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A full-length transcriptome and gene
expression analysis reveal genes and
molecular elements expressed during seed
development in Gnetum luofuense
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Abstract

Background: Gnetum is an economically important tropical and subtropical gymnosperm genus with various
dietary, industrial and medicinal uses. Many carbohydrates, proteins and fibers accumulate during the ripening of
Gnetum seeds. However, the molecular mechanisms related to this process remain unknown.

Results: We therefore assembled a full-length transcriptome from immature and mature G. luofuense seeds using
PacBio sequencing reads. We identified a total of 5726 novel genes, 9061 alternative splicing events, 3551 lncRNAs,
2160 transcription factors, and we found that 8512 genes possessed at least one poly(A) site. In addition, gene
expression comparisons of six transcriptomes generated by Illumina sequencing showed that 14,323 genes were
differentially expressed from an immature stage to a mature stage with 7891 genes upregulated and 6432 genes
downregulated. The expression of 14 differentially expressed transcription factors from the MADS-box, Aux/IAA and
bHLH families was validated by qRT-PCR, suggesting that they may have important roles in seed ripening of G.
luofuense.

Conclusions: These findings provide a valuable molecular resource for understanding seed development of
gymnosperms.

Keywords: Gnetales, Full-length transcriptome, Functional genes, Seed, lncRNA

Background
Gnetum is a genus of tropical and subtropical gymno-
sperm trees and shrubs distributed in South America,
eastern Africa, and Asia [1]. Gnetum possesses remark-
able economic potential for dietary and industrial use:
its leaves are used as a vegetable, its stems and bark are
made into string, nets and paper, and its seeds are used
in oil and drinks. A Gnetum seed originates from a

female reproductive unit that is produced on the collar
involucre of a female strobilus [1, 2]. A Gnetum seed is
composed of three layers of envelopes, the outermost of
which gives rise to a seed coat—aril [3, 4]. Gnetum seeds
are rich in a variety of chemicals, such as carbohydrates,
proteins and fibers [5, 6]. The primary metabolism (e.g.
carbohydrate metabolism) is probably associated with
seed ripening process (during which the aril color
changes from green to red, Fig. 1) in Gnetum, but the
molecular mechanisms that underlie the process have
not been carefully investigated.
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Previous investigations of transcription factors (TFs)
provide valuable insight into the molecular mechanisms
of reproductive organ development in Gnetum. MADS-
box genes, comprising type I and type II MADS-box
genes, encode essential transcription factors that regu-
late reproductive organ development in seed plants [7].
Previous work has shown that type II MADS-box AG-
like and TM8-like genes are highly expressed in G. luo-
fuense seeds [8]. In addition, Aux/IAA genes participate
in the development of various organs in seed plants by
responding to the hormone auxin/indole-3-acetic acid
[9, 10]. A recent study showed that six Aux/IAA genes
are involved in the development of female strobili in G.
luofuense [11]. Another study reported that bHLH genes
facilitate the development of G. luofuense leaves [11].
Moreover, bHLH and MYB TFs are able to form a com-
plex that regulates stamen development and seed pro-
duction [12]. Therefore, genes that encode MADS-box,
Aux/IAA and bHLH TFs may play essential roles in
Gnetum seed ripening, and these possibilities require
further examination.
In addition to key genes/TFs, other molecular mecha-

nisms that regulate male strobilus development in G.
luofuense are also noteworthy. For example, previous
studies have shown that G. luofuense uses alternative
splicing (AS) and alternative polyadenylation (APA) to
enrich transcriptome complexity during the develop-
ment of leaves and female strobili [11]. AS has been pro-
posed as an essential modulator of development in
eukaryotic organisms [13, 14]. Besides, APA facilitates
the stability, translation and localization of target RNAs
by generating varied isoforms with different coding se-
quences or 3′ UTRs [15]. There have been few investiga-
tions of AS and APA in gymnosperms, but such studies

are much more abundant in angiosperms (e.g. [16–21]).
In addition, long noncoding RNAs (lncRNAs), which
possess at least 200 nucleotides, may also play a role in
the regulation of Gnetum seed development. LncRNAs
take part in transcriptional and post-transcriptional gene
regulation in almost all eukaryotic organisms [22–24].
The presence of lncRNAs has only been reported in the
leaves of Gingko biloba L. [25, 26] and in the leaves and
female strobili of G. luofuense [11]. To date, little atten-
tion has been paid to lncRNAs in gymnosperms [11, 27].
To investigate AS, APA and lncRNAs, PacBio sequen-

