and 2725 down-regulated
genes) at 4 dpi, 3711 in Cf-16 tomato (including 1609
up-regulated and 2102 down-regulated) at 8 dpi, and
2772 in Moneymaker (including 757 up-regulated and
2015 down-regulated genes) at 8 dpi.
Numerous DEGs were detected at 4 dpi in both culti-

vars (Table 1); however, we also noted a number of
DEGs between the control groups for both cultivars
(CK_MM_4dpi-vs-CK_Cf_4dpi and CK_MM_8dpi-vs-
CK_Cf_8dpi). Furthermore, 707 DEGs were shared by
the control and inoculation groups of Moneymaker and
Cf-16 tomato (Fig. 3c). Thus, some of the DEGs in each
comparison may not be associated with leaf mold resist-
ance. Notably, 306 DEGs overlapped between Cf-16 to-
mato and Moneymaker only at 4 dpi (CK_Cf_4dpi-vs-
Cf_4dpi and MM_4dpi-vs-Cf_4dpi) (Fig. 3a), whereas

Fig. 1 Trypan blue staining of tomato leaf tissues inoculated with C. fulvum. a-f Moneymaker leaf stained with lactophenol trypan blue at 0, 2, 4,
8 and 10–21 dpi, respectively. g-k Cf-16 tomato leaf stained with lactophenol trypan blue at 0, 8, 10 and 12–21 dpi, respectively. Vt: vascular
tissue, S: spore, St: stomata, Hy: hypha, HR: hypersensitive response

Fig. 2 Fluctuations in SA and JA on different days post inoculation with C. fulvum in Cf-16 tomato and Moneymaker. CK-Cf16: control group of
Cf-16 tomato, Cf16: inoculation group of Cf-16 tomato, CK-MM: control group of Moneymaker, MM: inoculation group of Moneymaker
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541 DEGs overlapped only at 8 dpi (CK_Cf_8dpi-vs-Cf_
8dpi and MM_8dpi-vs-Cf_8dpi) (Fig. 3b). Based on these
stricter criteria, these DEGs are likely the most promis-
ing candidates involved in leaf mold resistance; accord-
ingly, these DEGs were investigated further.

GO and KEGG enrichment analyses of DEGs
To determine the functions of DEGs involved in the re-
sponse to C. fulvum, we performed GO (Gene Ontology)
classification and KEGG (Kyoto Encyclopedia of Gene
and Genomes) functional enrichment analyses using the
Phyper function in R software [40]. For DEGs detected
in Cf-16 tomato, significant GO terms were primarily
enriched in “biological regulation”, “cellular process”,
“metabolic process” and “response to stimulus” in the
biological process category, and these terms are associ-
ated with disease resistance. In the cellular component
ontology, “cell”, “membrane”, “membrane part” and “or-
ganelle” were the most abundant categories that were
specific to the resistant tomato cultivar. Genes involved
in “binding”, “catalytic activity”, “transcription regulator
activity” and “transporter activity” were enriched in the
molecular function category. Notably, the terms

“binding” and “catalytic activity” are known to play im-
portant roles in plant hormone signal transduction
(Fig. 4a).
Subsequently, the top 200 DEGs between Cf-16 tomato

and its control group at 4 dpi (CK_Cf_4dpi-vs-Cf_4dpi)
were selected for GO enrichment analysis to better under-
stand the Cf-16-mediated resistance response to C. ful-
vum. As shown in Fig. 4b, the most highly enriched GO
terms were those associated with the organization of the
cell wall or the metabolism of its components, including
“xyloglucan: xyloglucosyl transferase activity”, “xyloglucan
metabolic process”, “cell wall polysaccharide metabolic
process” and “hemicellulose metabolic process”. As the
first barrier to invasion, the cell wall is the first obstacle
for most pathogens [41, 42]. Therefore, DEGs associated
with these significant terms may play important roles
against C. fulvum infection in Cf-16 tomato.
KEGG pathway enrichment analysis was also per-

formed to investigate the biological pathways underlying
the incompatible interaction. As shown in Fig. 5a, the
pathways “Plant hormone signal transduction” and
“Plant-pathogen interaction” were significantly enriched
(in the figure, the color of each dot indicates the Q-
value, and the standard for significant enrichment is Q-
value ≤0.01). In addition, “Fatty acid metabolism” and
“Phosphatidylinositol signaling system” were found to be
related to the Cf-16 tomato response to C. fulvum infec-
tion. Furthermore, 34 disease-resistance genes (Add-
itional file 6: Table S6) and 32 DEGs (Additional file 7:
Table S7) were identified in the significantly enriched
KEGG pathways “Plant-pathogen interaction” and “Plant
hormone signal transduction”, respectively. In summary,
the most highly enriched pathways, “Plant hormone sig-
nal transduction” and “Plant-pathogen interaction”, may
be the major metabolic pathways involved in the Cf-16-
mediated resistance response to C. fulvum.

