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Abstract

Background: Mineral nutrients play a crucial role in the biochemical and physiological functions of biological
systems. The enhancement of seed mineral content via genetic improvement is considered as the most promising
and cost-effective approach compared alternative means for meeting the dietary needs. The overall objective of
this study was to perform a GWAS of mineral content (Ca, K, P and S) in seeds of a core set of 137 soybean lines
that are representative of the diversity of early maturing soybeans cultivated in Canada (maturity groups 000-Il).

Results: This panel of 137 soybean lines was grown in five environments (in total) and the seed mineral content
was measured using a portable x-ray fluorescence (XRF) spectrometer. The association analyses were carried out
using three statistical models and a set of 2.2 million SNPs obtained from a combined dataset of genotyping-by-
sequencing and whole-genome sequencing. Eight QTLs significantly associated with the Ca, K, P and S content
were identified by at least two of the three statistical models used (in two environments) contributing each from
17 to 31% of the phenotypic variation. A strong reproducibility of the effect of seven out these eight QTLs was
observed in three other environments. In total, three candidate genes were identified involved in transport and
assimilation of these mineral elements.

Conclusions: There have been very few GWAS studies to identify QTLs associated with the mineral element
content of soybean seeds. In addition to being new, the QTLs identified in this study and candidate genes will be
useful for the genetic improvement of soybean nutritional quality through marker-assisted selection. Moreover, this
study also provides details on the range of phenotypic variation encountered within the Canadian soybean
germplasm.
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Background

Soybean is utilized for a wide array of food, feed, and in-
dustrial purposes, making it one of the most versatile
grain crops grown. In fact, soybean is an important
source of protein, oils and carbohydrates, as well as
other beneficial nutrients such as mineral elements
which affect end-use traits of both the oil and protein
fractions as well as the quality characteristics of seed
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used to plant succeeding crops [1]. The availability of
mineral nutrients to plants is a very dynamic and com-
plex process that is affected by both biotic and abiotic
factors and their interactions [2]. In agriculture, it has
been reported that deficiencies in essential elements can
lead to yield loss, increased disease susceptibility, im-
paired metabolism, interrupted normal development and
poor seed quality [3]. For this purpose, understanding
the uptake, regulation, transport, and storage of mineral
elements under a variety of environmental conditions is
essential to deciphering the complex relationship be-
tween a plant and its environment. Therefore, the seed
ionomic profiles is a powerful tool for matching a plant’s
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genetic characteristics with its response to environmen-
tal perturbations [4].

The enhancement of seed mineral nutrient content via
genetic improvement is considered as the most promis-
ing and cost-effective approach to ensure that the dietary
needs of consumers are met. As breeding for any trait
rests on the existence of phenotypic variability, this re-
quires the identification of cultivars with useful genetic
variability for grain minerals and understanding the gen-
etic architecture of these seed traits [5].

Since the concepts of plant nutrition were founded,
much effort has been put into developing methods and
tools for quantitative measurement of the elemental
composition of living organisms [6]. Spectroscopic
methods such as energy dispersive X-ray fluorescence
(ED-XREF) are increasingly gaining a foothold as they are
easier to operate and constitute a non-destructive tool
compared to wet chemistry methods such as flame
atomic absorption spectroscopy (FAAS) [7]. Recently,
ED-XRF has been used successfully to assess Ca, K, P
and S concentrations in soybean [8, 9], in cacao [7] and
in pea seeds [10]. In these studies, measurements ob-
tained via spectroscopy were consistent with previous
studies using more common but costly analytical
methods. Also, these studies have shown that mineral
element content can span a large range of values in
plants and that this content is determined both by gen-
etic and environmental factors [2, 4, 11-13].

