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Abstract

Background: Autophagy is an evolutionarily conserved system for the degradation of intracellular components in
eukaryotic organisms. Autophagy plays essential roles in preventing premature senescence and extending the
longevity of vascular plants. However, the mechanisms and physiological roles of autophagy in preventing
senescence in basal land plants are still obscure.

Results: Here, we investigated the functional roles of the autophagy-related gene PpATG3 from Physcomitrella
patens and demonstrated that its deletion prevents autophagy. In addition, Ppatg3 mutant showed premature
gametophore senescence and reduced protonema formation compared to wild-type (WT) plants under normal
growth conditions. The abundance of nitrogen (N) but not carbon (C) differed significantly between Ppatg3 mutant
and WT plants, as did relative fatty acid levels. In vivo protein localization indicated that PpATG3 localizes to the
cytoplasm, and in vitro Y2H assays confirmed that PpATG3 interacts with PpATG7 and PpATG12. Plastoglobuli (PGs)
accumulated in Ppatg3, indicating that the process that degrades damaged chloroplasts in senescent gametophore
cells was impaired in this mutant. RNA-Seq uncovered a detailed, comprehensive set of regulatory pathways that
were affected by the autophagy mutation.
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senescence to increase longevity in basal land plants.

Conclusions: The autophagy-related gene PpATG3 is essential for autophagosome formation in P. patens. Our
findings provide evidence that autophagy functions in N utilization, fatty acid metabolism and damaged chloroplast
degradation under non-stress conditions. We identified differentially expressed genes in Ppatg3 involved in
numerous biosynthetic and metabolic pathways, such as chlorophyll biosynthesis, lipid metabolism, reactive oxygen
species removal and the recycling of unnecessary proteins that might have led to the premature senescence of this
mutant due to defective autophagy. Our study provides new insights into the role of autophagy in preventing
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Background

Autophagy is an evolutionarily conserved, ubiquitous
process in eukaryotic cells that degrades damaged or
toxic intracellular components for recycling to maintain
essential cellular functions and life activities [1-3]. In
plants, autophagy contributes to nutrient use efficiency
and energy metabolism and is upregulated during senes-
cence to promote cellular homeostasis and longevity [4—
6]. Two types of autophagy pathways have been identi-
fied in plants: macroautophagy and microautophagy [7].
Macroautophagy, which had been extensively studied, is
regulated by AuTophaGy (ATG) genes, whose expression
results in the formation of a double-membrane organelle
known as the autophagosome [2]. Bulk cytosolic compo-
nents, including organelle fragments and macromole-
cules, are then transferred into the vacuole via fusion
with the autophagosome and are subsequently degraded
by lytic enzymes within the vacuole. We use the term
‘autophagy’ hereafter to refer specifically to macroauto-
phagy. To date, at least 30 ATG proteins had been iden-
tified in yeast (Saccharomyces cerevisiae), which can be
divided into several functional classes: a) the ATGI1-
ATGI13 kinase complex; b) ATG9 and ATG9-associated
proteins; c) the phosphatidylinositol 3-kinase complex;
and d) two ubiquitin-like conjugation systems mediated
by ATG8 or ATG12 [8]. Most of these proteins have ho-
mologs in plants. Autophagy plays multiple physiological
roles in plants, functioning in processes such as biotic
and abiotic stress responses [9, 10], anther development
[11], leaf starch degradation [12], lipid/fatty acid homeo-
stasis and turnover [11, 13-15], damaged chloroplast
degradation [16, 17], soluble/aggregated protein degrad-
ation [18] and senescence [2, 19]. ATG3 is an E2-like
enzyme involved in the ATG8 and phosphatidylethanol-
amine (PE) conjugation system during autophagosome
formation [20]. Based on the crystal structure of S. cere-
visiae ATG3, cysteine 234 (Cys-234) is the active residue
that is important for the lipidization reaction of ATGS8-
PE conjugation [21]. Autophagosome formation is de-
fective in ATG3 mutant in yeast [22] and Toxoplasma
[23], and autophagic activity was enhanced by overex-
pressing ATG3 in tobacco [24].

Autophagy is a fundamental factor in cell longevity
and senescence in eukaryotes, especially plants [2, 4].
The recycling and remobilization of nutrients, including
carbon (C) and nitrogen (N), are crucial for plant sur-
vival and adaptation, especially under nutrient-limiting
conditions [25]. Recent reports in Arabidopsis thaliana
(Arabidopsis) revealed that autophagy is important for
N-remobilization efficiency [26—28] and controls the C/
N ratio [29]. However, to date, most studies in Arabi-
dopsis on the roles of autophagy in nitrogen utilization
and senescence were conducted under nutrient starva-
tion or abiotic stress conditions, and few studies have fo-
cused on these processes under normal growth
conditions. Moreover, recent studies suggested that au-
tophagy plays important roles in lipid/fatty acid metabol-
ism [11], composition [13] and turnover [14] in several
vascular plants, although whether autophagy affects fatty
acids in basal land plants is unknown. Even though au-
tophagy is known to be essential for C/N status and
lipid/fatty acid metabolism in plants, the details of the
autophagy regulatory machinery are mostly unknown.

Physcomitrella patens, a basal land plant commonly
used for developmental biology research, had been used
to study autophagy during senescence in the dark [30]
and during gamete differentiation [31]. However, to date,
only two autophagy genes, ATG5 and ATG?7, have been
identified and studied in P. patens. Further elucidation
of the regulatory pathway of ATGs in moss would in-
crease our understanding of the roles of autophagy in
plant development. In the current study, we analyzed
ATG3 knockout P. patens lines under normal growth
conditions. The gametophores of the mutant displayed
early-senescence symptoms, including yellowing, im-
paired photosynthesis, reduced chlorophyll levels, the ac-
cumulation of chloroplast plastoglobuli (PGs) and
differential expression of senescence-associated genes
(SAGs) under normal growth conditions. Analysis of
whole-plant C/N ratios and fatty acid contents revealed
that autophagy plays essential roles in N-utilization effi-
ciency and fatty acid metabolism in P. patens gameto-
phores. In addition, we performed comprehensive RNA-
Seq analysis to provide insight into the role of autophagy
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in gametophore senescence in P. patens. Our study pro-
vides evidence for the role of autophagy in N utilization,
fatty acid/lipid metabolism, damaged chloroplast degrad-
ation, reactive oxygen species (ROS) removal and recyc-
ling of unnecessary proteins under non-stress conditions
to prevent senescence and enhance cell longevity in the
basal land plant P. patens.

