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Abstract

Background: Growth-regulating factors (GRFs) are plant-specific transcription factors that control organ size.
Nineteen GRF genes were identified in the Populus trichocarpa genome and one was reported to control leaf size
mainly by regulating cell expansion. In this study, we further characterize the roles of the other poplar GRFs in leaf
size control in a similar manner.

Results: The 19 poplar GRF genes were clustered into six groups according to their phylogenetic relationship with
Arabidopsis GRFs. Bioinformatic analysis, degradome, and transient transcription assays showed that 18 poplar GRFs
were regulated by miR396, with GRF12b the only exception. The functions of PagGRF6b (Pag, Populus alba × P.
glandulosa), PagGRF7a, PagGRF12a, and PagGRF12b, representing three different groups, were investigated. The
results show that PagGRF6b may have no function on leaf size control, while PagGRF7a functions as a negative
regulator of leaf size by regulating cell expansion. By contrast, PagGRF12a and PagGRF12b may function as positive
regulators of leaf size control by regulating both cell proliferation and expansion, primarily cell proliferation.

Conclusions: The diversity of poplar GRFs in leaf size control may facilitate the specific, coordinated regulation of
poplar leaf development through fine adjustment of cell proliferation and expansion.
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Background
Growth-regulating factors (GRFs) are plant-specific tran-
scription factors that regulate the growth and develop-
ment of leaves, roots, stems, flowers, and seeds by
regulating cell proliferation or cell expansion, leading to
the formation of larger organs [1–4]. GRFs form a multi-
gene family found in the reported plant genomes: six
genes in Camellia sinensis, eight genes in Vitis vinifera,

nine genes in Arabidopsis thaliana, nine genes in Citrus
sinensis, 10 genes in Pyrus bretschneideri, 12 genes in
Oryza sativa, 13 genes in Solanum lycopersicum, 14
genes in Zea mays, 17 genes in Brassica rapa, 19 genes
in Populus trichocarpa, and 25 genes in Nicotiana
tabacum [5–14]. The Glu-Leu-Glu (QLQ) and Trp-Arg-
Cys (WRC) domains are essential for GRF function in
protein–protein interactions [15] and DNA binding [16],
respectively. Genome-wide analyses revealed that GRFs
and a few bZIP transcription factors are the major
targets of miR396 [17].
GRFs are important for leaf size control [1–4]. Over-

expression of AtGRF1 (At, Arabidopsis thaliana),
rAtGRF2 (with mutations in the miR396 target sites,
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miR396-resistant version), rAtGRF3, rAtGRF7, rAtGRF9,
AtGRF5, BnGRF2 (Bn, Brassica napus), or BrGRF8 (Br,
Brassica rapa) in Arabidopsis thaliana and overexpres-
sion of rZmGRF1 (Zm, Zea mays) in Zea mays all re-
sulted in larger leaves, while grf mutations or
overexpression of miR396 led to smaller leaves [6, 10,
18–22]. Interestingly, most reported GRFs (AtGRF2,
AtGRF3, AtGRF5, BnGRF2, BrGRF8, and ZmGRF1) con-
trol leaf size by regulating cell proliferation [10, 15, 18,
20–22], except ZmGRF10, which modulates leaf size via
both cell proliferation and cell expansion, but mainly
through cell proliferation [23]. Previously, we found that
overexpression of one of the poplar GRFs, GRF15, also
led to larger leaves and further analysis revealed that this
GRF controlled leaf size mainly by regulating cell expan-
sion [24], which differed from the reported GRFs. Since
19 GRFs have been identified in the Populus trichocarpa
genome [11] and leaf development is important for pop-
lar biomass production in species like P. nigra and for
drought/salt tolerance in species like P. euphratica, we
wondered whether and how the other poplar GRFs func-
tion in leaf size control.
Here, we renamed the poplar GRFs according to their

phylogenetic relationship with Arabidopsis GRFs and

clustered them into six groups, and characterized the
functions of PagGRF6b, PagGRF7a, PagGRF12a, and
PagGRF12b from three different groups. We found that
not all poplar GRFs regulate leaf development and their
mechanisms of leaf size control are diverse.