A limited number of studies have aimed to determine
the genetic architecture governing the accumulation of
mineral elements in seeds and concluded these traits to
be most likely controlled by many genes [2, 14]. Zhang
et al. [15] reported 4 QTLs (on chromosomes 7, 8 and
20) associated with calcium content in soybean seeds
using 148 simple sequence repeat (SSR) markers and
178 F,3 and 157 F,, lines. King et al. [13] reported 3
QTLs (on chromosomes 7, 12 and 17) for phosphorus
content using 916 SSR markers and 92 F,., lines. More
recently, Ramamurthy et al. [2] used 1536 single nucleo-
tide polymorphism (SNP) markers and a total of 288
soybean recombinant inbred lines (RILs) to identify 7
QTLs associated with Ca, K and S content (on chromo-
somes 4, 6, 15, 16 and 18). Using a GWAS approach,
Ziegler et al. [4] used 36,489 SNPs and 1653 soybean ac-
cessions from the USDA Soybean Germplasm Collection
to identify 9 QTLs (on chromosomes 1, 2, 5, 9, 10 and
13) associated with Ca, K, P and S content in soybean
seeds. Finally, Dhanapal et al. [16] reported a total of 65
QTLs across the 20 chromosomes associated with soy-
bean shoot Ca, K, P and S content using 31,748 SNPs
and 104 soybean genotypes. Overall, little overlap in the
QTLs identified in these studies is observed. This could
be due to the genetic determinants of mineral element
content in soybean seeds being different among different
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sets of germplasm or that some studies suffered from in-
adequate genome coverage and failed to detect shared
QTLs.

In the context of an incomplete and often inconsistent
identification of QTLs controlling the accumulation of
mineral elements in the soybean seed [4], especially
among early maturity soybeans (MGO000-II), we sought
to characterize the phenotypic diversity among a set of
137 Canadian short-season soybean varieties and to
identify QTLs controlling Ca, K, P and S content in this
set of germplasm. Using a large set of SNP markers and
three analytical approaches (CMLM, MLMM and Farm-
CPU), we identified a total of 32 QTLs controlling the
accumulation of these four important elements of which
eight were identified jointly by at least two approaches.
We believe that the findings of this research will provide
new insight for future research on genetic improvement
of soybean seed quality and nutrient content.

Results

Correlation between wet chemistry and energy-dispersive
X-ray fluorescence method

To validate our chosen analytical method (energy-dis-
persive X-ray fluorescence, ED-XRF), thirty samples
were analyzed by both ED-XRF and flame atomic ab-
sorption spectroscopy (FAAS) for Ca and K and by spec-
trophotometry for P content. As can be seen in Fig. 1,
the correlation coefficients (r) between both methods
were positive and highly significant (P< 0.001) and
ranged from 0.91 (Ca) to 0.94 (P). These results demon-
strated that the ED-XDF was appropriate for the quanti-
fication of Ca, P and K content in soybean seeds.

Phenotypic variation and correlations among traits

The concentrations of Ca, K, P and S on a set of 137
soybean lines grown on two sites (two replicates/site) in
2013 were estimated using an ED-XRF device. The fre-
quency distributions exhibited an approximately normal
distribution and appeared to be quantitatively inherited
(Fig. 2). As shown in Table 1, the range of seed mineral
content varied for the four elements: from 1.6 to 2.4 mg/
g for Ca, 17 to 21 mg/g for K, 4.5 to 6.5 mg/g for P and
3.5 to 5.5mg/g for S content on a dry-weight basis.
Across all 137 lines, the means were 1.8, 18.7, 5.3 and
4.3 mg/g respectively for Ca, K, P and S content. The
least significant difference (LSD) between two genotype
means was 0.03 mg/g for Ca, 0.44 mg/g for K, 0.28 mg/g
for P and 0.09 mg/g for S content. A high broad-sense
heritability was observed and ranged from 81% (K) to
99% (S). The presence of a fairly large phenotypic vari-
ation and high heritability suggested that these traits and
association panel would be well suited to uncover the
genetic architecture of these traits.
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Fig. 1 Pearson correlation between wet chemistry and ED-XRF for Ca, K, P and S content on a dry-weight basis among 30 soybean seed samples

As illustrated in Table 2, an analysis of variance
showed that both the genotype and environment had a
highly significant effect (P <0.001) on phenotypic vari-
ation for all traits except for Ca where the genotypic ef-
fect was the sole significant source of variation. No

significant genotype x environment interactions were
observed for any of the traits. The observed phenotypic
values were significantly (p < 0.001) correlated between
the two experimental sites, with correlations ranging be-
tween 0.75 and 0.98. The seed content in the different
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Table 1 Descriptive statistics for Ca, K, P and S content across
two sites (two replicates per site) in the seed of 137 Canadian
soybean lines

Traits Range Mean LSD H? (%)
Ca 16-24 1.8 0.03 84
K 17.0-21.0 18.7 044 81
P 45-65 53 0.28 83
S 3.5-55 43 0.09 99

LSD = least significant difference
H2 = broad sense heritability

minerals also proved to be correlated (Table S1, in bold).
All such pairwise comparisons were statistically signifi-
cant (p< 0.05) and the highest correlations were ob-
served between K and S (r* = 0.67, p< 0.001) as well as
between P and K (r* = 0.65, p < 0.001).