Results

Identification of ATG3 from P. patens

The 924-bp PpATG3 coding sequence contains 9 exons
and is almost the same size as Arabidopsis ATG3
(AT5G61500, 942 bp, with 9 exons). Protein sequence
alignment revealed both conservation and divergence of
the three primary functional domains of ATG3 proteins
in P. patens vs. Klebsormidium nitens, Mesotaenium
endlicherianum, Anthoceros angustus, Marchantia poly-
morpha, Brachypodium distachyon, A. thaliana, S. cere-
visiae, Mus musculus and Homo sapiens (Additional file
1A). Two of these domains (Autophagy_act_ C and Au-
tophagy_C) showed high levels of conservation, while
the third (Autophagy_N) was weakly conserved. Notably,
the Autophagy C domain was missing in the subaerial
green alga Mesotaenium endlicherianum (MeATG3). In
addition, the three domains of ATG3 were more con-
served within plants vs. animals. However, the key, func-
tionally necessary Cys-234 residue was detected in the
ATG3s of all species. Nineteen amino acids were highly
conserved among plant species but differed from those
of yeast and human/mouse.

We predicted the secondary structures of the ATG3s
based on the crystal structure of SCATG3 (Additional
file 1A). The Autophagy N, Autophagy_act_ C and Au-
tophagy_C domains comprise three alpha helices (al,
a2, a3) and two beta sheets (1, p2), two alpha helices
(a4, o5) and three beta sheets (B4, 5, p6), and one alpha
helix (a7), respectively. B3 is partially contained in the
Autophagy act C domain, and «6 is positioned between
the Autophagy_act_C and Autophagy_C domains. Eight
motifs (1, 2, 3, 4, 5, 6, 8 and 10) are present ATG3 pro-
teins from both plants and animals, while two motifs (7
and 9) are present only in plants (Additional file 1B). Se-
quence alignment and motif analysis pointed to the di-
vergence of ATG3s between plants and animals.
Phylogenetic analysis also showed that the ATG3 genes
were clustered into two different clades (Additional file
1C). These results indicate that these genes have under-
gone early divergence and independent evolution be-
tween the plant and animal lineages. In addition, the
conserved characteristics of ATG3 between land plants
and subaerial green algae suggest that the functional di-
vergence of these genes occurred prior to land plant
terrestrialization.
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Tissue-specific expression profiles and subcellular
localization of PpATG3

To assess the expression patterns of PpATG3 in different
tissues, we retrieved the corresponding microarray data
from the transcriptome of P. patens [32]. PPATG3 was
expressed at high levels throughout the P. patens life
cycle, with transcript abundance (robust multi-array
average) values > 5000 (Fig. 1a). To determine the sub-
cellular localization of PpATG3 in P. patens, we fused
the full-length coding sequence of PpATG3 with that of
enhanced green fluorescent protein (eGFP) in-frame
under the control of the constitutive CaMV35S pro-
moter (p35S:PpATG3-eGFP) and transiently transformed
P. patens protoplasts with this construct (Fig. 1b). We
used the empty vector (EV) as a control (Fig. 1b). Con-
focal microscopy revealed that the fluorescent signal of
the PpATG3-eGFP fusion proteins was evenly distrib-
uted in the cytoplasm of the protoplasts, whereas the EV
control did not generate a signal.

PpATG3 knockout disrupts gametophore senescence and
protonema formation

To further explore the role of PpATG3, we generated
Ppatg3 knockout transgenic plants by disrupting exons 4
and 5 through homologous recombination (HR) (Fig.
1c). This yielded three knockout lines (ko#22, ko#31 and
ko#50) of PpATG3, whose identities were confirmed by
PCR. We isolated genomic DNA and total RNA from
these plants to verify the genomic insertion of the nptll
cassette and loss of PpATG3 transcripts due to HR
events at its 5 and 3’ flanks (Fig. 1c), respectively.
PpATG3 had been successfully disrupted at the genomic
locus via the insertion of a 2078-bp mptll cassette into
both arms of the target by HR. To investigate whether
PpATG3 functions in gametophore development in P.
patens, we examined 7- to 56-day-old wild-type (WT)
and Ppatg3 knockout plants under normal growth con-
ditions. There was a significant difference between
Ppatg3 knockout and WT plants, with the mutant show-
ing an increasingly premature-senescence phenotype
over time (Fig. 2a). The chlorophyll fluorescence of the
Ppatg3 mutant became weaker than that of WT plants
(Fig. 2a). This premature senescence was most notable
in 56-day-old plants, as the stem sections and basal
leaves of leafy gametophores in the Ppatg3 knockout
plants turned yellow (Fig. 2b). In addition, in 56-old-day
plants, there were far fewer newly formed protonemata
in Ppatg3 knockout plants compared to WT plants
(Fig. 2b, red circles).

