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Abstract

Background: Kernel row number (KRN) is an important trait for the domestication and improvement of maize.
Exploring the genetic basis of KRN has great research significance and can provide valuable information for
molecular assisted selection.

Results: In this study, one single-locus method (MLM) and six multilocus methods (mrMLM, FASTmrMLM,
FASTMrEMMA, pLARMEB, pKWmEB and ISIS EM-BLASSO) of genome-wide association studies (GWASs) were used to
identify significant quantitative trait nucleotides (QTNs) for KRN in an association panel including 639 maize inbred
lines that were genotyped by the MaizeSNP50 BeadChip. In three phenotyping environments and with best linear
unbiased prediction (BLUP) values, the seven GWAS methods revealed different numbers of KRN-associated QTNs,
ranging from 11 to 177. Based on these results, seven important regions for KRN located on chromosomes 1, 2, 3, 5,
9, and 10 were identified by at least three methods and in at least two environments. Moreover, 49 genes from the
seven regions were expressed in different maize tissues. Among the 49 genes, ARF29 (Zm00001d026540, encoding
auxin response factor 29) and CKO4 (Zm00001d043293, encoding cytokinin oxidase protein) were significantly
related to KRN, based on expression analysis and candidate gene association mapping. Whole-genome prediction
(WGP) of KRN was also performed, and we found that the KRN-associated tagSNPs achieved a high prediction
accuracy. The best strategy was to integrate all of the KRN-associated tagSNPs identified by all GWAS models.

Conclusions: These results aid in our understanding of the genetic architecture of KRN and provide useful
information for genomic selection for KRN in maize breeding.

Keywords: Maize, Kernel row number, Genome-wide association study, Quantitative trait nucleotide, Whole-
genome prediction

Background

Maize (Zea mays L.) arose from a single domestication
event from its wild progenitor, teosinte, in southern
Mexico approximately 9000 years ago and is now one of
the most important cereal crops worldwide [1]. During
domestication, its morphological characteristics, espe-
cially inflorescence architectures, differed profoundly [2,
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3]. The shift from small ears in teosinte to larger ears in
modern maize was accompanied by a dramatic increase
in kernel row number (KRN) [4]. Thus, constant efforts
have been made to explore the genetic basis underlying
the striking diversities in inflorescence architecture and
KRN in maize.

KRN is an important ear trait and is formed by mul-
tiple meristem types during female inflorescence devel-
opment, including inflorescence meristems (IMs),
spikelet pair meristems (SPMs), spikelet meristems
(SMs) and floral meristems (FMs) [5]. To date, some
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genes have been cloned and found to be involved in
complex regulatory networks responsible for meristem
development and KRN modification by studying mutants
[6-10]. However, these classical mutants show negative
pleiotropy for other traits related to plant architecture
and are difficult to directly use in maize breeding [11].
Therefore, linkage mapping and association mapping
have been performed in naturally varying populations
with the aim of identifying more elite natural alleles con-
trolling KRN.

Although many quantitative trait loci (QTLs) related
to KRN were identified by linkage mapping in bipa-
rental segregating populations, few have been success-
fully cloned due to their small genetic effects, except
for KRN4 [12] and KRNI [13]. Genome-wide associ-
ation studies (GWASs) of KRN have also been con-
ducted and revealed many quantitative trait
nucleotides (QTNs) [14-16]. At the same time,
GWAS results can be easily influenced by population
structure and rare variants in natural populations
[17]. Therefore, many statistical models have been de-
veloped to improve power for identifying genotype-
phenotype associations when using the GWAS ap-
proach, such as the single-locus mixed linear model
(MLM) method [18, 19] and the multilocus methods
mrMLM [20], ISIS EM-BLASSO [21], pLARmEB [22],
FASTmrEMMA (23], pKWmEB [24], and
FASTmrMLM [25]. The MLM method is a single-
locus fixed-single nucleotide polymorphism (SNP)-ef-
fect approach used in the case of a polygenic back-
ground to control population structure [18, 19]. To
reduce the false positive rate (FPR), stringent Bonfer-
roni correction is used for multiple testing correction
in the MLM approach [26]. The multilocus method is
an alternative GWAS procedure that is based on a
random-SNP-effect model, and no multiple testing
correction is needed [26]. There are two steps in this
model. First, a reduced number of SNPs is selected
through different algorithms, and the SNPs are then
used in the multilocus model to detect true signals
[20-26]. Recently, a few studies have implemented
the above GWAS methods to detect important loci
controlling different traits in rice [27], maize [28], flax
[29], bread wheat [30] and upland cotton [31, 32].