Genotyping and SNP calling

The lines of the association panel were initially geno-
typed via a GBS approach that yielded a total of 56 K
high-quality SNPs. In a second step, a reference panel of
4.3 M SNPs was used to perform missing loci imputation
onto the original set of GBS-derived SNPs. After remov-
ing InDels, markers with a MAF < 0.05 and heterozygos-
ity >0.1, a total of 2.18 M SNPs were retained, offering
an average marker density of 1 SNP every 435 bases
across the entire genome. The physical distribution of
these 2.18 M SNPs across the soybean 20 chromosomes
is illustrated in Fig. S1. The genotypic data thus obtained
was then used to characterize population structure
within this panel and to look for marker-trait
associations.

Table 2 ANOVA results for Ca, K, P and S content across two
sites (two replicates per site) in seed of 137 Canadian soybean
lines

Nutrient  Source of variation df Fvalues  p-values

Ca Genotype 136 469 < 0.0001***
Environment 1 047 = 04900 ns
Genotype x Environment 136 0.17 = 1.0000 ns

K Genotype 136 272 < 0.0001***
Environment 1 23.88 < 0.0007***
Genotype x Environment 136 0.34 = 1.0000 ns

P Genotype 136 1532 < 00010 **
Environment 1 11.01 < 0.0010 **
Genotype x Environment 136 0.08 = 1.0000 ns

S Genotype 136 1946 < 0.0001***
Environment 1 15.32 < 0.0007***
Genotype x Environment 136 0.10 = 1.0000 ns

df = degree of freedom
**#* and ** = Significant, p < 0.0001 and 0.001; ns = not significant, p > 0.05
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Population structure

The population structure of this core set of 137 Canad-
ian soybean lines was initially inferred using fastSTRUC-
TURE and the number of subpopulation (k) was 7
(Fig. 3a). In addition, as can be seen in Fig. 3b and c,
both a phylogenetic tree and a PCA-based population
structure analysis were consistent with the result of the
fastSTRUCTURE analysis. Together, these results sug-
gested that k=7 provided a good assessment of popula-
tion structure and the corresponding Q matrix was used
for GWAS.

Genome-wide association scan for mineral elements
content in soybean seeds

To discover chromosomal regions that contribute to the
phenotypic variation, we used three analytical tools to
measure marker-trait associations: FarmCPU, CMLM
and MLMM. As shown in the quantile-quantile (QQ)
plots (Fig. S2), all three models successfully limited the
confounding effects as the observed p-values only di-
verged from the diagonal (expected p-values) at the most
extreme values (beyond 3E-03 for almost all traits).

The results of these association analyses are presented
as Manbhattan plots for FarmCPU, CMLM and MLMM
in Fig. 4. Based on the threshold for false discovery rate
(blue horizontal line, FDR < 0.05), we detected 32 QTLs
of which seven were associated with Ca content, ten
with K, five with P and ten with S content (Table S2).
Interestingly, one shared QTL contributing to both K
(K_#1) and P (P_#1) was observed. The uncorrected p-
values of these QTLs ranged from 1.35E-06 to 2.84E-21
for Ca, from 1.89E-05 to 8.05E-19 for K, from 1.17E-06
to 3.61E-12 for P and from 1.75E-05 to 6.63E-15 for S
content.

In total, among these 32 QTLs, eight QTLs were co-
identified by at least two models (Fig. 5) and the features
of these eight robust QTLs are summarized in Table 3.
The portion of phenotypic variance explained (R?)
ranged from 20 to 21% for Ca, from 17 to 31% for K,
22% for P and from 18 to 23% for S. The magnitude of
allelic effects varied between 0.06 to 0.07 mg/g, 0.30 to
0.57 mg/g, 0.30 mg/g and 0.15 to 0.46 mg/g for Ca, K, P
and S, respectively. The genetic variance (additive) ex-
plained as the narrow-sense heritability (h*) was 41% for
Ca, 82% for K, 78% for P and 93% for S.

Validation of the eight co-identified QTL across three
environments

To verify the stability of each of the eight QTLs detected
by at least two models, data from three additional trials
were obtained. Overall, across the three new environ-
ments, seven QTLs were validated in at least two envi-
ronments (Fig. S3 and Table S3). Only QTL#4 for Ca
could not be validated in any of the three new



Malle et al. BMC Plant Biology (2020) 20:419

Page 5 of 14

M Clusterl

M Cluster2 [ Cluster3

0.5

Values

0

Variance

] Cluster4 ClusterS Cluster6 [ Cluster?