The photosynthetic yield (Fv/Fm) values also differed
in 7-day-old Ppatg3 knockout vs. WT plants, and subse-
quently the mutant showed seriously decreased fluores-
cence compared to WT plants (Fig. 2c). This finding is
supported by the reduced chlorophyll biosynthesis in
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Fig. 1 Tissue-expression profiles, subcellular localization and targeted disruption of PpATG3 gene. a PpATG3 expression profiles in different P.
patens tissues. The expression data was retrieved from a previous research by Ortiz-Ramirez et al. b Subcellular localization of PPATG3. Confocal
microscopy images of P. patens protoplasts by PEG-mediated transformation with empty vector (EV) or with p35S:PpATG3-eGFP construct. The
scale bar =10 pm. c Targeted disruption of PpATG3 gene and PCR confirmation. Schematic representation showing deletion of Exons 4-5 that
corresponds to removal of a 573 bp genomic region and insertion of a 2078 bp nptll cassette. Right and left arrows were indicated forward and
reverse primers, respectively. PCR analysis was used to verify genomic insertion of nptll cassette and loss of PpATG3 transcripts. Primer pairs of P5/
C1 and C2/P6 were used for verifying double-ended insertion of the nptll cassette at genomic level. Primer pairs of P7/P8 and C3/C4 were used
for verifying the loss of PPATG3 transcripts and the expression of nptll cassette, respectively. PpUbiquitin and PpAdePRT were used as a DNA or
cDNA template quality control, respectively. The fragment length and DNA size markers were shown on the gel right and left, respectively

Ppatg3 knockout plants: the chlorophyll a, chlorophyll b Ppatg3 knockout plants underwent a greater reduction
and total chlorophyll contents were significantly lower in  in chlorophyll content than the WT, resulting in an
both 14- and 28-day-old Ppatg3 mutant vs. WT plants early-senescence phenotype.

(Fig. 2d). However, the chlorophyll contents were also

slightly lower in 28-day-old WT plants than in 14-day- PpATG3 dysfunction affects cell development in P. patens
old WT plants, likely because more protonemata were To explore how PpATG3 regulates plant senescence, we
present in younger plants. These results indicate that the  examined the leafy gametophores cells of WT and Ppatg3
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plants grown under normal conditions in detail. The cells of
the Ppatg3 mutant appeared hollow and were turning yel-
low, whereas those of WT plants remained full and green
(Fig. 3a and b). To validate that the deletion of PpATG3 pre-
vents autophagosome formation in P. patens, we treated 28-
day-old WT and Ppatg3 knockout plants with 100 mM
NaCl for 1h and observed them by transmission electron
microscopy (TEM). Autophagosomes containing cellular
cargos formed in WT plants (Fig. 3c), whereas the bulk
cytosolic components accumulated in the mutant due to
PpATG3 knockout (Fig. 3d). These results indicate that
autophagy was disrupted in the Ppatg3 mutant.

To further explore the effect of PpATG3 on senes-
cence in moss, we examined chloroplasts in WT and
Ppatg3 cells. We observed a higher density of cellular
substances in leafy gametophore cell from the Ppatg3
mutant compared to WT (Fig. 3e and f). Moreover, in
the mutant, these cells accumulated an unusually high
density of chloroplast PGs; these lipoprotein particles
play important roles in various metabolic processes such
as photosynthetic regulation, thylakoid lipid remobiliza-
tion and senescence [33]. The higher density of chloro-
plast PGs in Ppatg3 leafy gametophore cells suggests
that PGs accumulation might be related to the reduced
chlorophyll levels in the autophagy mutant.

Changes in C/N ratios and fatty acid contents
The C/N ratio is reduced in Arabidopsis autophagy mu-
tant [29], and lipid metabolism is impaired in rice

OsATG?7 knockout mutant [11]. Based on the hypothesis
that changes in C/N ratios and fatty acid contents
caused the early-senescence phenotype seen in Ppatg3
knockout plants, we measured the C/N ratios of WT
and Ppatg3 plants at three time points: 14, 28 and 56
days (Fig. 4a—c). At 14 days, we did not detect any sig-
nificant differences in C or N concentrations or C/N ra-
tios between Ppatg3 knockout and WT plants. At 28
and 56 days, however, Ppatg3 plants showed notably
lower C/N ratios than the WT due to higher N contents
(N%). Overall, the N% rates gradually decreased over the
three time points in WT plants, whereas they remained
constant in Ppatg3 knockout plants. These results sug-
gest that N utilization was completely defective in the
Ppatg3 mutant. Notably, the C contents (C%) did not
significantly differ between Ppatg3 knockout and WT
plants.

Beike et al. [34] detected high fatty acid (%) contents
in the gametophores of wild-type P. patens. Here, we an-
alyzed the contents of six fatty acids in P. patens: pal-
mitic acid (16:0), stearic acid (18:0), oleic acid (18:1),
linoleic acid (18:2), arachidic acid (20:0) and arachidonic
acid (20:4). We chose two time points: 28 and 56 days
(Fig. 4d—e). At 28 days, three fatty acids (palmitic acid,
oleic acid and arachidic acid) showed significantly higher
relative abundance (%) and two (linoleic acid and arachi-
donic acid) showed significantly lower relative abun-
dance in the Ppatg3 mutant compared to the WT.
Similarly, at 56 days, three fatty acids (palmitic acid,
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Fig. 3 PpATG3 affects the cell development in P. patens. a and b Leafy gametophore cells were observed by light microscopy. The scale bar=0.3
mm. ¢ and d Detection of autophagosome in the gametophore cells of WT and Ppatg3 knockout plants by TEM. The 28-day-old plants after
treatment for 1 h of 100 mM NaCl were used for analysis. The black arrows were indicated the formation of autophagosomes in WT and the red
arrows were indicated the bulk cytosolic components accumulated in Ppatg3 mutants due to autophagy defect. e and f PpATG3 dysfunction
causes the accumulation of chloroplast plastoglobuli. The 28-day-old plants at normal growth conditions were used for analysis. CP, chloroplast;
PGs, plastoglobuli; T, thylakoid; CR, chloroplast ribosome; MT, mitochondrion; CW, cell wall

o

stearic acid and arachidic acid) showed significantly
higher and three (oleic acid, linoleic acid and arachi-
donic acid) showed significantly lower relative abun-
dance in Ppatg3 vs. the WT. By contrast, the relative
stearic acid contents did not significantly differ between
Ppatg3 and WT plants at 28 days. Overall, the fatty acid
profiles markedly differed between Ppatg3 knockout and
WT plants.