Table 1 DEGs identified from different comparisons

DEG set Total DEGs Upregulated Downregulated

CK_Cf_4dpi-vs-Cf_4dpi 8526 5110 3416

CK_Cf_8dpi-vs-Cf_8dpi 3711 1609 2102

CK_MM_4dpi-vs-MM_4dpi 6938 4213 2725

CK_MM_8dpi-vs-MM_8dpi 2772 757 2015

CK_MM_4dpi-vs-CK_Cf_4dpi 3298 1922 1376

CK_MM_8dpi-vs-CK_Cf_8dpi 2464 1361 1103

MM_4dpi-vs- Cf_4dpi 2242 1211 1031

MM_8dpi-vs- Cf_8dpi 3095 2043 1052

Fig. 3 Venn diagrams showing DEGs in different comparisons post inoculation with C. fulvum. a Venn diagram of DEGs among the CK_Cf_4dpi-
vs-Cf_4dpi, CK_MM_4dpi-vs-MM_4dpi, CK_MM_4dpi-vs-CK_Cf_4dpi and MM_4dpi-vs-Cf_4dpi comparisons. b Venn diagram of DEGs among the
CK_Cf_8dpi-vs-Cf_8dpi, CK_MM_8dpi-vs-MM_8dpi, CK_MM_8dpi-vs-CK_Cf_8dpi and MM_8dpi-vs-Cf_8dpi comparisons. c Venn diagram of DEGs
among the CK_Cf_4dpi-vs-Cf_4dpi, CK_MM_4dpi-vs-MM_4dpi, CK_Cf_8dpi-vs-Cf_8dpi and CK_MM_8dpi-vs-MM_8dpi comparisons. The numbers
indicate the unique and common DEGs for the different comparisons. CK_Cf_4dpi, CK_Cf_8dpi, CK_MM_4dpi and CK_MM_8dpi: Cf-16 tomato
and Moneymaker were inoculated with water and collected at 4 and 8 dpi. Cf_4dpi, Cf_8dpi, MM_4dpi and MM_8dpi: Cf-16 tomato and
Moneymaker were inoculated with C. fulvum and collected at 4 and 8 dpi
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Fig. 4 GO analysis of DEGs in response to C. fulvum. a GO classification analysis of the CK_Cf_4dpi-vs-Cf_4dpi comparison, b GO enrichment
analysis of the top 200 DEGs from the CK_Cf_4dpi-vs-Cf_4dpi comparison

Fig. 5 Scatter plot of KEGG pathway enrichment of DEGs. The rich ratio is the ratio of the DEG number to the background number in a particular
pathway. The size of the dots represents the number of genes, and the color of the dots represents the range of the Q-value. a KEGG pathways
based on upregulated DEGs in the CK_Cf_4dpi-vs-Cf_4dpi comparison. b KEGG pathways based on upregulated DEGs in the MM_4dpi-vs-Cf_4dpi
comparison. c KEGG pathways based on 306 DEGs that overlapped only between the CK_Cf_4dpi-vs-Cf_4dpi and MM_4dpi-vs-Cf_4dpi
comparisons according to the Venn diagram in Fig. 3a. d KEGG pathways based on 541 DEGs that overlapped only between the CK_Cf_8dpi-vs-
Cf_8dpi and MM_8dpi-vs-Cf_8dpi comparisons according to the Venn diagram in Fig. 3b
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Up-regulated genes involved in the “Plant-pathogen
interaction” pathway were also significantly enriched be-
tween Moneymaker and Cf-16 tomato (Fig. 5b, Add-
itional file 8: Table S8). Thus, we performed KEGG
pathway analysis for 306 and 541 DEGs that overlapped
between Cf-16 tomato and Moneymaker only at 4 and 8
dpi, respectively (Fig. 3a and b). Interestingly, the path-
ways “Plant-pathogen interaction” and “Plant hormone
signal transduction” were significantly enriched (Fig. 5c
and d). Some disease-resistance genes involved in
“Plant-pathogen interaction” and six hormone-related
genes involved in “Plant hormone signal transduction”
are listed in Table 2 and Table 3, respectively. These
DEGs may constitute the most promising candidates in-
volved in leaf mold resistance. These results indicate
once again that plant hormones play a key role in the
Cf-16 tomato response to C. fulvum infection.