Previous studies have revealed that KRN is quantita-
tively inherited and that the effects of a single genetic
locus are generally small, which poses challenges for
genetic improvement in maize breeding. Therefore,
the best approach is to improve the ability to predict
KRN by integrated analysis of more markers distrib-
uted throughout the whole genome. Genomic selec-
tion (GS), or whole-genome prediction (WGP), has
the capacity to use full-genome data to increase
breeding efficiency [33]. In previous studies, WGPs of
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KRN were performed in F; hybrids between recom-
binant inbred lines [34], interconnected biparental
maize populations [35] and 339 maize inbred lines
[36], all of which showed that KRN was a trait suit-
able for genome-wide prediction. Liu et al. [15]
showed that approximately 300 top KRN-associated
tagSNPs were sufficient for predicting the KRN of in-
bred lines and hybrids using ridge regression best lin-
ear unbiased prediction (rr-BLUP). Based on these
analyses, we are faced with determining how to select
fewer markers to accurately predict KRN. Several
studies reported that selecting association markers
from the results of GWASs and including them as
fixed effects in WGP models resulted in better per-
formance than that achieved with single WGP models
[37-39]. This might provide a way to simultaneously
model different aspects of genetic architecture and is
especially accessible to breeders [39].

In this study, we performed a GWAS of an association
panel including 639 maize inbred lines based on the
MaizeSNP50 BeadChip by using one single-locus
method, the MLM method, and six multilocus methods,
mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB,
pKWmEB and ISIS EM-BLASSO. The common signifi-
cant QTNs codetected by different methods and across
different environments were analyzed, and the candidate
genes related to KRN were further predicted. WGP was
also performed using various KRN-related tagSNPs to
dissect the genetic architecture of KRN.

Results

Natural variation in KRN within the association panel
KRN was measured within our association panel, which
included 639 maize inbred lines, in XX (Xinxiang in
Henan Province, 35.19°N, 113.53°E), BJ (Beijing, 39.48°N,
116.28°E) and GZL (Gongzhuling in Jilin Province,
43.50°N, 124.82°E) in 2011 (Table S1). The results
showed that KRN was normally distributed in each en-
vironment, and the KRNs among environments were
highly positively correlated, with correlations ranging
from 0.73 between XX and BJ to 0.79 between XX and
GZL (Fig. 1a). KRN exhibited high broad-sense heritabil-
ity (H* =0.90, Table 1), which was similar to the results
of previous studies [14, 16]. Comparing KRN among the
different environments, we found that it showed the
smallest average (13.69), minimum (8.60) and maximum
(20.60) values in XX, where all accessions were planted
in summer (June). With increasing latitude, where the
accessions were planted in spring (May), the average
KRN increased (14.65 in BJ and 14.59 in GZL). The lar-
gest range (max - min) in KRN appeared in GZL (12.60),
which had the longest day length (Table 1). Based on
previous results [40], our association panel could be di-
vided into five subgroups: Reid, tangsipingtou (TSPT),
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Fig. 1 Phenotypic analysis. a Correlation analysis of the KRN phenotype among XX, BJ and GZL. The frequency distribution diagrams of KRN in
three environments were plotted, and the correlation coefficient between each pair of environments was calculated. b Violin plots of KRN in the
subgroups (P, Lancaster, TSPT, LRC, and Reid) of this association mapping panel

25+
20
151
&
X 104
%] F=0.61; P=0.65
0 r . ; , .
P Lancaster LRC Reid TSPT
Population Type

Ivdahonggu (LRC), Lancaster and P. The KRN statistical
analysis results of various subgroups are shown in Table S2.
There were no significant differences in KRN among the
five subgroups (Fig. 1b). These results indicated that
KRN was a quantitative trait and that the phenotypic
variation among the tested inbred lines in the associ-
ation panel was beneficial for dissecting the genetic
architecture of KRN.