cing provides better performance than Illumina sequen-
cing, it is because single-molecule transcriptome
sequencing provides greater sequence completeness with
regard to the 5′ and 3′ ends of cDNA molecules, higher
accuracy for the identification of alternative isoforms,
and increased power to distinguish RNA haplotypes [11,
16, 28]. Therefore, in the present study, we generated a
full-length transcriptome from two developmental stages
(immature and mature) of G. luofuense seeds using the
reference genome of G. luofuense (=G. montanum) [29].
AS, APA, lncRNAs and relevant TFs were investigated
using the single-molecule data. In addition, we generated
separate transcriptomes for the two seed developmental
stages using Illumina RNA sequencing to uncover key
genes that regulate the seed ripening process in Gnetum.

Results
PacBio sequencing and error correction
The full-length transcriptome of mature and immature
G. luofuense seeds comprised a total of 12,869,707 sub-
reads (19.81 Gb) with an average length of 1540 bp
(Table S1, Fig. S1A). After self-correction with an accur-
acy value of ROIs > 0.8, 384,042 circular consensus

Fig. 1 Two developmental stages of G. lufouense seeds. a Immature seeds. b Mature seeds
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sequences (CCSs) with an average length of 1919 bp
were generated, of which full-length, non-chimeric
(FLNC) reads accounted for 81% (312,444, Fig. S1B).
The FLNC reads were clustered using the ICE algorithm,
and non-FLNC reads were polished. The FLNC reads
and polished non-FLNC reads were merged, yielding
165,883 polished consensus isoforms ranging from 167
to 13,816 bp in length (Fig. S1C). The 165,883 polished
consensus reads were further corrected using Illumina
sequencing data with LoRDEC software. The mean
length and N50 and N95 values changed slightly after
correction (Table S2).

Genome mapping and novel gene detection
The corrected polished consensus reads were mapped to
the G. luofuense reference genome using GMAP. 162,
887 (98.19%) reads were mapped to the reference (Fig.
S1D); of these, 63,049 uniquely mapped reads (38.01% of
total mapped reads) were mapped to the positive strand
of the reference genome, 60,292 uniquely mapped
(36.35%) reads were mapped to the negative strand, 39,
546 (23.84%) were multiply mapped reads, and 2996
(1.81%) reads were unmapped. The mapping density on
each scaffold of G. luofuense genome was shown in Fig.
S1E. Over 98% of the mapped reads showed similarity to
the reference genome, and coverage values of the
mapped reads were all above 80% (Fig. S1F). After delet-
ing the unmapped and redundant reads, 41,151 reads
remained, of which 7899 were novel isoforms of known
genes and 5726 reads were from novel genes.

Annotation and classification of novel genes
The 5726 novel genes were annotated by searching
against six databases—NCBI NR, KEGG, GO, Swis-
sProt, KOG, and Pfam. A total of 4099 novel genes
were annotated, of which 2588 were annotated in the
NR database (Table S3). Five species—Picea sitchensis
(649 genes), Amborella trichopoda (116), Vitis vinifera
(88), Elaeis guineensis (80), and Nelumbo nucifera
(61)—produced the largest numbers of hits to the G.
luofuense novel genes (Fig. S2A). Two thousand four
hundred eighty-seven novel genes were annotated with
KEGG pathways (Table S3), and the most enriched
pathways were “signal transduction” (169 genes),
“carbohydrate metabolism” (83 genes), and “translation”
(69 genes, Fig. S2B). GO analysis classified 2069 genes
into three categories: “biological process”, “cellular
components” and “molecular functions” (Fig. S2C).
Novel genes classified in the biological process category
were mainly annotated with the terms “metabolic
process” (1052), “cellular process” (1037), and “single-
organism process” (581). Novel genes classified in the
cellular component category were mainly annotated
with the terms “cell” (519), “cell part” (519), and

“membrane” (367). Novel genes classified in the mo-
lecular function category were mainly annotated with
the terms “binding” (1192), “catalytic activity” (942),
and “transporter activity” (132). One thousand nine
hundred thirty genes, 1315 genes and 2069 genes were
annotated with the Swiss Prot, KOG and Pfam data-
bases, respectively (Table S3).