14000
1

10

Percentage (%)

2000 4000 6000 8000 10000

2

4

6

8

10

Fig. 3 Models-based population structure in a core set of 137 Canadian soybean lines. a: Classification into seven populations using
fastSTRUCTURE where each individual (from 1 to 137) is represented by a single vertical line and each color represents one cluster. b: Bootstrap
consensus phylogenetic tree (2000 replicates) constructed using MEGA 7; each color represents a subgroup and seven subgroups were found in
total and c: PCA eigenvalues computed using GAPIT. The total variance explained by each principal component (PC) decreased from PC1 to PC7
and, beyond PC7, the variance explained by each further PC remained low and stable

environments. The I_18 environment saw the lowest rate
of validation with five QTLs being successfully detected
in this environment (Fig. 6). Of the 24 possible QTL-
environment combinations (8 QTLs x 3 environments),
18 resulted in a significant difference between the mean
phenotype of lines contrasting for the peak SNP. These
results indicate that the identified QTLs are robust
across a wide range of environments.

Refinement of the GWA scan for co-identified QTL

To more deeply explore variants in these robust QTLs,
we extracted all SNPs falling within the haplotype blocks
surrounding the seven most robust QTLs from the lar-
ger catalogue of 2.2 M SNPs. These were merged with
the pruned data (243 K) set to perform the GWAS with
three models again. In six of these seven instances,

stronger association signals were observed and the phys-
ical distance between the previous and the new peak
SNP ranged from 1 to 311 kb (Table S4), but always re-
sided within the same haplotype block.

Prediction of candidate genes within the robust QTL
regions

Based on the GWAS results, we investigated the genes
annotated in the soybean genome in order to identify
putative candidate genes from loci significantly associ-
ated with each trait. To establish a list of candidate
genes, we focused only on those residing within a region
delimited by the left-most and right-most flanking
markers that were in perfect LD (D’ =1) with the peak
SNP for the seven QTLs described above. These gen-
omic regions (ranging in size between 32 and 360 kb)
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were extracted from Wm82.a2.vl and the GO annota-
tions of genes residing within these regions was exam-
ined (Table 4). An example of this approach is
illustrated in Fig. 7. The number of genes residing (fully
or in part) in each region varied between 4 and 43 and
the full list of these genes and their annotations are pro-
vided in Table S5.

To identify a candidate gene, we looked for genes that
met either of the two following criteria: 1) genes anno-
tated as being involved in the transport of the given
mineral element and expressed in roots, shoots or leaves
or 2) genes annotated as being involved in the uptake,
translocation, and/or homoeostasis of the element of
interest and mainly expressed in seeds. In total, three
promising candidate genes involved either in the trans-
port or assimilation of these mineral elements were
identified. We first discovered Glyma.06G046000 (132
kb upstream of the peak SNP in Ca_#3),

Glyma.10G020000 (222 kb downstream of the peak SNP
in K_#3). These two genes were both annotated as being
involved in transport and expressed in roots tips and
roots hairs. In addition, Glyma.06G046000 was
expressed in young leaves, flowers, main roots, pods as
well as in seeds (Fig. S4b and 4d.). Finally, Gly-
ma.20G151500 (32 kb downstream of S_#10) was anno-
tated as being involved in sulfate assimilation and
expressed in flowers, roots, nodules and seeds (Fig. S4f).
No candidate gene falling within the defined LD blocks
and meeting our criteria was found for QTLs K_#1, P_
#1, S_#4 and S_#7.

Structural and nucleotide variation within candidate
genes and their predicted functional impact

To determine if genetic (structural or nucleotide)
variation within or overlapping the candidate gene
could constitute causal variants, we examined a
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catalogue of such variation established from the
whole-genome sequencing data available for a subset
of 56 lines. No structural variant (>51bp) was identi-
fied as overlapping in full or in part with these three
candidate genes. As for nucleotide variants, a total of
18 SNPs were found within the coding regions of two
genes (one within Glyma.06G046000 and 17 within
Glyma.20G151500). All of these variants were pre-
dicted as a having a “modifier” or “low” impact on

Table 3 List of QTLs for mineral element content identified by
at least two approaches in 137 Canadian soybean lines. The
most highly associated SNP within each QTL is indicated along
with the associated statistics. For each trait, a measure of its
heritability (h?) is provided. The models that detected a
significant marker-trait association are abbreviated as follows: C
for CMLM, M for MLMM and F for FarmCPU