QTNs for KRN identified by different methods

Single-locus analysis of KRN (MLM)

Based on the MaizeSNP50 BeadChip, we obtained 42,667
high-quality SNPs distributed on 10 maize chromosomes.
Under the P < 0.0001 and P < 0.001 thresholds, 3/56, 3/46,
1/24, and 3/51 KRN-associated QTNs were found in XX
(Fig. 2a), in BJ (Fig. 2b), in GZL (Fig. 2c) and with BLUP
(Fig. 2d), respectively. To account for overcorrection in
this model, the P < 0.001 threshold was selected to identify
KRN-associated QTNs. Finally, 177 QTNs were found to
be associated with KRN, and the proportion of phenotypic
variance explained (PVE) by these individual QTNs
ranged from 1.84 to 4.01% (Table S3).

Table 1 Phenotypic variance in KRN for 639 maize inbred lines
in three environments

Env Mean Min Max sD CV (%) H
XX 1369 860 2060 202 1476 0.90
BJ 1465 9.20 21.00 169 11.56

GZL 1459 860 2120 2.00 13.69

BLUP 1431 9.17 2001 161 11.27

Env environment, XX Xinxiang, BJ Beijing, GZL Gongzhuling, Max maximum,
Min minimum, SD standard deviation, CV coefficient of variation, H?
broad-sense heritability

Multiple-locus analysis of KRN

Using different multiple-locus models, we identified dif-
ferent numbers of significant QTNs for KRN in XX, BJ,
and GZL and together with BLUP across all locations.
These QTNs were unevenly distributed on 10 chromo-
somes, with the most QTNs on Chr. 1 and the fewest on
Chr. 8 (Fig. 2e). Specifically, 15 (FASTmrEMMA)-177
(mrMLM) QTNs in XX, 11 (FASTmrEMMA)-30 (ISIS
EM-BLASSO) QTNs in BJ, 12 (FASTmrEMMA)-55
(mrMLM) QTNs in GZL and 11 (FASTmrEMMA)-106
(mrMLM) QTNs for BLUP were identified by the six
different methods (Table S4). Comparative analysis of
the GWAS results among different statistical ap-
proaches showed that FASTmrEMMA detected the
fewest QTNs in all the environments, while mrMLM
detected the most QTNs in all the environments, ex-
cept for BJ] (Table S4). QTN overlap analysis among
the seven methods indicated that the common QTNs
codetected by at least two methods accounted for
more than 40% of the QTNs in different environ-
ments (Figure Sla and Table S5, 42% in XX, 62% in
BJ, 58% in GZL and 47% with BLUP). For example,
65 common QTNs representing 30 loci were code-
tected by two methods in XX, and 39 common QTNs
representing 13 loci, 28 common QTNs representing
7 loci, 25 common QTNs representing 5 loci, and 6
common QTNs representing 1 locus were codetected
by three, four, five and six methods, respectively (Fig-
ure Sla and Table S5). No QTNs were identified by
all 7 methods in different locations. Overall, ISIS EM-
BLASSO, which detected the third largest number of
QTNs, identified the most codetected QTNs, followed
by FASTmrMLM (Figure Sla and Table S5). Com-
parative analysis of the GWAS results among the dif-
ferent environments showed that the majority of the
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Fig. 2 Genome-wide distribution of significant QTNs detected by different models under four conditions. a XinXiang (XX), Henan Province by the
MLM method; b Beijing (BJ) by the MLM method; ¢ Gongzhuling (GZL), Jilin Province, by the MLM method; d BLUP across the three
environments by the MLM method; e The genome-wide distribution of all the significant QTNs identified by seven methods: the four circles from
outside to inside show the distribution of significant QTNs identified in XX, BJ, and GZL and with BLUP, respectively. Dots of different colors
represent QTNs mined by different GWAS models: red dots, MLM; green dots, mrMLM; blue dots, FASTmrMLM; black dots, FASTmrEMMA; pink
dots, pLARMEB; purple dots, pKWmEB; pale goldenrod dots, ISIS EM-BLASSO

QTNs identified by the MLM method and ISIS EM-
BLASSO were repeatedly detected in different loca-
tions (Figure S1b, Table S6).