AS and APA analysis
After mapping reads to the reference genome of G. luo-
fuense, a total of 9061 AS events were detected. These
could be classified into seven types (Fig. 2a): retained in-
tron (2713, 29.94%), alternative 3′ splice site (2468,
27.24%), alternative 5′ splice site (1769, 19.52%), skipped
exon (1305, 14.40%), alternative first exon (542, 5.98%),
alternative last exon (217, 2.39%), and mutually exclusive
exon (47, 0.52%).
To verify the AS events identified, expression of two

genes, i.e. Tns00138667g03 and TnS000973269g04 were
validated by qRT-PCR (Fig. 2b, Additional file 1). In
addition, a total of 8512 genes from G. luofuense seeds had
at least one supported poly(A) site. Of these, 3654 (42.93%)
had a single poly(A) site, and 640 (7.52%) had at least five
poly(A) sites (Fig. 2c). The largest number of poly(A)
sites—21—was found in the gene TnS000670009g01.

Identification of TFs and lncRNAs
A total of 2160 transcription factors (TFs) from 86
gene families were detected using iTAK. The largest
fraction of identified TFs came from the C3H (5.6%),
bHLH (4.53%), and MYB-related (4.26%) families
(Fig. 3a). In addition, 11,885, 5958, 11,294 and 11,037
lncRNAs were identified using the CNCI, CPC, PFAM
and PLEK methods, respectively. A total of 3551
lncRNAs were identified by all four methods (Fig.
3b), with lengths ranging from 200 to 7840 bp. The
lncRNAs were further classified into four types (Fig.
3c): 1422 (40.05%) sense intronic lncRNA, 1149
(32.36%) long intergenic non-coding RNA, 547
(15.40%) antisense lncRNA, and 433 sense overlapping
lncRNA (12.19%). The length distribution of the iden-
tified lncRNAs was considerably narrower than that
of mRNAs predicted from the G. luofuense genome
(Fig. 3d). Moreover, most identified lncRNAs had five
or fewer exons, whereas mRNAs predicted from the
reference genome tended to have larger numbers of
exons (Fig. 3e).

Illumina sequencing of seed samples at two
developmental stages
To explore gene expression patterns during seed devel-
opment of G. luofuense, 306,900,384 clean Illumina reads
(46.04 Gb of raw data) with Q30 values from 93.54 to
94.07% were generated from three immature seed
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samples (IS) and three mature seed samples (MS) (Table
S4). After the deletion of adaptors and low-quality reads,
the average GC content of the six samples was 47.08%.
PCA analysis showed that gene expression was highly
correlated among the replicate samples of immature and
mature seeds (correlation efficiency value = 0.95, cumu-
lative proportion of variation explained by PC1 and

PC2 = 78.7%) (Fig. 4a). After mapping to the G. luofuense
genome, the mapping ratios of IS (average 89.44%, Table
S5) were found to be significantly larger than those of
MS (average 84.46%, Student’s t-test p-value = 0.003).
RNA-seq analysis of the two developmental stages
yielded a total of 23,977 genes (19,010 in IS and 20,737
in MS), of which 2970 were identified as novel genes.

Fig. 2 a Numbers of alternative splicing events identified in the full-length transcriptome of G. luofuense. b PCR validation of AS events, i.e.
retained intention (at top) and skipped exon (at bottom) of two selected genes. c Genes with different numbers of alternative polyadenylation
sites identified in the full-length transcriptome of G. luofuense seeds
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Enrichment analysis of DEGs and qRT-PCR validation
A total of 14,323 differentially expressed genes (DEGs)
were identified between IS (control group) and MS: we
found 7891 upregulated genes and 6432 genes downreg-
ulated (Fig. 4b) from IS to MS. The DEGs were also an-
notated with the three categories of GO terms, and
multiple GO terms in the “biological process” category
were significantly enriched with regard to Z-scores and

adjusted p-values (Fig. 4c). The top five enriched GO
terms were “single-organism cellular process” (GO:
0044763), “single-organism process” (GO:0044699),
“metabolic process” (GO:0008152), “cellular metabolic
process” (GO:0044237), and “Organic substance meta-
bolic process” (GO:0071704). The DEGs were also
enriched in multiple KEGG pathways with reference to
Arabidopsis thaliana. The top five enriched KEGG