Results
Names of poplar GRFs according to their Arabidopsis
orthologs
Nineteen candidate GRF genes were found in the Popu-
lus trichocarpa genome [11]. To enable the comparison
of PtrGRFs (Ptr, Populus trichocarpa) with the well-
studied AtGRFs, the 19 identified PtrGRFs were renamed
according to their Arabidopsis orthologs (Fig. 1, Fig. S1).
According to the phylogenetic tree, the PtrGRFs could
be classified into six groups (Fig. 1a, Fig. S2), with Group
VI as a supplementary group to the reported classifica-
tion of AtGRFs [6]. In Group I, four PtrGRFs clustered
with AtGRF1 and AtGRF2 and were named PtrGRF1/2a,
PtrGRF1/2b, PtrGRF1/2c, and PtrGRF1/2d (Fig. 1a). In
Group II, only one PtrGRF gene corresponded to
AtGRF3 and AtGRF4 and was named PtrGRF3/4 (Fig.
1a). In Group III, AtGRF5 and AtGRF6 each have two
poplar orthologs, which were named accordingly (Fig.

Fig. 1 Phylogenetic relationships and gene structure of A. thaliana (At) and P. trichocarpa (Ptr) GRF genes. a The phylogenetic tree of AtGRFs and
PtrGRFs. Full-length GRF protein sequences were aligned using Clustal X2.1 and a neighbor-joining phylogenetic tree was constructed using
MEGA 5.0. The PtrGRFs were classified into six groups (marked with different background colors) according to the phylogenetic relationship. b
Conserved domains or motifs in the GRF proteins. QLQ and WRC domains, FFD, TQL and GPL motifs (represented by boxes of different color) are
named because of conserved Gln-Leu-Gln (QX3LX2Q), Trp-Arg-Cys (WRC), Phe-Phe-Asp (FFD), Thr-Gln-Leu (TQL) and Gly-Pro-Leu (GPL) residues
contained in their sequences
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1a). In Group IV, three PtrGRFs were named according
to their sequence similarity to AtGRF7 and AtGRF8 (Fig.
1a). In Group V, although three PtrGRFs clustered with
AtGRF9, only one PtrGRF with two WRC domains was
named PtrGRF9 (Fig. 1a and b). In addition, four
PtrGRFs with no close Arabidopsis orthologs were clus-
tered in Group VI and named PtrGRF10a, PtrGRF10b,
PtrGRF11a, and PtrGRF11b (Fig. 1a). The two PtrGRFs
that clustered with AtGRF9, but lacked the add-
itional WRC domain were renamed PtrGRF12a and
PtrGRF12b (Fig. 1a and b). Table S1 shows the complete
gene information for PtrGRFs and AtGRFs.

The regulation of PtrGRFs by miR396
Since GRFs are the major targets of miR396 [17], the rela-
tionship between miR396 and PtrGRFs was investigated.
First, the sequences of PtrGRFs and the mature sequences
of poplar miR396b were uploaded to RNAhybrid [25, 26] to
analyze whether PtrGRFs are targets of miR396. This
showed that all of the PtrGRFs, except PtrGRF12b, have the
potential to hybridize with miR396b with a minimal free
energy hybridization value less than − 33 kcal/mol, suggest-
ing that these PtrGRFs could be targets of miR396 (Fig. 2a).
For PtrGRF12b and miR396, the number of mismatches
exceeded the other hybridization pairs and the
hybridization energy was − 28 kcal/mol, which exceeded
the values observed for most endogenous miRNA tar-
gets [27], suggesting that PtrGRF12b is not a target of
miR396 (Fig. 2a). Then, we aligned the target sequences
of PtrGRFs to the mature miR396b sequences (Fig. S3).
The sequences of PtrGRF1/2a-PtGRF12a and miR396
matched perfectly, while a thymine to adenine change
in the 3′ terminal of PtrGRF12b led to a mismatch, in-
dicating that PtrGRF12b is the only PtrGRF not tar-
geted by miR396 (Fig. S3).
In addition, degradome sequencing data [28] were ana-