To further investigate the relationship between C/N
ratio and fatty acid contents in the autophagy-defective
mutant, we performed a fatty acid supplementation ex-
periment. Because the linoleic acid and arachidonic acid
contents were significantly reduced in the Ppatg3 mu-
tant (Fig. 4d—e), we hypothesized that these two fatty
acids function in C/N status in P. patens. Indeed, supple-
menting WT plants with linoleic and arachidonic acids,
either singly or together, altered the C/N status and de-
creased the C/N ratio compared to the control (Add-
itional file 2A—C). By contrast, supplementing Ppatg3
plants with linoleic acid or arachidonic acid alone did

not improve N utilization, and supplementation with
both linoleic acid and arachidonic acid reduced the N
contents, resulting in a C/N ratio similar to that of WT
plants (Additional file 2A—C). However, the premature
gametophore senescence phenotype of the mutant was
not rescued by fatty acid supplementation (Additional
file 2D).

RNA-Seq to identify differentially expressed genes in
Ppatg3

To examine whether the loss of ATG3 affects the gene
expression profile of P. patens, we analyzed the global
gene expression pattern of the Ppatg3 mutant compared
to the WT control using the BGISEQ-500 platform.
Transcripts with FPKM >1 were subjected to further
analysis. PCA revealed highly significant transcriptional
differences between Ppatg3 and WT plants (Additional
file 3 A). In total, 23,219/16,564 expressed transcripts/
genes were detected from all samples, including 23,139/
16,503 transcripts/genes expressed in both Ppatg3 and
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Fig. 4 Comparison of C/N ratio and fatty acid content. a-c Differences in N concentrations between WT and Ppatg3 resulted in changes in the
C/N ratio. The 14-day-old, 28-day-old and 56-day-old plants were used for analysis. d-e Abundance comparison of six fatty acids from WT and
Ppatg3. Fatty acid profiles were established from 28-day-old and 56-day-old plants. Three biological replicates were analyzed and error bars show
the mean value + SD. The asterisks indicate a significant change between the Ppatg3 and WT plants at (*) p < 0.05, (**) p < 0.01, and (**¥)
p < 0.001. Non-significant differences between the Ppatg3 and WT plants are denoted (ns)

WT plants, 45/38 unique transcripts/genes in Ppatg3
and 35/23 unique transcripts/genes in WT (Additional
file 3B and Additional file 4). Using the criteria of p-
value <0.001 and expression fold change >2 to identify
differentially expressed transcripts/genes (DETs/DEGs),
a comparison of Ppatg3 and WT revealed a total of
3080/2634 DETs/DEGs. Of these, 1845/1621 DETSs/
DEGs and 1235/1013 DETs/DEGs were upregulated and
downregulated, respectively, in Ppatg3 vs. the WT
(Additional file 5).

We then identified the top 20 enriched KEGG path-
ways of the up- and downregulated DETs/DEGs at Q
value <0.05 (Additional file 3D-E and Additional file 6).
Among both up- and downregulated DETs/DEGs, the
enriched pathways were all biosynthetic and metabolic
pathways, which were roughly divided into five major
functional classes: carbohydrate metabolism, energy me-
tabolism, amino acid metabolism, cofactor and vitamin
metabolism, and global pathways. Notably, the nitrogen

metabolism pathway was significantly enriched (Add-
itional file 3 D), which might be related to the altered N
contents of the Ppatg3 mutant.

In Arabidopsis, the differential expression of
senescence-associated genes (SAGs) and weakened
photosynthetic capacity are associated with plant senes-
cence [35]. Notably, numerous genes related to chloro-
phyll  biosynthesis and  photosystems  were
downregulated in Ppatg3 vs. the WT (Additional file 7).
In addition, half of the SAGs (11 of 22) were signifi-
cantly upregulated in the Ppatg3 mutant compared to
the WT (Additional file 7). These results provide evi-
dence for the accelerated senescence process in the
Ppatg3 mutant.

The transcription of nitrogen and fatty acid/lipid

metabolism-related genes is altered in the Ppatg3 mutant
To further investigate the reason for the dysfunctional N
and fatty acid metabolism in Ppatg3, we compared the



Chen et al. BMC Plant Biology (2020) 20:440

differences in transcript levels of genes related to nitro-
gen and fatty acid/lipid metabolism. Ten of the 11 genes
were significantly upregulated, including genes related to
glutamine synthetase (GLN), glutamate synthase (GLS),
nitrate reductase (NR) and glutamate dehydrogenase
(GDH) (Fig. 5a and Additional file 8). These results indi-
cate that the nitrogen metabolism pathway was defective
in Ppatg3, resulting in the differential expression of
genes involved in nitrogen metabolism. This
phenomenon might be due to feedback regulation of
nitrogen-related DEGs caused by a N-utilization defi-
ciency in the Ppatg3 mutant. However, the upregulated
expression of these genes did not restore the N-
utilization efficiency, suggesting that the regulation
mechanism of autophagy for N utilization was more
complicated.

Furthermore, 12 genes related to fatty acid biosyn-
thesis and metabolism were significantly differentially
expressed in the mutant, including 7 upregulated and 5
downregulated genes (Fig. 5b and Additional file 8). One
upregulated gene, the lipoxygenase homologous gene
(LOXS; Pp3c1_29300), might be involved in linoleic acid
metabolism; its higher expression level is consistent with
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the reduced linoleic acid contents in Ppatg3. However,
another lipoxygenase homologous gene (LOX3; Pp3cl5_
13040), which might be involved in the arachidonic acid
metabolism, was downregulated in the mutant: its lower
expression level might not be related to the reduced ara-
chidonic acid contents in Ppatg3. Moreover, 19 of the 30
genes related to lipid metabolism were significantly up-
regulated in Ppatg3, including genes involved in glycero-
lipid, glycerophospholipid and sphingolipid metabolism
(Fig. 5¢ and Additional file 8).