Analysis of metabolism and regulatory pathways
To obtain an overview of the regulatory pathways in-
duced by C. fulvum, DEGs were visualized via MapMan
analysis. According to the results (Fig. 6a), the majority
of DEGs were upregulated and functionally enriched in
transcription factors (TFs), including receptor kinases.
Other pathways, including “calcium regulation” and
“light”, were also upregulated or downregulated in re-
sponse to C. fulvum infection. Most DEGs were related
to hormones associated with the upregulation of IAA
(indole-3-acetic acid), ABA (abscisic acid) and ethylene.
In fact, the upregulated genes were classified as R genes,
MAPKs, PR proteins, TFs and genes associated with the
hormones ethylene, ABA, SA and JA, further supporting
the importance of these pathways in the Cf-16-mediated

resistance response to C. fulvum infection (Fig. 6b, Add-
itional file 4: Table S4).

Gene co-expression network analysis
Weighted gene co-expression network analysis
(WGCNA) is a common algorithm used in transcrip-
tomic studies [43]. Thirteen different modules were ob-
tained using a gene dendrogram colored according to
correlations between gene expression levels (Fig. 7a).
Among them, the genes in MEred and MEgreenyellow
were highly expressed in Cf-16 tomato at 4 dpi, whereas
those in MEpurple exhibited relatively high expression
in both Cf-16 tomato and Moneymaker at 4 dpi (Fig.
7b). We performed KEGG analysis for these three mod-
ules. For the MEred module, pathways related to “Plant-
pathogen interaction”, “Oxidative phosphorylation” and
“Phenylalanine, tyrosine and tryptophan biosynthesis”
were enriched; for MEgreenyellow, pathways related to
“Pentose phosphate pathway”, “Flavonoid biosynthesis”,
“Phenylpropanoid biosynthesis” and “Plant hormone sig-
nal transduction” were enriched (Additional file 10: Fig-
ure S2). Notably, some DEGs of the pathway “Plant-
pathogen interaction” in the MEred module were also
present in Additional file 8: Table S8 (DEGs in the sig-
nificantly enriched KEGG pathway “Plant-pathogen
interaction” between MM_4dpi-vs-Cf_4dpi and CK_Cf_
4dpi-vs-Cf_4dpi). Therefore, these disease-resistance
genes should be studied in greater depth in the future to
elucidate their role in the Cf-16-mediated resistance re-
sponse to C. fulvum infection in tomato.

Validation of RNA-Seq data by qRT-PCR
To verify the RNA-Seq data, 16 DEGs were chosen for
qRT-PCR; three biological replicates were performed.

Table 2 DEGs in the significantly enriched KEGG pathway “Plant-pathogen interaction” based on 306 common DEGs that overlapped
only between the CK_Cf_4dpi-vs-Cf_4dpi and MM_4dpi-vs-Cf_4dpi comparisons according to the Venn diagram in Fig. 3a

Gene ID Gene definition Log2 Fold-change

CK_Cf_4dpi-vs-Cf_4dpi MM_4dpi-vs-Cf_4dpi

101,246,100 putative ATPase 2.22 4.99

101,251,989 disease resistance protein 1.44 2.36

101,253,178 disease resistance protein RPM1 2.42 4.89

101,256,988 glucosamine---fructose-6-phosphate aminotransferase (isomerizing) 1.74 5.88

101,258,758 LRR receptor-like serine/threonine-protein kinase FLS2 1.77 1.60

101,263,364 putative ATPase 3.26 7.32

101,263,890 tubulin-folding cofactor B 1.26 2.13

109,118,687 disease resistance protein 2.34 1.61

109,120,689 disease resistance protein RPM1 2.94 5.15

109,121,092 LRR receptor-like serine/threonine-protein kinase FLS2 3.45 2.36

BGI_novel_G001085 5′-AMP-activated protein kinase, catalytic alpha subunit 1.80 2.34