lyzed to identify miR396 cleavage sites in the PtrGRFs (Fig.
2b). As expected, the miR396 cleavage sites of most
PtrGRFs were found in the degradome data and no such a
site was found in the GRF12b transcript (Fig. 2b, Table S2),
proving the in vivo regulation of the expression of PtrGRFs
by miR396 was consistent with the RNAhybrid analysis.
Furthermore, transient expression assay was used to

investigate the regulation of poplar GRFs by miR396. On
fusing PagGRF1/2c, PagGRF9, PagGRF10b, PagGRF11b,
and PagGRF12b, genes isolated from poplar 84 K (see
Methods), with YFP (Yellow Fluorescent Protein) and
expressing them transiently in tobacco leaves, the fluor-
escence signals of all of the PagGRF-YFP fusion proteins
were very weak (Fig. S4), except that of PagGRF12b
(Fig. 3a). Considering the functional conservation of
plant miRNAs, the weak fluorescence signal may be due
to the cleavage of PagGRFs by tobacco miR396. To test
this, miR396-resistant versions of the GRFs, which

contained six point mutations within the miR396-
complementary domain of the GRF sequence to increase
the number of mismatches without altering the amino
acid sequence, were constructed and transiently
expressed in tobacco leaves (Fig. S5). As expected, the
fluorescence signals of the mPagGRF-YFP fusion pro-
teins were strong and merged with the DAPI signals
(Fig. 3a), indicating that miR396 targeted all of the
PagGRFs, except PagGRF12b. Furthermore, transient co-
expression assays were performed and PtrmiR408 was
used as a negative control to evaluate the regulation of
PagGRF by PagmiR396b (Fig. 3b). Similar to the fluores-
cent signals of GRF1/2d [previously named GRF15 by
Cao et al. (2016)] in our published results [24], the fluor-
escent signals of GRF12a-YFP were weak when co-
expressed with PtrmiR408, but were faint and difficult to
detect when co-expressed with PagmiR396b, indicating
that PagmiR396b could downregulate the expression of
PagGRF12a. By contrast, comparable strong fluores-
cence of mGRF12a-YFP, the mutated version, was de-
tected when co-expressed with PagmiR396a or
PtrmiR408. These results confirmed that PagmiR396b
could target PagGRF directly in vivo.

Overexpression of PagGRF6b, PagGRF7a, PagGRF12a, and
PagGRF12b led to diverse changes in leaf size in
transgenic poplar
The result in our previous study [24] showed that
GRF1/2a, GRF1/2b, GRF1/2c, GRF1/2d, GRF5a, GRF5b,
GRF6b, GRF7a, GRF7b, GRF8, GRF9, GRF10a, GRF11a,
GRF11b, and GRF12a were all highly expressed in
young leaves, suggesting that these GRFs may have a
role in leaf size control. In addition, although its ex-
pression was relative low in all tissues, the miR396 in-
dependent GRF, GRF12b, had higher relative
expression in young leaves. Therefore, to investigate
the function of poplar GRFs in leaf size control,
PagGRF6b representing group III, PagGRF7a from
group IV, and PagGRF12a and PagGRF12b from group
V were chosen to generate transgenic plants for func-
tional characterization (Figs. 1 and 4). The mutated ver-
sions of PagGRF6b, PagGRF7a, and PagGRF12a, with
synonymous mutations in the miR396 target sites, were
used to avoid degradation by miR396 (Fig. S6). Three
overexpression (OE) lines each for mPagGRF6b,
mPagGRF7a, mPagGRF12a, and PagGRF12b with mod-
erately increased expression of the corresponding gene
were chosen for further investigation (Fig. S7). The leaf
size of the mPagGRF6b OE plants did not differ signifi-
cantly (Fig. 4a), while mPagGRF7a OE plants had 26.8%
smaller leaves than those of the control (CK) (Fig. 4b).
By contrast, mPagGRF12a and PagGRF12b OE plants
had 16.1 and 28.1% larger leaves, respectively, in com-
parison with CK (Fig. 4c and d).
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Fig. 2 (See legend on next page.)
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The leaf epidermis cell area was measured and leaf cell
numbers were calculated for mPagGRF6b, mPagGRF7a,
mPagGRF12a, and PagGRF12b OE plants and compared
with the CK. The leaf epidermis cell area of mPagGRF6b
did not change significantly (Fig. 4a), while it decreased in
mPagGRF7a, mPagGRF12a, and PagGRF12b OE plants
(Fig. 4b-d). The number of leaf cells in the mPagGRF6b
and mPagGRF7a OE plants did not differ significantly
(Fig. 4a and b), but increased significantly in the
mPagGRF12a and PagGRF12b OE plants (Fig. 4c and d).
Furthermore, expression of the cell proliferation marker