Overall, comparing our GWAS results with those of
previous studies, we found that some important genes
controlling inflorescence architecture in maize were lo-
cated within 200kb of the significant QTNs, including
CT2 (Zm00001d027886), FEA3 (Zm00001d040130),
BADI (Zm00001d005737), RA1 (Zm00001d020430), and
VT2 (Zm00001d008700) (Table S13).

Annotation and expression of candidate genes for KRN

To obtain reliable significant QTNs and predict the can-
didate genes for KRN, only the QTNs simultaneously
identified by at least three methods (either single-locus
or multilocus) and in at least two environments were
used for the next analysis. Finally, seven QTNs control-
ling KRN were obtained (Table 2). The seven QTNs
were located on chromosomes 1, 2, 3, 5, 9, and 10, and

the PVE by these QTNs ranged from 1.06 to 5.21%.
Based on the linkage disequilibrium (LD) in the associ-
ation panel (Figure S2), 49 genes around the QTNs (200
kb upstream and downstream) were obtained, and their
expression varied widely in different maize tissues
(Fig. 3a and Table S7). For example, Zm00001d016760,
which encodes the abscisic acid stress ripening 6 protein,
is highly expressed in the roots, and Zm00001d031426,
which encodes serine/threonine-protein kinase, and
Zm00001d043298, which encodes a P-loop containing
nucleoside triphosphate hydrolase superfamily protein,
are highly expressed in tassels and anthers. Among the
49 genes, 22 were differentially expressed in different
spike development mutants (Table S8); i.e., the ral, ra2
and ra3 mutants had abnormal highly branched tassels
and ears, with the ears displaying a very large KRN [41];
the knl mutant had smaller ears and fewer spikelets
[42]. This result suggested that these 22 genes might be
involved in ear development in maize.

Table 2 Significant KRN-associated QTNs codetected in at least two environments and by at least three models

SNP Chr Pos Single-locus GWAS (MLM) Multilocus GWAS

LOD PVE (%) LOD PVE (%) Methods’
PZE-101124566 1 156,580,056 344 3.00 4.60-11.63 1.91-3.02 2,3,4,56,7
PZE-101144585 1 187,526,525 313 2.00 4.39-5.95 1.84-3.51 3,4,57
PZE-102176259 2 219,023,013 332 3.00 341-4.17 1.06-2.04 2,3,4,7
PUT-163a-110,967,306-138 3 191,981,941 328 256 8.17-11.77 1.62-337 2,56
PZE-105114980 5 171,187,130 / / 4.35-8.20 1.15-2.29 2,3,567
PZE-109047930 9 79,941,271 461 4.00 5.73-1040 243-521 2,3,56,7
PZE-110106563 10 146,944,098 361 3.00 3.65-5.25 1.18-2.38 2,3,4,56,7

Methods': Numbers 1 to 7 represent different GWAS methods: 1: MLM; 2: mrMLM; 3: FASTmrMLM; 4: FASTmrEMMA; 5: pLARmEB; 6: pKWmEB; 7: ISIS EM-BLASSO
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panel. ¢ CKO4 (Zm00001d043293) gene association mapping

Interestingly, we found that Zm00001d026540 (encod-
ing auxin response factor 29, ARF29), which was located
within 200 kb downstream of PZE-110106563 on Chr.
10 and was detected by the MLM method and all six
multilocus GWAS methods (Table 2), had higher ex-
pression in SAMs and ears than in other tissues (Table
S7). Candidate gene association mapping was also per-
formed. The SNPs within ARF29 and the 10-kb pro-
moter and 10-kb region downstream of ARF29 were
obtained from maize HapMap3 [43]. The KRN of 282
inbred lines was measured in six environments (see
Methods), and the BLUP values were calculated. The
MLM mapping result showed that five SNPs (two SNPs
in the gene and three SNPs in the region upstream of
the gene) around ARF29 were significantly related to
KRN (Fig. 3b and Table 3). ARF29 can bind the BifI
(which is related to SAM development and final KRN)
promoter by recognizing the TTTCGG motif [44, 45].