Gm Peak SNP QTL N° p-value FDR R2%

Effect h%% Models

06 3354869 (Ca_#3 294E-08 45E-03 20 -006 41 M
09 6092970 Ca_#4 3.70E-08 45E-03 21 007 C/M/F
04 49,071,552 K_#1 1.75E-06 6.1E-03 17 -030 82 C/F
10 1925709 K. #3  431E-10 49805 31 -057 C/M/F
04 49,071,286 P_#1 6.12E-08 15E-02 22 -030 78 C/M/F
10 1602998 S_#4  284E-08 40E-03 23 046 93 /M
15 3986243 S_#7  280E-07 23E-02 19 015 M/F
20 39076484 S_#10 9.13E-07 9.7E-03 18 020 C/M/F

FDR = False discovery rate
R2% = Indicates the proportion of total phenotypic variation for each marker

protein function. It is therefore unlikely that the ob-
served phenotypic variation is due to a loss of func-
tion of these candidate genes.

To provide more insight into the involvement of these
candidate genes in the observed phenotypic variation, a
haplotype analysis was performed. As presented in Fig.
S5, significant phenotypic differences (P< 0.05) were
observed between the haplotypes identified for each can-
didate gene. For example, among the four haplotypes (A,
B, C and D) identified for Glyma.06G046000, the seven
lines carrying haplotype B exhibited a significantly differ-
ent Ca content compared to the 130 other lines carrying
haplotypes A, C or D. Similarly, a small group of five ac-
cessions carrying haplotype C at Glyma.10G020000 had
a higher K content than the other accessions carrying
one of the four other haplotypes. In the case of Gly-
ma.20G151500, it was the more frequent haplotype A
(n=99) that exhibited a significantly higher S content
than the other four haplotypes. These results support
that each candidate gene is highly promising as they
each contributed to the phenotypic variation.

Discussion

Phenotypic variation and correlations among traits
Across the two environments used to perform the
original discovery of marker-trait associations, the
seed contents for all the elements (Ca, K, P and S)
were normally distributed and suggested that they are
quantitatively inherited. The phenotypic variation in
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Table 4 Identification of candidate genes for seven QTLs associated with mineral element content in a core set of 137 Canadian
soybean lines. For each robust QTL (detected using multiple models in many environments), a region of interest was delimited by
flanking markers in perfect LD with the peak SNP. The identifier and annotation of candidate genes residing within the relevant
genomic regions are provided

Gm QTL Peak SNP Size of LD # of Candidate Relevant
block genes gene annotation
06 Ca_#3 3,354,869 199 kb 30 Glyma.06G046000 Calcium ion transport
04 K_#1 49,071,552 32kb 4 NA NA
10 K #3 1,966,469 360 kb 43 Glyma.10G020000 Potassium ion transport
04 P_#1 49,071,286 32kb 4 NA NA
10 S_#4 1,602,998 162 kb 18 NA NA
15 S_#7 3,986,243 158 kb 20 NA NA
20 S_#10 39,076,484 35kb 04 Glyma.20G151500 Sulfate assimilation

this study ranged from 1.6 to 2.4 mg/g for Ca con-
tent, 17 to 21 mg/g for K content, 4.5 to 6.5 mg/g for
P content and 3.5 to 5.5mg/g for S content on a dry-
weight basis. In previous studies, different ranges have
been reported. Otaka et al. [8] and Homura et al.
[17] reported similar seed content for Ca (1.5 to 3.5
mg/g and 1.5 to 3.2 mg/g, respectively) and K (19.8 to
22.1 mg/g and 16.7 to 21.2mg/g, respectively). Simi-
larly, King et al. [13] reported a comparable range of
values for P content (3.9 to 5.6 mg/g), while Dhanapal
et al. [16] reported a lower range of values (1.3 to

4.9 mg/g). However, the range of S content in this
study was slightly higher than what has been previ-
ously reported. Our values for S content were gener-
ally higher than those reported by Fageria [18] and
Bellaloui et al. [19] (2.5 to 4.0mg/g and 1.6 to 3.1
mg/g, respectively). Overall, the values reported here
were fairly consistent with those reported in previous
studies and the slight differences in range may simply
reflect differences due the specific set of accessions
grown in different environments as well as the choice
of measurement method. Nonetheless, in the context
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kb region that is defined by the left-most (Gm20: 39,042,071) and right-most (Gm20: 39,076,880) markers that are in perfect LD with the peak SNP
(Gm20:39,076,484). The most likely candidate gene (Glyma.20G151500, Sulfate assimilation) is highlighted with a green asterisk. Bottom panel:
pairwise LD among markers falling within the defined genomic region of interest. LD is indicated as D'’x 100 and the empty squares indicate
complete LD (D'=1). The position of the peak SNP (blue arrow) and candidate gene (green arrow) are shown

of an association study, the accuracy of the pheno-
typic values is not as important as adequately captur-
ing how the values vary across the panel.