Dysfunctional autophagy leads to the differential
transcription of protein metabolism, endocytosis and
ROS-related genes

Twenty-five out of 31 ubiquitin-related genes were sig-
nificantly upregulated in the Ppatg3 mutant vs. the WT
(Fig. 6a and Additional file 8). These highly expressed
genes encode proteins including ubiquitin proteins or
regulators, ubiquitin-activating enzymes (E1), ubiquitin-
conjugating enzymes (E2) and ubiquitin ligases (E3).
Moreover, the transcription of genes in the 26S prote-
asome system was activated by the upregulation of a
subset of regulatory genes in the mutant (Fig. 6b and
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Additional file 8). These results suggest that the activity
of the ubiquitin-26S proteasome pathway (UPP) for pro-
tein degradation is enhanced in the mutant due to a
defect in autophagy.

Heat shock proteins (HSPs) play essential roles in pre-
venting the misfolding of proteins and blocking the for-
mation of large protein aggregates which severely
impede cellular functions [36]. The transcript levels of
many genes (20 of 21) encoding HSPs/chaperones were
significantly higher in Ppatg3 than the WT (Fig. 6¢ and
Additional file 8), suggesting that the resolving of

misfolded protein aggregates by HSPs/chaperones was
activated in the mutant to maintain the proper protein
conformation and extend cell longevity.

Furthermore, 10 genes related to the endocytosis path-
way were significantly upregulated in the mutant (Fig.
6d and Additional file 8); this pathway is involved in the
recruitment and degradation of cell surface proteins and
cellular fatty acids/lipids to support basic cellular func-
tions [37, 38]. However, in contrast to the highly
expressed genes related to protein metabolism and
endocytosis, the transcript levels of most ROS
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metabolism-related genes (10 of 15) were significantly
reduced in the mutant, including 7 and 3 genes encoding
peroxidases and catalases, respectively (Fig. 6e and Add-
itional file 8), perhaps leading to the accumulation of
ROS and the generation of damaged or toxic materials
in the Ppatg3 mutant.

Validation of DEGs by RT-qPCR

Finally, to validate the gene expression patterns demon-
strated by RNA-Seq, we performed RT-qPCR analysis of
21 DEGs, 15 homologous SAGs and 6 genes related to ni-
trogen metabolism using the same mRNA samples used
for RNA-Seq analysis. These genes included several nitro-
gen metabolism-related genes, including homologs of
GLN (Pp3c21_8940, Pp3c21_8810, and Pp3c18_10780 and
Pp3c18_10760), GLS (Pp3c8_17940) and NR (Pp3cl4d_
9410) (Fig. 7a). We also identified 4 and 11 SAG homologs
that were up- and downregulated, respectively, in Ppatg3
knockout plants (Fig. 7b), including homologs of NYE1/2
(Pp3c17_23030), HXKI1/GIN2 (Pp3cl1_5000, Pp3cl9_
20120, and Pp3c22_9450), PPDK (Pp3c5_22540), ACSI10
(Pp3c21_10860), GPR7 (Pp3c7_3360 and Pp3c7_6560),
LrgB (Pp3c4_7680), GBF1 (Pp3c21_5770), SID2 (Pp3c9_
10620), LOX3 (Pp3c15_13040), SAG113 (Pp3c7_5390),
CHX24 (Pp3c11_19850) and FTSHS (Pp3c24_15420). The
expression patterns of all genes examined were similar to
those obtained by RNA-Seq analysis.

Discussion

Autophagy is a ubiquitous process that plays important
roles in plant development and senescence to maintain
essential cellular functions and life activities [3, 7, 19].
Extensive studies have indicated that autophagy is im-
portant for N utilization [26-29], fatty acid/lipid homeo-
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chloroplasts [16, 17] or aggregated proteins [18] in
plants. Although a previous study revealed that autoph-
agy is essential for maintaining the balance of amino
acid metabolism in P. patens [30], how this process reg-
ulates C/N status and fatty acid metabolism in moss has
been largely unknown. Here, we demonstrated that the
E2-like enzyme PpATG3, which is extensively expressed
in tissues (Fig. 1a) and is localized to the cytoplasm (Fig.
1b), is essential for both autophagy and normal plant de-
velopment in P. patens. Thus, Ppatg3 mutant cultured
on normal growth medium for 7 to 56 days showed sig-
nificantly premature senescence of leafy gametophores
(Fig. 2a) and reduced new protonema formation (Fig.
2b) compared to WT plants grown under the same
conditions.

Early leaf senescence is the principal phenotype of au-
tophagy mutant in Arabidopsis [19, 39]. Thus, we exam-
ined several physiological and metabolic markers and
performed transcriptome analysis of the Ppatg3 mutant
during the appearance of premature senescence in leafy
gametophores. After 7days of culture, yellowing and
weak chlorophyll fluorescence were detected in Ppatg3
(Fig. 2a), which is consistent with the significantly re-
duced Fv/Fm values of this mutant (Fig. 2c). After this
time point, more serious yellowing was observed, indi-
cating that the Ppatg3 was indeed undergoing premature
senescence. Indeed, the chlorophyll contents were sig-
nificantly lower in the Ppatg3 mutant than in WT plants
(Fig. 2d). In addition, Ppatg3 cells appeared hollow and
yellow (Fig. 3a and b), which was accompanied by de-
fects in autophagosome formation and led to the accu-
mulation of bulk cytosolic cargos (Fig. 3c and d). These
results suggest that physiological defects were present in
this autophagy mutant, leading to a premature-

stasis [13-15] and the degradation of damaged senescence phenotype.
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The physiological defects in Ppatg3 plants were more
severe later in the culture period, at 28 and 56 days. At
14 days, Fv/Fm values and chlorophyll biosynthesis were
already significantly reduced in the mutant (Fig. 2c¢ and
d), but there was no significant difference in N content
or C/N ratio between WT and Ppatg3 plants (Fig. 4a—c).
By contrast, at 28 days, the Ppatg3 mutant not only ex-
hibited reduced photosynthetic capacity (Fig. 2c and d),
but they also displayed dysfunctional nitrogen metabol-
ism resulting in a lower C/N ratio (Fig. 4a—c). An
autophagy-defective Arabidopsis mutant displays re-
duced N levels, resulting in a higher C/N ratio [29]. By
contrast, the lower C/N ratio in the Ppatg3 mutant rela-
tive to WT plants was clearly linked to dysfunctional ni-
trogen metabolism at both 28 and 56 days (Fig. 4a—c).
These results indicate that the effects of autophagy on
nitrogen metabolism differ between P. patens and A.
thaliana.