genes CYCLINB1;1a and CYCLINB1;1b and cell expansion
marker genes EXPA11a and EXPA11b (Zhou et al. 2019)
was examined in the fifth leaves from mPagGRF6b,
mPagGRF7a, mPagGRF12a, and PagGRF12b OE plants.
Consistent with our observations, expression of CYCLINB1;
1a and CYCLINB1;1b was unaltered in mPagGRF6b and
mPagGRF7a OE plants, but upregulated in the
mPagGRF12a and PagGRF12b OE plants (Fig. 5, Fig. S8).
Meanwhile, the expression of EXPA11a and EXPA11b did
not change much in the mPagGRF6b OE plants, but was
downregulated significantly in mPagGRF7a, mPagGRF12a,
and PagGRF12b OE plants (Fig. 5, Fig. S8).
These results indicate that PagGRF6b has no function

in leaf size control; PagGRF7a functions as a negative
regulator of leaf size, mainly by regulating cell expan-
sion; and PagGRF12a and PagGRF12b positively regulate
leaf size through both cell proliferation and cell expan-
sion, but mainly through cell proliferation.

Discussion
The expansion of GRFs in Populus and their functional
diversification in leaf development have drawn our at-
tention. We have re-grouped the 19 GRFs identified in
the P. trichocarpa genome into six groups according to
their phylogenetic relationships with their Arabidopsis
counterparts and renamed these poplar GRFs based on
orthology. This facilitates the comparison of the evolu-
tion and functional diversity of GRF members in Popu-
lus and Arabidopsis. We found that as a result of the
divergence of GRF sequences in Populus, one of the 19
PtrGRFs, PtrGRF12b, was not targeted by miR396 and
that PagGRF6b, PagGRF7a, PagGRF12a, and PagGRF12b
worked differently in leaf size control.
Previously, we reported that PagGRF15 (which named

as PagGRF1/2d in this study) could work as a positive
regulator on leaf size through mainly regulating cell

expansion [24]. Here, we found that PagGRF7a acts dis-
tinctly as a negative regulator on leaf size while
PagGRF6b has no effect on leaf development, though
PagGRF12a and PagGRF12b are similar to PagGRF1/2d
functioning as positive regulators, indicating that differ-
ent members of poplar GRFs have distinct roles in leaf
size control. In addition, we found that PagGRF7a regu-
lates leaf size through negatively affecting cell expansion
while PagGRF12a and PagGRF12b though positively af-
fecting cell proliferation and negatively regulating cell
expansion. All these GRFs exhibit differences with
PagGRF1/2d that positively affects cell expansion. The
unexpected diversified regulation on leaf size control by
various poplar GRFs provides more and additional infor-
mation than our previous report about PagGRF1/2d.
miR396 regulates the expression of GRFs through dir-