Fig. 3 a A partial list of transcription factors (top 28 gene families) identified in the full-length transcriptome of G. luofuense seeds. b Venn
diagram showing the number of lncRNAs identified using four different approaches: CPC (Coding Potential Calculator), CNCI (Coding-Non-Coding
Index), CPAT (Coding Potential Assessment Tool), and Pfam (Protein Family). c Functional classification and numbers of four lncRNA types. d The
length density distribution of identified lncRNAs on the reference genome of G. luofuense compared to that of identified lncRNA in the full-length
transcriptome. e Distribution of exon numbers in mRNAs predicted by the reference genome and identified lncRNAs in the
full-length transcriptome
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Fig. 4 (See legend on next page.)
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pathways were “metabolic pathways” (KEGG ID:
ath01100, 1229 genes), “biosynthesis of secondary metabo-
lites” (ath01110, 844 genes), “carbon metabolism”
(ath01200, 179 genes), “ribosome” (ath03010, 164 genes),
and “starch and sucrose metabolism” (ath00500, 154
genes) (Fig. 4d). qRT-PCR was used to validate the relative
expression of 14 genes of interest: four MADS-box genes,
four Aux/IAA genes, four bHLH genes, and two MYB
genes. The relative expression of the 14 genes at the two
seed developmental stages is presented in Fig. 4e.

Discussion
Structural analysis of the full-length transcriptome
Structural analysis of the full-length transcriptome

AS event analysis In angiosperms, it has been reported
that the percentages of AS modes differ dramatically
among organs and that vegetative tissues (e.g. roots and
ears) exhibit higher percentages of intron retention than
reproductive tissues (e.g. pollen and endosperm) in
maize (see Fig. 3 in 17). Moreover, retained intron
percentage dramatically declines over the course of fruit
development in strawberry [30]. In gymnosperms,
Gingko biloba genes (e.g. GB_12621 and GB_20198)
show differences in AS between vegetative and repro-
ductive organs and between immature and mature stages
of leaves and seeds [26]. In the present study, retained
intron accounted for 29.94% of all AS events (Fig. 2a),
this figure was dramatically lower than those reported
previously in leaves [41.5%, 12] and female strobili [46%,
11] of G. luofuense. This result suggests that the fre-
quency of different AS modes may not only be species
specific but may also vary among different organs.

APA analysis In angiosperms, alternative polyadenyla-
tion is involved in the regulation of flowering time [31,
32]. In gymnosperms, it has been suggested that investi-
gation of APA can improve genome annotation and pro-
mote understanding of flavonoid biosynthesis in G.
biloba [26]. In the present study, a total of 8512 genes
were identified as having at least one poly(A) site, the
numbers of genes with various numbers of poly(A) sites
declined dramatically as the number of poly(A) sites in-
creased from one to five (Fig. 2c). The pattern of gene

numbers with various numbers of poly(A) sites is con-
sistent with that observed in G. luofuense leaves and fe-
male strobili [11]. Our results suggest that alternative
polyadenylation enriches the proteomic complexity and
affects the seed ripening process of G. luofuense.

lncRNA analysis In angiosperms, lncRNAs participate
in fruit development and color change in strawberry
[33], as well as aroma formation in black tea [34]. In
gymnosperms, lncRNAs have an important role in the
regulation of leaf development [27] and leaf color
changes in G. biloba [25]. The percentages of four
lncRNA types have been shown to differ dramatically in
G. biloba: lincRNA (50.6%), sense lncRNA (21.6%), in-
tronic lncRNA (20.9%), and antisense lncRNA (6.9%)
[26]. A recent study show that lincRNA was the highest
(40.8%) and antisense lncRNA was the lowest (1.67%) in
the full-length transcriptome of the G. luofuense female
strobilus [11]. In the present study, however, we found
number of intronic lncRNA (40.05%) was the highest,
and that of sense lncRNA (2.1%) was the lowest (Fig.
3c). Thus, it appears that G. luofuense uses different
lncRNAs to regulate the different reproductive organs.
The scenario is similar to the results reported in P. abies
[35]. Moreover, lncRNAs tended to be shorter and pos-
sessed fewer exons than protein coding genes [27], this
finding is consistent with previous studies in gymno-
sperms, such as G. biloba [27], Picea abies [35], and G.
luofuense [11].