Chloroplast PGs are lipoprotein particles with a high
lipid-to-protein ratio that function in chloroplast biogen-
esis whose numbers increase during the process of plant
senescence [33]. Estimates suggest that 75-80% of the
total nitrogen content in a plant leaf is stored in chloro-
plasts [40]. In the current study, we observed irregular
chloroplasts with a high density of PGs in leafy gameto-
phore cells of Ppatg3 but not WT plants (Fig. 3e—f). The
defects in chlorophyll biosynthesis and N metabolism in
the mutant might have contributed to its defective
chloroplast development. Chloroplasts with accumulated
PGs in Arabidopsis were regular during normal senes-
cence [33]; however, the chloroplasts that accumulated
PGs in Ppatg3 appeared damaged, with an irregular
shape. Perhaps a defect in autophagy in the Ppatg3 mu-
tant impaired the degradation and turnover process of
unnecessary or damaged chloroplasts, leading to the ac-
cumulation of PGs and abnormally shaped chloroplasts,
thereby resulting in reduced chlorophyll levels.

Autophagy plays important roles in lipid/fatty acid me-
tabolism, composition and turnover in several vascular
plants, such as Arabidopsis and maize [13, 14]. More-
over, in rice, the metabolism of lipids such as triacylglyc-
erols (TAGs) and diacylglycerols (DAGs) was impaired
during pollen maturation in an autophagy mutant [11].
Fatty acids are important components of TAGs and
DAGs [41]; however, the potential role of autophagy in
fatty acid metabolism in moss has not been reported. In
the current study, we discovered that the loss of autoph-
agy affected the relative levels of six fatty acids, resulting
in their impaired metabolism (Fig. 4d—e). In particular,
the relative levels of linoleic acid (18:2) and arachidonic
acid (20:4) were sharply reduced in the Ppatg3 mutant.
Supplementation with linoleic acid and arachidonic acid
together, but not individually, restored the C/N ratio of
the mutant compared to the WT (Additional file 2A—-C),
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suggesting that the disrupted N metabolism in the mu-
tant might be related to the reduction in fatty acid con-
tents. These results suggest that the early-senescence
phenotype of Ppatg3 was partially caused by impaired N
utilization and an imbalance in fatty acid contents. How-
ever, the premature gametophore senescence was not re-
lieved by fatty acid supplementation (Additional file 2D),
suggesting that autophagy-dependent senescence is in-
fluenced by other factors besides the C/N ratio and fatty
acid metabolism, an issue worthy of further study.

During the normal senescence process, fatty acids ac-
cumulate in chloroplast PGs and chlorophylls and lipids
are extensively degraded [42]. In rice, senescence is ac-
companied by an increase in the number of chloroplast
PGs and significant changes in the contents of fatty
acids, especially increases in palmitic acid (16:0) levels
[43]. Similarly, in the current study, we observed that
the Ppatg3 mutant contained an unusually high density
of chloroplast PGs (Fig. 3e and f) and high palmitic acid
(16:0) contents (Fig. 4d and e), which is consistent with
previous reports. In addition, the Ppatg3 mutant con-
tained significantly higher levels of another fatty acid,
arachidic acid (20:0), compared to the WT in both 28-
and 56-day-old plants (Fig. 4d and e). However, the
levels of two fatty acids, stearic acid (18:0) and oleic acid
(18:1), behaved differently at 28 vs. 56 days (Fig. 4d and
e). These results suggest that changes in fatty acid con-
tents during autophagy-dependent senescence might
also be related to PG accumulation in chloroplasts,
which might have partially contributed to the physio-
logical defects of the autophagy mutant.

Additionally, RNA-Seq revealed that the loss of ATG3
in P. patens significantly altered transcript abundance/
gene expression (Additional file 3). Analysis of the top
20 enriched KEGG pathways of the DEGs suggested that
biosynthetic and metabolic pathways were seriously af-
fected in the mutant (Additional file 3D-E and Add-
itional file 6). As expected, the nitrogen metabolism
pathway was significantly enriched (Additional file 3D)
by the differential expression of a subset of nitrogen-
related genes (Fig. 5a), which might be related to the N
contents of the Ppatg3 mutant. Furthermore, many
genes involved in fatty acid/lipid metabolism were sig-
nificantly differentially expressed in the mutant vs. the
WT (Fig. 5b and c), which might be associated with the
changes in fatty acid contents and premature senescence
due to defective autophagy. Dysfunctional autophagy led
to the increased transcription of genes associated with
UPP and HSP, a phenomenon that also occurs in
endocytosis-related genes (Fig. 6a—d). These findings
suggest that the degradation of unnecessary proteins or
fatty acids/lipids is promoted in the Ppatg3 mutant for
recycling to support basic cellular functions and extend
longevity. However, a subset of ROS metabolism-related
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genes was significantly downregulated in the mutant
(Fig. 6e and Additional file 8), which might have contrib-
uted to senescence resulting from damaged or toxic ma-
terials generated by ROS accumulation in Ppatg3.

As described in Arabidopsis [35], numerous genes re-
lated to SAGs, chlorophyll biosynthesis and photosys-
tems were differentially expressed in Ppatg3 vs. the WT
plants, suggesting that the senescence process began
early in the Ppatg3 mutant (Additional file 7). For ex-
ample, the P. patens homologs of NYE1/2 and PPDK
were upregulated in the Ppatg3 mutant, as evidenced by
both RNA-Seq analysis and RT-qPCR validation. NYE1/
2 and PPDK encode important regulators of chlorophyll
degradation and nitrogen remobilization, respectively,
that function during green leaf senescence in Arabidop-
sis [44—46] (Additional file 7 and Fig. 7b). These results
suggest that the chlorophyll degradation and nitrogen
utilization mechanisms might be conserved to some de-
gree between autophagy-defective senescence and nor-
mal green leaf senescence. However, several P. patens
SAG homologs, such as SAG113, were downregulated in
the Ppatg3 mutant (Additional file 7 and Fig. 7b), point-
ing to possible differences in the regulatory mechanisms
of autophagy-defective senescence vs. normal green leaf
senescence.