ect cleavage of complementary sequences in the GRF
genes [18]. Here, we found that 18 PtrGRFs were regu-
lated by miR396, with PtrGRF12b the only exception,
based on sequence comparison, the cleavage sites of
transcripts, and in vivo miRNA-target analysis. In com-
parison, miR396 did not target two GRFs in A. thaliana,
AtGRF5 and AtGRF6 [29, 30]. PtrGRF12b belongs to
group V, while AtGRF5 and AtGRF6 belong to group III,
suggesting that the miR396 regulation pattern of GRFs
has different features in the two species. It was recently
reported that AtGRF5 plays roles in chloroplast develop-
ment, nitrogen signaling, and senescence, apart from its
function in leaf development [31]. Therefore, the loss
and gain of miR396 regulation of GRFs may cause func-
tional shifts in their roles in plant growth and develop-
ment. Further studies are needed to investigate whether
PtrGRF12b has functions in addition to those of other
miR396-regulated GRFs.
Additionally, our study also suggests the importance of

the regulation of GRF genes by miR396 in poplar, which is
found in Arabidopsis [18, 21, 32]. Firstly, the miR396
regulation on GRFs using miR396-resistant version have
been tested through transient expression assays in order
to obtain the overexpression of GRFs. The fluorescence
signals of the cells expressing PagGRF6b-YFP, PagGRF7a-
YFP and PagGRF12a-YFP were faint and hardly detected,
while the signals expressed their miR396-resistant version
were strong, exampled as PagGRF12a-YFP in Fig. 3, which
indicated that these GRFs were regulated by the existing
miR396 in cells. Secondly, although PagGRF12a and
PagGRF15 (PagGRF1/2d in this study) [24] are positive

(See figure on previous page.)
Fig. 2 The relationship between miR396b and the PtrGRFs. a The hybridization of miR396b and PtrGRFs. The minimum free energy hybridization
is shown. Characters in green and red are the nucleotide sequences of miR396 and GRFs, respectively. b Degradome data of the possible
miR396b cleavage sites on PtrGRFs. The green boxed are the introns of GRFs. Bars indicate the location of the complementary nucleotides of
GRFs to miR396. Arrows indicate the possible cleavage site. The raw reads detected by degradome analysis for each GRFs were marked next to
the arrows
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Fig. 3 Subcellular localization and miR396 regulation of PtrGRFs. a Confocal images of the transient expression of GRF1/2c-YFP, GRF9-YFP,
GRF10b-YFP, GRF11b-YFP, and GRF12b-YFP. The GRF1/2c, GRF9, GRF10b, and GRF11b used here all had six nucleotide mutations in their miR396
target sites. Scale bar = 10 μm. b GRF12a is targeted by miR396. The fluorescence signal of GRF12a-YFP was faint when co-expressed with
miR396b, but the fluorescence signal of mGRF12a-YFP was strong when co-expressed with miR396b. Ptr-miR408 was used as a negative
control. Bars = 50 μm
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regulators on leaf size, the PagmiR396b OE plants showed
a phenotype of smaller leaves [24], suggesting the “epista-
sis” effect of miR396b on the regulation of leaf size.

Therefore, the interaction of miR396 and GRFs is import-
ant for leaf development.
GRFs are important regulators of leaf development [3, 4],