Key TFs/genes involved in seed ripening of G. luofuense
MADS-box genes
MADS-box transcription factors are classified into type I
and type II groups based on the sequence of the con-
served MADS domain [36, 37]. Compared with type II
genes, type I genes have received less attention in previ-
ous studies, although their roles in the development of
female gametophytes, embryos and seeds have been
highlighted in angiosperms [36, 38]. The functions of
type I genes are poorly understood in gymnosperms, and
broad expression of type I genes in shoots, needles and
strobili of conifers has been regarded as “transcriptional
noise” [39]. Type I genes are further divided into Mα,
Mβ and Mδ subgroups; Mα genes are generally

(See figure on previous page.)
Fig. 4 Detection of DEGs and qRT-PCR validation. a PCA analysis of gene expression in the three immature seed samples (IS01–03) and three
mature seed samples (MS01–03). b A volcano plot of differential gene expression between immature and mature seed samples of G. luofuense,
with upregulated genes in red and downregulated genes in green from immature seeds to mature seeds. c A bubble plot of enriched GO terms;
the x-axis represents the z-score, the y-axis represents the negative logarithm of the adjusted p-values, the circle sizes are proportional to the
number of genes enriched in the GO terms, and the circle colors denote the three GO term categories. A table on right side describes top 14 GO
terms in the category biological process, which have been labeled in the bubble plot on left side. d A bubble plot of enriched KEGG terms; the x-
axis represents rich factors, the circle sizes are proportional to enriched gene numbers, and the circle colors correspond to the negative logarithm
of the adjusted p-values for each KEGG pathway. e The expression of 14 TF genes (i.e. MADS-box, Aux/IAA, bHLH and MYB genes) from immature
and mature seeds of G. luofuense were verified by qRT-PCR, and the expression values were normalized with the △△Ct-method
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expressed in various shoot tissues of conifers, whereas
Mβ/Mδ genes are expressed in embryos, buds, and male
strobili [39]. In G. luofuense, a total of 11 type I genes,
(seven Mα genes, three Mβ genes, and one Mδ gene)
have been reported [8]. Twenty-seven type I MADS-box
TFs were identified in G. luofuense seeds (Fig. 4e), and
gene TnS000803113g11 was differentially expressed be-
tween immature and mature seeds, indicating an import-
ant role in seed ripening of G. luofuense.
Among type II MADS-box genes, the expression of

TM8 genes was first reported in tomato flowers [40] and
the TM8-like gene ERAF17 was shown to be expressed in
female flowers but not male flowers of cucumber [41]. In
gymnosperms, TM8-like genes (e.g. GbMADS11 and
GbMADS6 in G. biloba and TbTM8 in Taxus baccata) in-
fluence aril development in male strobili and seed aril de-
veloping [42]. In G. luofuense, TM8-like genes accounted
for almost half the number of genes with a varied pattern
of expression [8]. For example, TnS013912549g01 was
expressed in both female and male strobili, whereas
TnS001008199t01 was exclusively expressed in male stro-
bili [8]. A previous study showed that GpMADS1, a TM8-
like gene defined in Hou et al. (2019b), participated in the
development of female strobili in G. parvifolium [43].
Thus far, 38 type II genes have been identified in G. luo-
fuense, of which TM8-like genes constitute almost half of
the identified gene numbers [8]. In the present study, two
TM8-like genes TnS000061251g01 and TnS000980857g01
were differentially expressed. Moreover, other type II
MADS-box genes, such as AG-like gene TnS0000649
31g01 and AGL6-like gene TnS000229425g02 were differ-
entially expressed at two developmental stages of G. luo-
fuense seeds. Our results are congruent with a previous
study that AG, AGL6 and TM8-like genes regulate seed
development of G. biloba and T. baccata [42].

Aux/IAA genes
Aux/IAA TFs play an essential role in the auxin re-
sponses of seed plants [9, 10, 44]. For example, in angio-
sperms, FaAux/IAA1 and Aux/IAA2 participate in the
fruit development of strawberry [45], and EgrIAA4 is
thought to be essential to the regulation of secondary
cell wall and fiber development in Eucalyptus [46]. An-
other study showed that IAA9 was involved in fruit and
leaf morphogenesis in tomato [47] In gymnosperms, the
Aux/IAA gene LaIAA2 appears to be important for the
regulation of root development and auxin signaling [48].
Besides, six Aux/IAA genes (GluIAA1–6) have been
identified in G. luofuense, all of which are involved in fe-
male strobilus development [11]. In the present study,
four Aux/IAA genes, TnS000653177g04 (GluIAA2),
TnS000867017g28 (GluIAA3), TnS000053353g02 (GluIA
A4), and TnS000142615g19 (GluIAA5), were differntially
expressed and validated by qRT-PCR between the two

developmental stages of G. luofuense seeds (Fig. 4e).
These results suggest that Aux/IAA genes may also be of
importance in G. luofuense seed ripening.