A recent study in yeast revealed that the ATG3 allo-
steric activation switch element E123IR plays essential
roles in removing intramolecular interactions of ATG3
with the El-like enzyme ATG7 and E3-like enzyme
ATGI12-ATG5 complex to remodel the active site of
ATG3, thereby mediating the lipidation reaction of
ATGS8-PE during the autophagy process [47]. As ex-
pected, Y2H assays demonstrated that PpATG3 strongly
interacts with PpATG7 and PpATG12 in P. patens
(Additional file 9), suggesting that the interaction net-
work of ATG3 with ATG7 and ATG12 might be con-
served. However, whether the exact interaction
mechanism of ATG3 with E1- or E3-like enzymes in
plants is identical to that discovered in yeast requires
further study.

Taken together, these results indicate that the
premature-senescence phenotype caused by Ppatg3
knockout is influenced by a series of complex metabolic
pathways, including N utilization, fatty acid/lipid metab-
olism, damaged chloroplast degradation, ROS removal
and the recycling of unnecessary proteins due to the dis-
ruption of autophagy. However, the exact mechanisms
underlying the roles of autophagy in these physiological
defects should be more fully elucidated in the future.

Conclusions

Our analysis of P. patens, an emerging model system for
autophagy research, provided new insights into the role
of autophagy in preventing plant senescence. Our results
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support the role of PpATG3 in autophagosome forma-
tion. Autophagy-defective mutant due to a PpATG3 de-
letion showed premature gametophore senescence under
non-stress conditions, which could be partially explained
by impaired N metabolism. We also provided evidence
for the role of autophagy in fatty acid metabolism. The
Ppatg3 mutant showed reduced levels of linoleic acid
and arachidonic acid and a concomitant increase in the
levels of palmitic acid and arachidic acid. Supplementa-
tion with linoleic acid and arachidonic acid together re-
stored the N content but not the premature senescence
of the mutant, suggesting that a more complex mecha-
nisms contributes to autophagy-dependent longevity.
Our results also suggest that the differential expression
of numerous biosynthetic and metabolic pathway genes
played a role in the premature senescence of the Ppatg3
mutant due to defective autophagy. These results suggest
that PpATG3 directly or indirectly affects C/N stability
and fatty acid metabolism, as well as numerous other
biosynthetic and metabolic pathways, such as damaged
chloroplast degradation and unnecessary protein recyc-
ling, by functioning in autophagy under normal growth
conditions, thus preventing premature senescence and
extending plant longevity.

Methods

Plant material, growth condition and moss transformation
Physcomitrella patens Gransden wild-type plants were
supplied by Prof. Mitsuyasu Hasebe, Japan National In-
stitute for Basic Biology (NIBB). Plants were grown on
BCD medium supplemented with 5 mM ammonium tar-
trate and 1 mM CaCl, [48] at 25 °C under a photoperiod
of 16 h light with a photon flux of 60 to 80 umol m™*s™ "
for 1 to 8 weeks. To generate protonemal tissues, plant
material was crushed with an ULTRA-TURRAX® Tube
Drive in 5ml of sterile water and was propagated onto
BCD medium. Cultures were maintained by inoculating
a small explant of seven-day-old protonemal tissue (1-2
mm) using forceps to fresh culture medium. Polyethyl-
ene glycol (PEG)-mediated transformation of protoplasts
for gene transient expression or gene stable deletion was
described previously by Shi and Theg [49].

Protein sequence alignment, motif and phylogenetic
analysis

The full-length protein sequences of the PpATG3
(Pp3c8_11900), KnATG3 (GAQS83284), MeATG3
(ME000344506021), AaATG3 (AANGO000634), MpATG3
(Mapoly0003s0208), BAATG3 (Bradi3g33350) AtATG3
(AT5G61500), MmATG3 (NP_080678), HsATG3 (NP_
071933) and ScATG3 (YNRO0O7C) were obtained from
Phytozome, NCBI and SGD database, respectively. ALN
file was obtained by multiple protein sequences align-
ment using ClustalX2.0 [50], and the crystal structure of
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ScATG3 (PDB ID: 2DYT) [21] was used for secondary
structure depiction by web tool ESPript 3.0 [51]. The do-
main and motif searching were performed by SMART
[52] and MEME SUITE [53], respectively. The phylogen-
etic tree was carried out by MEGA 6 [54] using a
neighbour-joining (NJ) method.

Microarray expression analysis

Microarray expression values in different tissues of
PpATG3 gene was analyzed basing previous microarray
data [32] of P. patens. Ten tissues were obtained for ana-
lysis including protonemata (chloronema and caulo-
nema), gametophore, archegonia, four sporophyte
developing stages (S1, S2, S3 and M), spores, and rooting
structure rhizoids.

Subcellular localization of PpATG3

Full length coding sequence (lacking the stop codon)
of PpATG3 was PCR amplified from P. patens cDNA
template using the primers PpATG3-F and PpATG3-
R (Additional file 10). The resulting 921-bp PCR frag-
ment was cloned using Kpnl and Xbal restriction en-
zymes (Thermo Scientific FastDigest, FD0524 and
FD0684) into the vector pM999 [55] by sticky end
ligation. The pM999 contains the eGFP coding se-
quence driven by a 35S promoter. The chimeric gene
p35S:PpATG3-eGFP was constructed by fusing the
PpATG3 cDNA sequence to the 5° end frame of
eGFP. After this, the resulting plasmid was introduced
into the protoplast of P. patens by PEG-mediated
transformation [48]. 48 h after culture at 25°C, proto-
plasts were observed by a confocal microscopy for
GFP fluorescence.