Table 3 Candidate gene association analysis

The S10_147,122,969 SNP, located within the gene body,
was significantly associated with KRN. Two alleles for
this SNP (A/T) were present in this panel, with the A al-
lele conferring a higher KRN. Cytokinins also play an
important role in the development of immature spikes
and the formation of final KRN [46]. For example, UB3
regulates KRN by the cytokinin pathway and CLAV
ATA-WUSCHEL pathway [46]. In this study, CKO4
(Zm00001d043293, encoding cytokinin oxidase protein)
was detected as being located within 200 kb upstream of
PUT-163a-110,967,306-138 on Chr. 3 by four GWAS
methods (MLM, mrMLM, pLARmEB, and pKWmEB,
Table 2), and candidate gene association mapping of
CKO4 was also conducted. The SNPs and KRN were
also obtained from HapMap3 and 282 inbred lines. The
MLM results showed that two SNPs located upstream of
CKO4 were significantly associated with KRN (Fig. 3c
and Table 3). The S3_191,837,578 SNP had two alleles

Gene ID SNP’ Chr Pos LOD PVE Allele Frequency

ARF29 S10_147,122,969 10 147,122,969 457 8.97% AT 127/99
S10_147,121,954 10 147,121,954 4.44 8.98% G/A 94/90
S10_147,126,021 10 147,126,021 3.88 7.58% T/A 161/27
S10_147,123,193 10 147,123,193 333 5.30% A/C 119/110
S10_147,141,311 10 147,141,311 3.17 4.92% /G 211/21

CKO4 $3.191,837,578 3 191,837,578 4.64 7.85% G/T 177/45
$3.191,841,761 3 191,841,761 467 6.99% T/G 236/16

! The significant SNPs calculated by the MLM method in regional association mapping based on the 282 inbred lines
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(T/G), and the T allele was associated with a higher
KRN but had a lower frequency. Therefore, this allele
may not be widely useful in maize breeding.

Whole-genomic prediction of KRN

We first analyzed the LD blocks of all markers using the
threshold value 7*>0.2 and obtained 27,688 tagSNPs in
our association panel. Then, we randomly selected dif-
ferent numbers of tagSNPs, from 5 to 27,000, in the
whole genome to calculate the prediction accuracies for
KRN of the inbred lines, which was calculated as a cor-
relation between predicted and true values from the sim-
ulations. The results showed that the prediction
accuracies increased as the number of tagSNPs increased
(Fig. 4a and Table S9). More specifically, the prediction
accuracies sharply increased when the number of
tagSNPs increased from 5 to 500 and then slowly in-
creased when the number of tagSNPs increased from
400 to 2000. Once the number exceeded 2000, the pre-
diction accuracies maintained a consistently high level.
Although a large number of tagSNPs were used to pre-
dict KRN, the prediction accuracies were still less than
0.5. The effects of training population size on the predic-
tion accuracy were also assessed based on a marker
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number of 14,000 (approximately 50% of the total
tagSNPs). In the association panel, the prediction accur-
acies improved with increasing training population size.
When the training population size increased from 50 to
90%, a slight increase in prediction accuracy was ob-
served (Fig. 4b and Table S10).

To better understand the genetic architecture of
KRN and improve the ability to predict it, we ranked
the 27,688 tagSNPs according to their significance in
relation to KRN, as obtained by the MLM method, to
obtain the top tagSNPs. We found that these top
tagSNPs had a higher prediction accuracy (ranging
from 0.58 for the top 100 tagSNPs to 0.66 for the top
700 tagSNPs) than randomly selected tagSNPs (ran-
ging from 0.22 for 100 random tagSNPs to 0.33 for
700 random tagSNPs) (Fig. 4c and Table S11).