bHLH genes
In angiosperms, the bHLH-encoding gene SPATULA has
been reported to control the development of flowers and
fruits in Arabidopsis [49, 50], and a bHLH TF has been
shown to determine seed coat color in Brassica rapa
[51]. Moreover, bHLH TFs, together with MYB and
WDR TFs, are involved in the regulation of flavonoid
biosynthesis [52–54]. The expression of two MYB-re-
lated genes, i.e. Osmyb1 and Osmyb4, reaches the level
of saturation at 14 days after the anthesis, suggesting that
they have an important role in the maturation of rice
seeds [55]. In gymnosperms, three bHLH TFs have been
reported to negatively regulate gene expression in the
paclitaxel biosynthesis pathway in response to jasmonate
in Taxus cuspidata [56]. Besides, bHLH and MYB TFs
have been reported to participate in flavonoid biosyn-
thesis in the roots rather than the seeds of Ginkgo biloba
[26]. In G. luofuense, 67 bHLH genes were identified in
leaves based on full-length transcripts; 30 were subjected
to phylogenetic analysis and classified into four sub-
groups [57]. Furthermore, 110 bHLH TFs were the most
abundant TFs during development of the female stro-
bilus in G. luofuense [11]. In the present study, 98 bHLH
were identified, of which four bHLH genes, i.e.
Tns000226135g02, TnS000896885g01, TnS000889809g02,
and TnS000498063g28 were differentially expressed and
their expression was validated by qRT-PCR (Fig. 4e).
These results suggest that bHLH TFs may also play an
imporant role in seed ripening of G. luofuense.

Genes related to carbohydrate metabolism
Gnetum seeds are rich in carbohydrates as the examples
reported in G. africanum (87.62%) [5] and G. gnemon
(64.1%) [6]. The accumulation of carbohydrates in Gne-
tum seeds makes them palatable and nutritious, thereby
attracting a variety of herbivores to promote seed disper-
sal [58, 59]. In the present study, the DEGs between im-
mature and mature seeds were enriched in several
KEGG pathways, e.g. carbon metabolism, starch and su-
crose metabolism, glycolysis/gluconeogenesis, and fruc-
tose and mannose metabolism (Fig. 4d). The DEGs were
also enriched in the GO terms, e.g. primary metabolic
process, metabolic process, and cellular metabolic
process (Fig. 4c). These results suggest that genes that
are involved in carbohydrate metabolisms are also
indispensable in seed ripening of G. luofuense.

Conclusions
We generated a full-length transcriptome of G. luofuense
seeds at two developmental stages using Pacbio sequencing
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technique. We identified a total of 5726 novel genes, 9061
alternative splicing events, 3551 lncRNAs, and 8512 genes
were identified to possess at least one poly(A) site. Tran-
scription factors MADS-box, Aux/IAA and bHLH were
found to play important roles in seed ripening of G.
luofuense. These findings provide a valuable molecular
resource for disentangling organ development of
gymnosperms.

Methods
Plant material and RNA extraction
Gnetum luofuense seeds were collected at immature (IS)
and mature (MS) developmental stages from a female in-
dividual (voucher number “CH003”, SYS) cultivated in
the Bamboo Garden at Sun Yat-sen University on Sep-
tember 2nd and 28th 2018 (Fig. 1a) with the permissions
of Sun Yat-sen University. To obtain a full-length tran-
scriptome for the two developmental stages, identical
amounts (10 g) of mature and immature seeds with arils
were pooled, incubated in liquid nitrogen, and frozen at
− 20 °C for PacBio SMRT sequencing. In addition, six
samples of G. luofuense seeds (“IS001–003” and
“MS001–003”) were collected for Illumina sequencing,
three from the immature stage (control group) and three
from the mature stage. The RNA for each sample was
extracted using an RNA kit (Qiagen, Valencia, CA, USA)
following the manufacturer’s instructions. RNase-free
DNase (Qiagen) was used to remove relic DNA, and the
RNA concentration of samples was evaluated by 1%
agarose gel electrophoresis. A NanoDrop spectropho-
tometer (ThermoFisher Scientific, Wilmington, DE,
USA) and Agilent 2100 Bioanalyzer (Agilent Technolo-
gies, Palo Alto, CA, USA) were used to assess the purity
and integrity of the extracted RNA. G. luofuense samples
used in this research is derived from the plant cultivated
merely for teaching and researches. Thus, the collection
of seeds and the performance of experimental research
on such plant were complied with the national guide-
lines of China.