BGI_novel_G001591 disease resistance protein RPM1 2.83 2.76
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These 16 genes were selected from significantly enriched
KEGG pathways (such as “Plant hormone signal trans-
duction”, “Plant-pathogen interaction” and “Metabolic
pathways”). The expression data obtained by qRT-PCR
were consistent with the RNA-Seq results, indicating a
similar trend between the transcriptome and qRT-PCR
datasets (Fig. 8). Among the 16 DEGs, a significantly up-
regulated gene with ID 101247936 (Fig. 8h) was pre-
dicted to encode a jasmonate-ZIM-domain-containing
protein in the “Plant hormone signal transduction” path-
way, paralleling the JA response to C. fulvum infection
(Fig. 2b). Similarly, the expression level of gene 100,736,
444 (Fig. 8i), which encodes the disease-resistance pro-
tein RPM1, was increased at least 27-fold in Cf-16 to-
mato. In addition, the expression levels of gene 101,259,
487 (Fig. 8m), which encodes a peroxidase, and gene
101,256,817 (Fig. 8b), which encodes the calcium bind-
ing protein CML, were increased at least 11-fold.

Discussion
In this study, we characterized the interaction between
C. fulvum and Cf-16 tomato or Moneymaker through
microscopic observations. HR was observed in Cf-16 to-
mato at 8 dpi, whereas in Moneymaker, hyphae emerged
through the stomata and continued to increase in num-
ber and grow at 8 dpi (Fig. 1). Systemic defense response
mediated by resistance genes was activated during the
early stage of C. fulvum infection. This finding was con-
sistent with previous studies of other Cf genes [37–39].
Based on comparative transcriptome analysis, we dem-
onstrated the resistance response to C. fulvum in Cf-16
tomato. In response to C. fulvum infection, drastic tran-
scriptional changes occurred at 4 dpi in both tomato
cultivars, although a number of DEGs were also detected
between the respective control groups (Table 1). Because
these results suggested that many of the DEGs in each
comparison may not be linked to resistance, we screened
resistance genes in Cf-16 tomato more stringently by
comparing the transcriptomes of the control groups.
Significant GO terms primarily included “biological
regulation”, “cellular process”, “metabolic process” and

“response to stimulus” in the biological process category,
and these terms are associated with disease resistance.
Furthermore, KEGG enrichment analysis indicated that
most of the DEGs were classified into “Plant hormone sig-
nal transduction” and “Plant-pathogen interaction”. In this
preliminary comparison, more up-regulated DEGs were
detected in Cf-16 compared to Cf-10 and Cf-12 tomatoes
during the early stage of C. fulvum infection [38, 39]. A
comprehensive comparative analysis of Cf-19, Cf-12, Cf-
10 and Cf-16 will provide important information for fur-
ther exploration of the mechanism of Cf-gene-mediated
resistance response to C. fulvum infection.
Plants have a series of defense mechanisms to respond to

pathogen attack. PRRs are the first line of defense [44, 45];
these receptors recognize C. fulvum and activate a resist-
ance response [46]. In our study, chitin elicitor receptor
kinase 1 (CERK1; BGI_novel_G000519), a pattern recogni-
tion protein, was significantly up-regulated in Cf-16 tomato
at 4 dpi (Additional file 6: Table S6). This result was con-
sistent with the study by Xue et al. (2017) on Cf-12. We will
investigate whether increased expression of CERK1 is asso-
ciated with the activation of chitin signaling and determine
whether this increase affects the tomato-C. fulvum inter-
action process.
After recognizing the infection, Cf-16 tomato quickly

activated a complex series of defense-associated signal-
ing pathways. Ca2+ influx is considered to play a key role
in the early downstream response of numerous PAMP
sensing processes, resulting in local and systemic ac-
quired resistance [47, 48]. Ca2+ activates calcium-
dependent protein kinases (CDPKs), which play import-
ant roles in plant responses to both abiotic stress and
pathogens [49, 50]. In our study, CDPKs (101,249,495,
101,055,527 and 101,255,379) were expressed at high
levels in Cf-16 tomato during the early stage of infection
(Additional file 2: Table S2). This result was consistent
with those of previous studies, suggesting that these
genes play crucial roles in the Cf-16-mediated resistance
response to C. fulvum infection [51]. In addition, the
binding of Ca2+ to CML results in the production of ni-
tric oxide (NO), which further promotes plant HR or