PpATG3 gene disruption

The 5’ and 3’ flanking regions (863 bp and 800 bp re-
spectively) of the PpATG3 gene were amplified using 2
primer pairs P1/P2 and P3/P4, respectively. Two frag-
ments were digested with Kpnl/HindIlI and Xbal/
BamHI respectively (Thermo Scientific FastDigest,
FDO0524, FD0504, FD0684 and FD0054), and cloned by
sequential into the pTN182 vector upstream and down-
stream of the mptll gene driven by a Pm35S promoter
(geneticin resistance gene cassettes) (http://moss.nibb.ac.
jp/). Construct was linearized with Kpnl and BamHI
prior to transformation. Transformation was completed
as described previously [48]. The primers for genotyping
the PpATG3 gene knockout were used can be found in
Additional file 10. PpUbiquitin [56] and PpAdePRT [57]
was used to assess DNA and cDNA template quality,
respectively.

Page 13 of 16

Analysis of chlorophyll fluorescence and chlorophyll
content

Chlorophyll florescence values were monitored with an
IMAGING-PAM FluorImager and Imaging Win soft-
ware. Prior to determine Fv/Fm, the cultures were dark
adaptation for minimum 30 min. Chlorophyll were iso-
lated  from  cultures using DMF (N, N-
dimethylformamide) as described previously [58]. Ab-
sorbance was measured at 647 and 664 of the superna-
tants using DMF as blank. Total chlorophyll content
(chlorophyll a + chlorophyll b) was calculated using the
formula Chlorophyll a (mmol/g)=[(12 x A664-3.11 x
A647) x mL DMF] / mg Dry Weight and Chlorophyll b
(mmol/g) = [(20.78 x A647-4.88 x A664) x mL. DMF] /
mg Dry Weight.

Phenotypic observation

For recording phenotypic characterization of WT and
Ppatg3 plants, cultures were grown for 7 to 56 days
under normal conditions. Leafy gametophores were ob-
served by light microscopy. TEM was used to observe
the Ppatg3 mutant. Gametophores of 28-day-old WT
and Ppatg3 plants were fixed overnight in 3% glutaralde-
hyde and then postfixed for 2h in 1% osmium tetroxide
(OsO4), dehydrated in a serial ethanol gradient and em-
bedded in Epon 812 resin. Samples were fixed at 4 °C.
Serial and uniform-thickness of sections about 70 nm of
gametophores leafy cells were generated by a Leica EM
UC7 ultramicrotome. Sections were carried onto 100-
mesh Cu grids, and then stained sequentially by 2% ur-
anyl acetate solution and lead citrate. Afterward, the sec-
tions were observed in microscope JEM 1400Plus at 120,
000V. To detect autophagosomes of WT and Ppatg3
mutant, 28-day-old plants were treated by 100 mM NaCl
for 1 h and then used for TEM observation.

Measurement of carbon and nitrogen content

Plants were collected and dried 10 h at 100°C in a dry-
ing oven. Then the subsamples were ground into a
homogenous fine powder and carefully measured in tin
capsules by a fully automatic C, N analyzer Elementar
vario Micro cube to establish carbon and nitrogen
content.

Fatty acid content analysis

In this study, 1g moss tissue of WT and Ppatg3 plants
were used for lipid extraction. Then the samples were
utilized for methyl esterification and detailed method
was performed as previously described [34]. Fatty acid
contents were measured by a GC-MS analyzer Agilent
Technologies 7890A GC system. Peak identification and
fatty acid consideration were performed with the MSD
ChemsStation software.
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Fatty acid supplementation

For fatty acid supplementation, 21-day-old WT and
Ppatg3 plants grown on normal BCD medium were
transferred to BCD medium with 20 pg/ml linoleic acid
(Shanghai yuanye, DC14635400) or 20 pg/ml arachidonic
acid (Shanghai yuanye, B20540) for 7 days, or both with
linoleic acid and arachidonic acid at the same concentra-
tion for 7 days. As a control, 21-day-old WT and Ppatg3
plants grown on normal BCD medium were transferred
to BCD medium with 0.1% DMSO for 7 days.

RNA-sequencing and data analysis

WT and Ppatg3 plants were grown on BCD medium for
28d. Total RNA of the whole plant was extracted by
using a RnaExTM solution (Generay). cDNA library
construction, sequencing and data analysis were carried
out by the BGISEQ-500 platform established by BGI-
Tech (Wuhan, China). The reads alignment and expres-
sion level calculation were conducted by using Bowtie 2
[59] and RSEM [60], respectively. A differential expres-
sion transcript/gene with at least two-fold change and p-
value <0.001 was used as further analysis [61]. R pro-
gram “princomp”, “phyper” and “pheatmap” were used
to conduct PCA analysis, KEGG pathway enrichment
and construction of heat maps, respectively. The RNA-
Seq data of the present study had been deposited at the
BIG genome sequence archive (GSA) under Bioproject
identifier PRJCA001964 with accession number:
SAMC116811 to SAMC116814.

RNA isolation and real-time quantitative PCR

RnaExTM solution (Generay) was used for total RNA
extraction. First-strand cDNA was synthesized by a re-
verse transcription kit (Transgen). Real-Time quantita-
tive PCR (RT-qPCR) was performed as previously
described [62]. The primers for gene expression analysis
were used in this study can be found in Additional file
10. The relative expression levels were calculated using
PpAdePRT [57] as expression control.

Y2H analysis

To determine the protein interactions between PpATG3
and PpATG7 (Pp3c24_8100) or PpATG12 (Pp3c4_
29920), we performed the Y2H assays (Clontech). In our
study, the CDS of PpATG3 gene was amplified and
cloned into bait vector pGBKT7 (BD), while the CDS of
PpATG7 or PpATG12 gene was amplified and cloned
into prey vector pGADT7 (AD). The Y2H assays were
carried out by a Frozen-EZ Yeast Transformation II Kit
(Zymo Research). The primers for Y2H assays in this
study were listed in Additional file 10.
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