The tagSNPs representing the significant QTNs de-
tected by different models based on BLUP were collected
and used to calculate prediction accuracies for KRN in
our association panel. The results showed that these
tagSNPs identified by different methods had different
prediction accuracies ranging from 043 (FAS-
TmrEMMA) to 0.60 (ISIS EM-BLASSO) (Fig. 4d and
Table S12). We also found that the tagSNPs associated
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with KRN identified by the same method showed differ-
ent prediction accuracies in diverse environments (Fig-
ure S3 and Table S12). To explore whether using the
codetected QTN in different GWAS methods could in-
crease prediction accuracies for KRN, we selected the
common QTNs identified by at least two, three, four,
five or six methods to obtain the predictions. The results
showed that only the common QTNs identified by at
least two methods (common >2) could maintain predict-
ability at a high level; other common QTNs had no ad-
vantage in predicting KRN, which may be due to the
smaller QTN numbers (Figure S3 and Table S12).

Additionally, to improve the prediction ability, we put
the KRN-related tagSNPs detected by seven methods to-
gether in a single environment (204 in XX, 87 in BJ, 118
in GZL and 167 for BLUP), namely, M-total tagSNPs, to
conduct KRN prediction. As a result, we found that the
prediction accuracies were improved sharply and reached
0.74 in XX, 0.66 in BJ, 0.75 in GZL and 0.75 for BLUP
(Fig. 4d and Table S12). These predictabilities were much
higher than those of the single method in each environ-
ment (Table S12). Then, we collected the tagSNPs associ-
ated with KRN from all methods and all environments,
namely, E-M-total tagSNPs, and obtained 439 tagSNPs in
total. However, there was only a slight increase in predic-
tion accuracy (ranging from 0.68 in BJ to 0.79 for BLUP
for the 439 tagSNPs) when we used the much higher
number of E-M-total tagSNPs compared to the fewer M-
total tagSNPs (Fig. 4d and Table S12).

Discussion
To date, the GWAS approach has been widely used to
investigate the genetic basis of important traits in many
species by calculating the association between genotypic
and corresponding phenotypic variations [47]. To iden-
tify true association signals, many statistical methods
based on different algorithms have been established. In
this study, we selected one single-locus method, MLM,
and six multilocus methods, mrMLM, FASTmrMLM,
FASTmrEMMA, pLARmEB, pKWmEB and ISIS EM-
BLASSO, to perform comprehensive GWAS mapping of
KRN in our association panel. Among the seven
methods, mrMLM identified the largest number of
QTNs, FASTmrEMMA identified the fewest QTNs, and
ISIS EM-BLASSO identified the most codetected QTNs,
which were consistent with the results reported by Cui
et al. [27] for salt-tolerance loci in rice. Therefore, multi-
locus models are valuable alternative methods for
GWASs of KRN in maize. Additionally, a small number
of common QTNs codetected by different methods was
also observed in the study of Peng et al. [30] for free
amino acid levels in bread wheat.

Comparing our GWAS results with those of previous
studies, we found that some important genes controlling
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inflorescence architecture in maize were located within
200 kb of significant QTNs (Table S13), including C72
(Zm00001d027886), FEA3 (Zm00001d040130), BADI
(Zm00001d005737), RA1 (Zm00001d020430), and VT2
(Zm00001d008700). Among these genes, CT2 [7] and
FEA3 [10] function in CLAVATA-WUSCHEL feedback
signaling, and their mutations result in enlarged and fa-
sciated ear primordia and increased KRN. BADI [48]
and RA1 [41], both of which encode transcription fac-
tors, are involved in the genetic regulation of the floral
branch system by the ROMASO pathway in maize. V12
[49] functions in auxin biosynthesis and has dramatic ef-
fects on vegetative and reproductive development, and
mutant ears show obvious defects. Additionally, approxi-
mately 60% of the significant QTNs within LD regions
were codetected by previous GWAS mapping of inflor-
escence development, and some of these loci were pleio-
tropic [14, 15].