Table 3 DEGs in the significantly enriched KEGG pathway “Plant hormone signal transduction” based on 541 common DEGs that
overlapped only between the CK_Cf_8dpi-vs-Cf_8dpi and MM_8dpi-vs-Cf_8dpi comparisons according to the Venn diagram in Fig.
3b

Gene ID Gene definition Log2 Fold-change

CK_Cf_8dpi-vs-Cf_8dpi MM_8dpi-vs-Cf_8dpi

101,245,668 xyloglucan:xyloglucosyl transferase TCH4 4.16 2.63

101,251,578 aprataxin 3.19 2.20

101,262,506 arabidopsis histidine kinase 2/3/4 (cytokinin receptor) 1.32 2.13

101,263,609 disease resistance protein RPM1 1.70 1.54

101,264,326 SAUR family protein 1.75 3.76

104,649,076 auxin responsive GH3 gene family 4.19 2.62
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Fig. 6 Regulatory overview produced by the MapMan tool. a biotic stress, b transcriptional changes in Cf-16 tomato at 4 dpi (MM_4dpi-vs-
Cf_4dpi). Each box represents a DEG; the red and blue colors indicate up- and downregulated DEGs, respectively. The scale bar displays log2-
transformed fold changes
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autoimmune reactions [52]. Interestingly, the results of
our study showed that 11 CML genes were significantly
expressed at 4 dpi in Cf-16 tomato compared with
Moneymaker (Fig. 9a). In particular, the genes with IDs
543,942 and 101,245,711 were up-regulated approxi-
mately eight-fold in Cf-16 tomato compared with
Moneymaker. Based on these results, we propose that
these CML genes are involved in the Cf-16 tomato
defense response against C. fulvum. Similarly, Ranty
(2016) demonstrated that CML genes play crucial roles
in plant responses to both abiotic stress and pathogens
[53]. FLS2 recognizes flg22 and subsequently activates
downstream signaling pathways that involve WRKY TFs
to promote defense responses against bacterial and

fungal pathogens and nematodes [54, 55]. In our study,
12 WRKY genes were specifically up-regulated at 4 dpi,
as shown by the hierarchical clustering of DEGs in both
tomato cultivars (Fig. 9b). Among them, the genes with IDs
101,268,780, 101,258,361, 101,248,996 and 101,246,812 were
up-regulated more than six-fold in Cf-16 tomato compared
with Moneymaker. These results suggest that these WRKY
genes may activate a series of downstream PR genes and thus
play pivotal roles in the resistance response of Cf-16 tomato
to C. fulvum. Our results also showed that PR-1 genes (IDs
544,123 and 100,191,111) were significantly up-regulated in
Cf-16 tomato after inoculation (Additional file 6: Table S6).
Overall, our results suggest that PRRs activate and promote
the expression of downstream CDPKs, CMLs and WRKY

Fig. 7 Gene co-expression network analysis by WGCNA. a Gene dendrogram colored according to correlations between gene expression levels.
Different colors represent different gene modules and indicate coefficients of dissimilarity between genes. b Module-sample association. The
abscissa represents the samples; the ordinate represents the modules. The numbers in each cell are the correlation coefficient (top) and P-value
(bottom). The variation from blue (low) to orange (high) indicates the ranges of the DEGs
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Fig. 8 Comparative analysis of expression results between RNA-Seq and qRT-PCR for 16 DEGs
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Fig. 9 a Differentially expressed CML genes in Cf-16 tomato and Moneymaker. b Differentially expressed WRKY genes in Cf-16 tomato and
Moneymaker at 4 dpi
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TFs; induce the accumulation of reactive oxygen species; and
cause the deposition of cystatin in the cell wall, thereby indu-
cing PTI in Cf-16 tomato.
During long-term evolutionary interactions with plants,