Plant material and RNA extraction
Gnetum luofuense seeds were collected at immature (IS)
and mature (MS) developmental stages from a female in-
dividual (voucher number “CH003”, SYS) cultivated in
the Bamboo Garden at Sun Yat-sen University on Sep-
tember 2nd and 28th 2018 (Fig. 1a). To obtain a full-
length transcriptome for the two developmental stages,
identical amounts (15 g) of mature and immature seeds
with arils were pooled, incubated in liquid nitrogen, and
frozen at − 20 °C for PacBio SMRT sequencing. In
addition, the six samples of G. luofuense seeds were col-
lected for Illumina sequencing, three from the immature
stage (control group) and three from the mature stage.
The RNA for each sample was extracted using an RNA

kit (Qiagen, Valencia, CA, USA) following the manufac-
turer’s instructions. RNase-free DNase (Qiagen) was
used to remove relic DNA, and the RNA concentration
of samples was evaluated by 1% agarose gel electrophor-
esis. A NanoDrop spectrophotometer (ThermoFisher
Scientific, Wilmington, DE, USA) and Agilent 2100
Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA)
were used to assess the purity and integrity of the
extracted RNA.

Library construction and PacBio sequel sequencing
When the integrity of extracted RNA met the minimum
requirement (> 7.0), full-length cDNA was synthesized
using a SMARTer PCR cDNA Synthesis kit (Clontech,
Takara Bio Inc., Shiga, Japan). The synthesized cDNA
was subjected to PCR amplification using a KAPA HIFI
PCR kit (Kapa Biosystems, Boston, MA, USA). After
PCR amplification, the cDNA was quality controlled and
purified using a QIAquick PCR Purification kit (Qiagen,
Hilden, Germany). The RNA samples were subjected to
terminal repair and the attachment of SMRT dumbbell-
type adapters. Before PacBio sequencing, two bins (1–4
kb, 4–6 kb) were established to preferentially sequence
the smaller cDNAs.

Library construction and Illumina sequencing
Before Illumina sequencing, all six RNA samples that
possessed poly(A) were enriched with oligo (dT) mag-
netic beads. The enriched RNA was randomly reduced
to small pieces with a fragmentation buffer. First strand
cDNA was generated using hexamers and reverse tran-
scriptase (Superscript III, Invitrogen). After purification
with AMPure XP beads, second strand cDNA was syn-
thesized using DNA polymerase I, RNase H and dNTPs
(Sigma-Aldrich). The double-stranded cDNA was sub-
jected to terminal repair and poly(A) tailing, followed by
Illumina adaptor ligation. The final cDNA library was
completed after a second round of purification and PCR
amplification. The quality of the six cDNA libraries was
assessed using a Qubit 2.0 fluorometer prior to sequen-
cing on the Illumina HiSeq 4000 platform.

PacBio data processing and error correction
PacBio sequencing data were analyzed using PacBio
SMRTlink v. 5.1 software. First, we obtained reads of in-
serts (ROIs) from the BAM files generated from the plat-
form using the following parameters: maximum drop
fraction—0.8, minimum length—200, no polish, mini-
mum z-score—9999, minimum passes—1, minimum
predicted accuracy—0.8, and maximum length—18,000.
The ROIs were classified into full-length reads (FLs) and
non-full-length reads (nFLs) based on the presence and
absence of 5′ and 3′ cDNA primers and a 3′ poly (A)
tail, see also in [11]. The FLs and nFLs were clustered to
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achieve consensus isoforms using an isoform-level
clustering (ICE) algorithm. To obtain full-length non-
chimeric (FLNC) isoforms, the high-quality isoforms
from FLs were corrected using Quiver software with a
post-correction accuracy above 99%. The low-quality
consensus isoforms from nFLs were further corrected
with LoRDEC [60] using two Illumina-sequenced sam-
ples (one from mature seeds and one from immature
seeds).