WGP is also an effective method in animal breeding
and plant improvement [50]. Because KRN is mainly
controlled by additive loci, we selected the rrBLUP addi-
tive model to conduct WGP [51]. As expected, predic-
tion accuracy increased as the number of randomly
selected tagSNPs increased, which was consistent with
the finding of Liu et al. [15] and determined by the influ-
ence of marker density on WGP [50]. However, the ran-
domly selected tagSNPs showed a low predictive ability,
and thus, we decided to combine the GWAS results with
WGP to explore the best marker dataset for KRN pre-
diction. As a result, higher prediction levels were easily
reached when using the significant tagSNPs, and the
moderate to high values were consistent with those re-
ported by Liu et al. [15], Guo et al. [34], Riedelsheimer
et al. [35] and Xu et al. [36]. This result suggested that
integrating significant signals from GWASs into WGP
models as fixed effects was effective for enhancing the
prediction of KRN. A similar conclusion was reached by
Liu et al. [15] for KRN, by Bian and Holland [52] for re-
sistance to southern leaf blight (SLB) and gray leaf spot
(GLS) and plant height (PHT) in maize and by Spindel
et al. [39] for tropical rice improvement. Although dif-
ferent evaluations of WGP models incorporating peak
GWAS signals have been performed in maize and sor-
ghum [53], our research indicated that the use of QTNs
passing a certain threshold in the above GWAS methods
as fixed effects in the rrBLUP model is a powerful tool
for KRN prediction, which was a trait-specific consider-
ation in the given population in this study.

Based on the results of this study, we suggest that
KRN is controlled by many additive loci and that the
rrBLUP model can be used for KRN prediction in maize
inbred lines. The combined utilization of different
GWAS methods is helpful for predicting candidate genes
and KRN in maize breeding.
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Conclusions

In this study, multiple GWAS methods were used to
identify significant QTNs for KRN in maize. The seven
GWAS methods revealed different numbers of KRN-
associated QTNs, ranging from 11 to 177. Based on
these results, seven important regions for KRN located
on chromosomes 1, 2, 3, 5, 9, and 10 were identified by
at least three methods and in at least two environments.
Moreover, 49 genes from the seven regions were
expressed in different maize tissues. Among the 49
genes, ARF29 (Zm00001d026540, encoding auxin re-
sponse factor 29) and CKO4 (Zm00001d043293, encod-
ing cytokinin oxidase protein) were significantly related
to KRN, based on expression analysis and candidate
gene association mapping. WGP of KRN was also per-
formed, and we found that the KRN-associated tagSNPs
achieved a high prediction accuracy. The best strategy
was to integrate the total KRN-associated tagSNPs iden-
tified by all GWAS models. These results will facilitate
our understanding of the genetic basis of KRN and pro-
vide important candidate genes for further research on
this important trait.

Methods

Plant materials and phenotyping

An association panel of 639 maize inbred lines, repre-
senting a wide range of genetic diversity of temperate in-
bred lines in China [54], was collected for GWASs. We
declare that all plant materials comply with the ‘Conven-
tion on the Trade in Endangered Species of Wild Fauna
and Flora’ in this study. The plant materials used in this
study were conserved in our lab.

All the accessions were planted following a random-
ized block design of three replicates in three environ-
ments in 2011: Gongzhuling in Jilin Province (43.50°N,
124.82°E), Xinxiang in Henan Province (35.19°N,
113.53°E) and Beijing (39.48°N, 116.28°E) in 2011. For
descriptive purposes, the three environments were desig-
nated GZL, XX and BJ, respectively. At each location,
the field experiments include in a single row 3m in
length, with 0.6 m between adjacent rows and 12 indi-
vidual plants per row. The Institute of Crop Science of
the Chinese Academy of Agricultural Sciences has estab-
lished experimental field bases at all the above locations.
The Institute of Crop Science approved the field experi-
ments, and field management followed local maize man-
agement practices. In this study, the field studies did not
involve endangered or protected species.

Five ears were harvested from each line, and KRN was
evaluated in the middle part of the ears [54]. BLUP
values were calculated using the SAS PROC MIXED
model, with genotype, environment and replicate as ran-
dom effects [14, 55]. The broad-sense heritability (H”) of
KRN was calculated according to Wu et al. [40]. The
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coefficient of variation was calculated as CV (%) = SD/
mean, where SD and mean refer to the standard devi-
ation and mean, respectively, of KRN in each environ-
ment [55].