and we found the functional divergence of GRFs in this

Fig. 4 Leaf phenotypes of mGRF6b (a), mGRF7a (b), mGRF12a (c), and GRF12b (d) overexpression (OE) transgenic plants. Photographs, cell
cytology, leaf area, leaf cell area, and calculated leaf cell number of the fifth leaves from 2-month-old mGRF6b, mGRF7a, mGRF12a, and GRF12b OE
plants are shown. Bar = 2 cm (top) and 50 μm (bottom). Data was presented as means ± SD (n = 6–10 for leaf area, n = 100–120 for leaf cell area,
n = 6–10 for leaf cell number). *Ρ < 0.05 determined by Student’s t-test
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Fig. 5 The relative expression of CYCB1;1 and EXP11 in leaves of mGRF6b (a), mGRF7a (b), mGRF12a (c), and GRF12b (d) overexpression (OE)
transgenic plants. CYCB1;1a and CYCB1;1b are the homologs of cell proliferation marker genes in Arabidopsis, and EXP11a and EXP11b are the
homologs of cell expansion marker genes in Arabidopsis. Actin was used as the internal control. Data was presented as means ± SD (n = 4–8).
*P < 0.05, **P < 0.01 determined by Student’s t-test
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study. PagGRF7a is a negative regulator, while PagGRF12a
and PagGRF12b are positive regulators of leaf size, and
PagGRF6b has no effect on leaf size. In Arabidopsis,
AtGRF1, AtGRF2, AtGRF3, AtGRF5, and AtGRF7 all func-
tion as positive regulators of leaf size [15, 18, 21, 32], while
only AtGRF9 functions as a negative regulator of leaf size
[33]. Therefore, GRFs from poplar and Arabidopsis show
diverse regulation of leaf size and their functions need to be
assessed individually. In addition, it is interested that poplar
GRF12a and GRF12b, like rice and maize GRF10 [23, 30],
have truncated C-terminal end. It was proposed that over-
expression of ZmGRF10 may break the homeostasis of dis-
tinct GRF/GIF complexes and result in the altered
representation of other GRF/GIF complex to affect leaf
growth [23], whether poplar GRF12a and GRF12b also
work in this way needs to be investigated.
We also noticed that poplar and Arabidopsis GRFs

classified in the same group could function in different
ways in leaf size control. For instance, PagGRF6b from
Group III has no effect on leaf size, while AtGRF5 from
Group III is a positive regulator of leaf size [15].
PagGRF7a from Group IV functions as a negative regu-
lator, while AtGRF7 from the same group functions as a
positive regulator of leaf size [32]. Similarly, PagGRF12a
and PagGRF12b from Group V work as positive regula-
tors, while AtGRF9 from Group V is a negative regulator
of leaf size [33]. In comparison, although PagGRF1/2d
from Group I is similar to AtGRF1 and AtGRF2 from
Group I [18] and all three function as positive regulators
of leaf size [24], PagGRF1/2d functions mainly by regulat-
ing cell expansion, while AtGRF1 and AtGRF2 function
mainly by regulating cell proliferation. Therefore, the ways
in which GRFs control leaf size in poplar cannot be simply
inferred from their orthologs in Arabidopsis.
Previously, we reported that PagGRF1/2d regulated

leaf size mainly by regulating cell expansion in poplar
[24], which is different from all reported Arabidopsis
GRFs, including AtGRF1, AtGRF2, AtGRF5, AtGRF7,
and AtGRF9, which mainly act by regulating cell prolif-
eration [15, 18, 21, 32, 33]. In this study, we found that
PagGRF12a and PagGRF12b are involved in leaf size
control mainly through regulating cell proliferation,
while PagGRF7a and PagGRF1/2d negatively or posi-
tively, respectively, regulate leaf size mainly by regulating
cell expansion. Therefore, the underlying mechanisms by
which GRFs regulate leaf size are more diverse in poplar
than in Arabidopsis. Leaf size is important for biomass
production in woody plants [34] and should be under
tight control. Poplar has more than twice the number of
GRFs than Arabidopsis (19 vs. 9), so the diverse regula-
tion in leaf size of these GRFs in poplar will facilitate
the specific and coordinated regulation of leaf de-
velopment through fine-tuning of cell proliferation
and expansion.

Conclusions
In conclusion, we analyzed the phylogenetic relation-
ship of GRF genes in Populus with their counterparts in
Arabidopsis and functionally characterized PagGRF6b,
PagGRF7a, PagGRF12a, and PagGRF12b, which work
differently in leaf size control in transgenic poplar. This
diversity may facilitate the specific, coordinated regula-
tion of poplar leaf development through fine adjust-
ment of cell proliferation and expansion. Our findings
provide an abundant resource for genetic engineering
leaf size in trees.