several pathogens successfully cause ETS by producing a
number of effectors. Simultaneously, plants have evolved
R genes that recognize these effectors and function
through highly specific interactions between effectors and
their corresponding NB-LRR class receptors. The rice CC-
NB-LRR protein Pi-to can directly interact with Avr fac-
tors, which the LRR domain is able to directly recognize
the effector Avrpita of Magnaporthe oryzae and induce
ETI [56]. It has also been demonstrated that the NBS-LRR
protein from Arabidopsis thaliana RPM1 confers resist-
ance to Pseudomonas syringae. RPM1 is also involved in
the onset of HR [16, 57]. Consistent with previous studies,
our results showed that genes encoding RPM1 (101,261,
141, 100,736,444, 109,120,689, 101,253,178 and BGI_
novel_G001591) were significantly up-regulated in Cf-16
tomato at 4 dpi (Additional file 3: Table S3a). These genes
may play a key role in the response of Cf-16 tomato to C.
fulvum infection. More importantly, the genes with IDs
109,120,689, 101,253,178 and BGI_novel_G001591 were
identified as DEGs that overlapped between Cf-16 tomato
and Moneymaker only at 4 dpi (Table 2). These genes
may be the most promising candidate genes involved in
leaf mold resistance.
Phytohormones are known to be important in the regu-

lation of defense responses in plants [58–60]. SA, a crucial
regulator of plant-pathogen interactions, induces HR and
systemic acquired resistance [61]. In our study, 32 DEGs
were identified in the significantly enriched KEGG path-
way “Plant hormone signal transduction” (Additional file
7: Table S7). Interestingly, TGA (104,645,854, 101,250,172
and 101,253,982) and PR-1 (544123), which are involved
in the SA signaling pathway, were significantly up-
regulated in Cf-16 tomato after C. fulvum inoculation. Im-
portantly, the expression of PR-1 (544123) was signifi-
cantly higher in Cf-16 tomato than in Moneymaker at 4
and 8 dpi, suggesting that PR-1 may have a significant
function in the response of Cf-16 tomato to C. fulvum in-
fection. This result is consistent with previous studies
[62]. We also showed that JAZ (jasmonate-zim-domain)
genes (101,247,936 and 100,134,911), which encode major
proteins in JA signaling, were up-regulated in Cf-16 to-
mato at 4 dpi. This finding is consistent with the previ-
ously measured change in JA content after infection.
Additionally, SAUR family proteins (BGI_novel_G000650,
BGI_novel_G001679, 101,255,313, 101,257,321, 104,648,
957 and 101,264,326) and PP2Cs (101,249,794 and 101,
261,835) in the KEGG pathway “Plant hormone signal
transduction” (Additional file 7: Table S7) were identified
in the present study, suggesting that SAUR family proteins
and PP2Cs also play roles in the resistance of Cf-16

tomato to C. fulvum. In particular, the SAUR family pro-
tein with ID 101264326 was identified among the DEGs
that overlapped between Cf-16 tomato and Moneymaker
only at 8 dpi (Table 3). Elucidation of the function of this
protein in the response of Cf-16 tomato to C. fulvum is
needed. Overall, discrepancies among different studies
suggest that the specific hormones involved may vary and
behave differently in different tomato-C. fulvum interac-
tions under different conditions and at different time
points. Therefore, it is important to explore crosstalk be-
tween SA and JA signaling in the activation of Cf-16-me-
diated defense systems against C. fulvum attack and close
interactions with other Cf genes.

Conclusions
This study analyzed the first comprehensive transcriptome
of the Cf-16 resistant tomato cv. Ontario7816 and suscep-
tible tomato cv. Moneymaker and explored interactions
between Cf-16 tomato and C. fulvum. Some DEGs related
to disease resistance were identified and predicted to be
associated with the plant innate immune response, Ca2+

channels and plant hormone signal transduction path-
ways. These results contribute to our understanding of the
potential mechanism by which Cf-16 tomato combats C.
fulvum infection and will facilitate the fine mapping and
cloning of the Cf-16 gene in the future.

Methods
Plant materials and C. fulvum inoculation
Two tomato cultivars, the resistant cultivar Ontario7816,
including the Cf-16 gene (kindly provided by the Insti-
tute of Vegetables and Flowers, Chinese Academy of
Agricultural Science) [23], and the susceptible cultivar
Moneymaker, which lacks C. fulvum-resistance genes
(kindly provided by the Tomato Genetic Resource Cen-
ter, LA2706), were used in this study. Tomato seeds
were sown in pots filled with soil and grown under con-
trolled conditions (16 h light, 25 °C and 95% ambient hu-
midity) in a greenhouse at the Horticultural Station of
Northeast Agricultural University (Harbin, China). At
the four- to six-leaf stage, the abaxial leaf surfaces of 40
plants per line were sprayed with a suspension of C. ful-
vum (race 1.2.3.4) at 1 × 107 sporangia per milliliter [63].
Mock-treated plants of each line were sprayed with ster-
ilized water under the same conditions. All plants were
maintained at 25 °C with 95% relative humidity.