Genome mapping and novel gene detection
All FLNCs and corrected nFLs were mapped to the ref-
erence genome of G. luofuense (=G. montanum) [29]
using GMAP [61]. The GMAP output files were used for
subsequent analyses. Redundant FLNCs were removed
using the following parameters: minimum identity—0.9,
minimum trimmed coverage—0.85, and allow close
indel—0. Mapped FLNCs with different lengths at their
5′ ends were not considered to be redundant. The
FLNCs that mapped to annotated genes in the G. luo-
fuense genome were considered to be known genes;
otherwise, they were classified as novel genes and novel
isoforms of known genes.

Functional annotation and classification
All identified novel genes were annotated by BLASTX
v.2.2.26 searches (E-value < 1 × 10− 5) of the gene ontology
(GO, http://www.geneontology.org), Kyoto Encyclopedia
of Genes and Genomes (KEGG, http://www.genome.jp/
kegg/), Protein Family (Pfam), KOG/COG (Clusters of
Orthologous Groups of proteins, http://www.ncbi.nlm.nih.
gov/COG/), NCBI non-redundant protein sequence (NR,
http//www.ncbi.nlm.nih.gov/), and Swiss-Prot (http//
http://www.expasy.org/sprot/) databases and by HMMER
v.3.1b2 searches (E-value < 1 × 10− 10) of the Pfam (Protein
Family, http://pfam.xfam.org/) database [62, 63]. In
addition, GO enrichment analysis was performed using
the GOseq package implemented in R [64] and KEGG en-
richment analysis was performed using KOBAS version
2.0 [65].

AS and APA analysis
Gene structure analysis was performed using the TAPIS
pipeline [16]. First, seven types of alternative splicing
(AS) events were identified: alternative 3′ splice site,
retained introns, alternative 5′ splice site, skipped exon,
alternative first exon, alternative last exon, and mutually
exclusive exons. In addition, alternative polyadenylation
(APA) analysis was conducted, and genes were classified
according to their poly(A) number.

Identification of TFs and lncRNAs
Coding sequences (CDS), which possess open reading
frames (ORFs), were identified by searching against the

Pfam database using TransDecoder [66]. Based on the
identified CDS, transcription factors (TFs) were pre-
dicted by searching against the Plant Transcription Fac-
tor Database v.4.0 (http://planttfdb.cbi.pku.edu.cn) using
iTAK version 15.03 [67]. Four methods were used to
identify lncRNAs: PC (Coding Potential Calculator),
CNCI (Coding-Non-Coding Index), CPAT (Coding Po-
tential Assessment Tool), and Pfam. The lncRNAs,
which are longer than 200 nt and possess at least two
exons, do not encode proteins and are classified into
four groups: lincRNA, intronic lncRNA, sense lncRNA,
and antisense lncRNA.

DEG identification and qRT-PCR validation
Illumina sequenced raw reads with poly(N) and low
scores were removed, and the remaining reads were
trimmed of adaptors at both ends. The cleaned reads
were mapped to the G. luofuense genome using HISAT2
v.2.1.0 [68]. Mapped read numbers were counted and
adjusted through one scaling normalized factor using
the R package edgeR [69]. The numbers of mapped
reads were converted to values of fragments per kilobase
of transcript per million mapped fragments (FPKM). To
identify differentially expressed genes (DEGs), RNA data
from three replicate samples of mature and immature
seeds were separately merged and then compared using
the R package EBSeq v. 1.20.0 [70]. The DEGs met the
following requirements: corrected P-value (adjusted by
the Benjamini & Hochberg method)—0.005 and log2(-
fold change) value—1.

qRT-PCR validation
To validate the occurrence of AS events identified in the
full-length transcriptome, expression of two genes, i.e.
TnS000138667g03 and TnS000973269g04 were validated
by qRT-PCR. Among the two micrograms of RNA were
extracted from mature and immature seeds of G. luo-
fuense and subjected to cDNA synthesis according to
the manufacturer’s protocol. qRT-PCR was performed
under the following conditions: 10 min at 95 °C (1 cycle),
10 s at 95 °C, 30 s at 55 °C and 15 s at 72 °C (40 cycles),
temperature reduction from 95 °C to 60 °C (0.5 °C/10 s)
and termination in 30 s at 25 °C. Gene electrophorese
was performed to test various lengths of qRT-PCR prod-
ucts. Moreover, 14 DEGs were selected for gene expres-
sion validation with qRT-PCR. The G. luofuense actin
gene was used as an endogenous control to estimate the
relative expression of target genes using the ΔΔCt-
method [71]. For each sample, three replicates were per-
formed, and the mean and standard deviation of the
qRT-PCR gene expression values were calculated
accordingly.
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