Methods
Phylogenetic tree construction
Populus GRF gene sequences were downloaded from
the Poplar Genome Database (http://www.phytozome.
net/poplar.php, release 3.0). All sequences were con-
firmed according to the annotation of the QLQ and
WRC domains. WoLF PSORT (http://wolfpsort.org)
was used to predict the protein subcellular
localization. The pI and molecular weight were esti-
mated using Lasergene. The full-length protein se-
quences were aligned using ClustalX2 (ver. 2.1) [35].
A neighbor-joining phylogenetic tree was constructed
using MEGA (v5.0) with the bootstrap method (1000
bootstrap replicates, Poisson model, uniform rates,
and pairwise deletion) [36]. Functional motifs or do-
mains of PtrGRF sequences were analyzed using the
reported FFD, GPL, and TQL motifs [8] as queries to
find the corresponding sequences.

Degradome sequencing
The degradome data was from our previous study
[28]. In brief, the degradome libraries of P. tomentosa
were constructed from the poly(A) tail-containing
fraction of total RNA samples pooled from the regen-
erating tissues after girdling to identify target genes of
miRNAs. Then, data were analyzed using the Cleave-
Land pipeline and psRNATarget (http://plantgrn.
noble.org/psRNATarget/) to predict the targets of
miRNAs against the transcript sequences of P. trichocarpa
genome (V3.0).

Transient expression assay
The transient expression assay was conducted accord-
ing to our previous report [24]. GRF1/2c, GRF9,
GRF10b, GRF11b, and GRF12b were cloned from the
hybrid poplar clone 84 K (Populus alba × P. glandu-
losa, Pag) reserved by State Key Laboratory of Tree
Genetics and Breeding, Chinese Academy of Forestry.
pEarleyGate 101 vector was used to generate the
PagGRF-YFP construct, while the pMDC32 vector
was used to overexpress PagmiR396b and PtrmiR408.
The various construct combinations were introduced
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into 1-month-old Nicotiana benthamiana (reserved by
State Key Laboratory of Tree Genetics and Breeding,
Chinese Academy of Forestry) leaves through Agro-
bacterium-mediated infiltration. Fluorescence signals
were probed using LSM 510 AX70 (Zeiss).

Plant transformation
Plant transformation was done as previously re-
ported [24]. GRF6b, GRF7a, GRF12a, and GRF12b
were cloned from 84 K using the primers listed in
Table S3. pMDC32 vector was used to overexpress
PagGRF6b, PagGRF7a, PagGRF12a, and PagGRF12b.
All vectors were transformed into 84 K leaf discs
via Agrobacterium-mediated transformation. Tissue-
cultured plants were grown under long-day condi-
tions (16 h light/8 h dark). Transgenic plants were
confirmed by examining the expression of the cor-
responding genes.

Leaf phenotyping
Leaf phenotyping was performed as described in our
previous study [24]. Briefly, the first completely
uncurled leaf was defined as the first leaf. The fifth
leaves of OE and CK plants were detached, fixed
with FAA (formaldehyde: acetic acid: 96% alcohol:
water; 10:5:50:35), cleared with chloral solution (200
g chloral hydrate, 20 g glycerol, and 50 mL dH2O),
and surveyed using a confocal Zeiss LSM 510 AX70
microscope. The cell number in the lower epidermis
was calculated by dividing the leaf area by the area
of epidermal cells. At least six leaves were used for
the leaf area measurements and more than 100 epi-
dermal cells in each leaf were used for cell area
measurements.

RNA isolation and quantitative RT-PCR
The expression of CYCLINB1;1a, CYCLINB1;1b,
EXPA11a, and EXPA11b in OE and CK plants was
analyzed using quantitative RT-PCR (qRT-PCR) ac-
cording to our previous study [24]. Briefly, the fifth
leaves were collected from 2-month-old OE and CK
plants and total RNA was extracted using the easy-
spin plus RNeasy Plant Mini Kit (Aidlab, Beijing,
China). First-strand cDNA was synthesized using the
SuperScript III reverse transcription kit (TaKaRa, Da-
lian, China) and oligo dT primers. All primer se-
quences are listed in Table S3. Real-time PCR was
conducted on a LightCycler 480 (Roche, Basel,
Switzerland) using SYBR Premix Ex Taq™ Kit
(TaKaRa, Dalian, China). Actin and UBQ were used
as internal controls.
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