Microscopic observation of C. fulvum in Cf-16 tomato
To assess the process of Cf-16-mediated HR and the key
time points involved in the resistance mechanism, the
lactophenol trypan blue staining method was performed
according to Franco’s approach [64]. Leaf samples from
the resistant and susceptible lines were harvested at 0–
21 dpi, immediately stained, clarified overnight in chloral
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hydrate solution (2.5 mg/ml) [65], and examined using
an Olympus SZX10 dissecting microscope (Olympus,
Japan).

Endogenous JA and SA levels
Leaf samples from the inoculation and control groups of
the resistant and susceptible cultivars were harvested at
0, 2, 3, 4, 8, 12, 16 and 21 dpi. Endogenous SA and JA
were extracted from the leaves using the modified
method of Llugany et al. (2013) [66]; levels were mea-
sured via HPLC-MS/MS using an AB SCIEX Triple
TOF5600+ mass spectrometer (SCIEX, USA) [67].

RNA extraction, cDNA library construction and
sequencing
Total RNA was obtained from each group at 4 and 8
dpi, for a total of 24 samples, and used for RNA-Seq and
qRT-PCR analyses. Total RNA was extracted from three
biological replicates for each group with three plants
using the RNAprep Pure Plant Kit (ThermoFisher, USA)
and then used for qRT-PCR [68, 69]; quantified RNA
samples were used for cDNA library construction. Li-
brary preparation and sequencing were conducted by
BGI Tech (Shenzhen, China). The libraries were gener-
ated using NEBNext® Ultra™ RNA Library Prep Kit for
Illumina R (NEB, USA) and sequenced using a BGISEQ-
500, with 150-bp paired-end reads generated. The raw
sequencing data were deposited in NCBI Sequence Read
Archive under the accession number GSE133678
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GS
E133678).

Sequencing read mapping and identification of DEGs
Raw reads in FASTQ format were generated by base
calling, statistically analyzed using SOAPnuke v1.4.0 and
filtered using Trimmomatic v0.36 [70]. Clean reads were
obtained by removing reads with adapters, reads con-
taining more than 5% poly-N (where N represents un-
known bases), and low-quality reads (with a mass value
less than 10 and proportion of total number of bases in
the reads greater than 20%).
The clean reads were aligned to the S. lycopersicum ref-

erence genome sequence (NCBI_GCF_000188115.3_
SL2.50) using HISATv2.1.0 [71]. Gene expression levels
were quantified with the FPKM method using RSEMv1.2.8
[40]. DEGs were detected using DEGseq methods based
on the Poisson distribution [72]. Genes with an adjusted
P-value of ≤0.001 and a log2 fold change of ≥2 were de-
fined as differentially expressed [73].

Functional annotation and enrichment pathway analyses
of DEGs
GO and KEGG pathway enrichment analyses of DEGs
were performed using the Phyper function in R software;

GO terms and KEGG pathways with an adjusted P-value
of ≤0.01 were regarded as significantly enriched. For a
graphical overview, DEGs were mapped to various meta-
bolic and regulatory pathways (bins) using the MapMan
tool. The colored boxes in each bin represent the log2-
transformed fold change values of the DEGs.

Gene co-expression network analysis
Gene co-expression network analysis was performed
using the WGCNA package v1.48. Gene dendrograms
were constructed with colors based on the correlations
between the expression levels of genes and used to build
clustering trees and to divide modules. In addition, the
correlation between modules and samples was analyzed
using WGCNA.

qRT-PCR analysis
Sixteen DEGs were validated using qRT-PCR to verify the
expression profiles obtained by RNA-Seq. qRT-PCR was
performed using AceQ® qPCR SYBR® Green Master Mix
(Vazyme, USA) and a qTOWER3G Detection System
(Analytik Jena, Germany). Each sample was replicated
three times, and data analysis was performed using the
2-△△CT method [74]. The gene EFα1 was used as a refer-
ence control for normalization (R: 5′-CCACCAATCT
TGTACACATCC-3′, S: 5′-AGACCACCAAGTACTACT
GCAC-3′) (Additional file 5: Table S5).
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