DNA extraction and genotyping

Young leaves of five plants of each maize line according
were collected for genomic DNA extraction. We extract
the genomic DNA followed the cetyltrimethylammo-
nium bromide (CTAB) method [56]. All samples were
quality checked and genotyped using the MaizeSNP50
BeadChip, which is an Illumina BeadChip array of 56,
110 maize SNPs developed from the B73 reference se-
quence [57]. Then, the successfully called SNPs with a
missing rate of more than 20% and minor allele fre-
quency (MAF) of <0.05 were excluded from the geno-
typing dataset [58]. After that, 42,667 high-quality SNPs
were used in further analysis.

GWAS mapping

One single-locus method, MLM, and six multilocus
methods, including mrMLM, FASTmrMLM, FAS-
TmrEMMA, pLARmEB, pKWmEB, and ISIS EM-
BLASSO, were used in this study. Alleles of each poly-
morphic locus with a minor frequency > 0.05 were used
for further analysis. A kinship matrix was calculated and
principal component analysis (PCA) was performed with
the TASSEL 5.2 program [59]. An MLM controlling for
population structure (Q) and kinship (K) (MLM Q + K)
was also generated in TASSEL 5.2 [18, 19]. Six multilo-
cus GWAS mapping methods were used along with the
software package mrMLM.GUI v3.2 in the R environ-
ment (http://127.0.0.1:5846/) [26]. All parameters were
set at default values, the critical threshold of significant
associations for the MLM was set at —log;o” >3, and the
logarithm of odds (LOD) score for the six multilocus
methods was set at >3 [26].

Candidate gene analysis

The LD decay with physical distance in our association
panel was calculated in TASSEL 5.2 to be 200 kb (Figure
S2). The candidate genes in the 200-kb region around
significant QTNs detected by at least three models and
in two environments were identified based on the B73
reference genome V4 from MaizeGDB (https://www.
maizegdb.org/). Expression data for these genes were
collected from previous studies [42, 60]. Genome frag-
ments containing the SNPs within the selected genes, in-
cluding the 10-kb promoter region, the gene bodies and
the 10-kb region downstream of the genes, were ob-
tained from the maize HapMap3 dataset [43]. The can-
didate gene mapping analyses were conducted on a
global maize association mapping panel of 282 diverse
lines. The phenotypes of this association panel were
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provided in our previous report [40], and KRN was mea-
sured in six environments, including Beijing, Xinxiang in
Henan, and Urumgi in Xinjiang in 2009 and 2010. Asso-
ciation analysis was conducted by the MLM method in
TASSEL 5.2, controlling for population structure (Q)
and kinship (K). The first three principal components
(PCs), which were analyzed in a previous study [40],
were used as covariants to control for existing popula-
tion structure in the 282-line association mapping panel.
Significant marker-trait associations were declared at —
long > 3.

Genomic prediction of KRN

To predict the KRN of the inbred lines, we estimated
predictability by WGP. We grouped the LD blocks in
PLINK software [61] using the threshold value > 0.2
and identified tagSNPs according to the LD blocks. The
ridge regression best linear unbiased prediction
(rrBLUP) package was used to perform genomic predic-
tion in R [62]. We randomly selected half of the lines of
our association panel as the training population (320 in-
bred lines) and the remaining 319 inbred lines as the
validation population [15]. We used the KRN-related
tagSNPs identified by different methods to perform gen-
omic prediction of KRN for the inbred lines under four
conditions (XX, BJ, GZL and BLUP). Simultaneously, 5
to 27,000 randomly selected tagSNPs, the total tagSNPs
related to KRN identified by the seven methods in a sin-
gle environment (M-total tagSNPs), the total tagSNPs
for KRN from all methods and environments (E-M-total
tagSNPs) and the common tagSNPs for KRN detected
by at least two, three, four, five, or six methods were also
used for the same procedure. The random sampling of
tagSNP numbers, the training and validation populations
and the predictions were all repeated 100 times.
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1186/512870-020-02676-x.
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