In our study, the broad-sense heritability estimated
across the two environments was high (H* > 0.80) for all
traits. Such relatively high broad-sense heritability sug-
gested that the phenotype was largely determined by the
genotypic effect [20]. Similar heritabilities for these traits
have been reported in previous studies (H?=0.48 to
0.93) [14, 16]. In addition, a significant and positive cor-
relation between the concentrations of K and P was ob-
served (0.65, Table S1). This is consistent with previous
reported results which ranged from 0.80 to 0.94 [2, 19] .

Genome-wide association scan for mineral elements
content in soybean seeds

A total of 32 QTLs associated with the Ca, K, P and S
content were identified (Table S2) and eight of these

were detected by at least two models. More importantly,
seven of these eight QTLs proved extremely robust as
they could be successfully confirmed as impacting min-
eral element content in three additional trials. In previ-
ous GWAS studies, Ziegler et al. [4] and Ning et al. [14]
reported 22 and 9 QTLs, respectively. Using a linkage
mapping approach, Ramamurthy et al. [2] reported 7
and Bellaloui et al. [19] reported 11 QTLs associated
with soybean seed Ca, K, P and S content. The large ini-
tial number of QTLs detected in this work (32) can po-
tentially be ascribed to a more exhaustive genome
coverage (2.2 M SNPs) and to the use of multiple models
for detecting marker-trait associations. It is unlikely to
be due to a particularly wide range of phenotypic values
in our association panel as this range was comparable to
those reported in previous studies.

The QTLs described in this work generally explained a
fairly substantial portion of the phenotypic variance (18—
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31%). The phenotypic variance explained by previously
reported QTLs varied from 2 to 18%. Interestingly, one
of our QTLs was found to impact both K and P content.
This shared QTL for K and P content is not surprising
given the high degree of positive correlation between
these two elements. Similarly, Dhanapal et al. [16] also
reported a QTL associated with the content in these two
elements. Such correlations could be due to shared
physiological mechanisms and metabolic pathways [4,
21]. In other words, it may have occurred either by plei-
otropy of the same gene involved in controlling these
mineral concentrations such as a co-transporter [20] or
simply by the presence of independent genes in the same
regions.

In order to compare our results with previously identi-
fied QTL regions, we queried the previous QTLs against
the SoyBase genome browser and defined their physical
position. None of the seven robust QTLs identified in
this study coincided with previously reported QTL inter-
vals identified either in family-based mapping or GWAS.
Thus, the current QTLs can be considered novel. This
absence of overlap between the QTLs identified through
this work and those reported previously may reflect the
fact that these traits are determined by different genes in
the experimental materials used in the different mapping
experiments.

Candidates genes and their functions for mineral
elements accumulation
As mentioned above, we focused our attention on
transport-related genes that were also expressed in roots,
shoots or leaves and genes annotated to be involved in
nutrient uptake, translocation, and/or homoeostasis
mainly expressed in seeds. For K content, a transport-
related gene (Glyma.10G020000) was identified under-
lying QTL K_#3 on Gm 10. This gene was annotated as
a K* potassium transporter and its ortholog in A. thali-
ana (AT4G13420.1) encodes a high affinity K* trans-
porter 5 (HAKS5). In rice, Yang et al. [22] demonstrated
that HAKS5 plays important roles in controlling both the
influx of K" into roots and its transport to the aerial
parts of the plant. Two paralogs of our candidate gene
(Glyma.02 g154100 and Glyma.07 g042500) were func-
tionally characterized as being involved in the root up-
take of K™ in soybean [23, 24]. Interestingly, in the work
of Dhanapal et al. [16], QTLs for K content do overlap
with the genomic positions of these HAK5 paralogs. The
fact that we did not detect any association between these
paralogs and K content in our study suggests that it is
variation in the HAKS5 paralog on chromosome 10 (Gly-
ma.10G020000) that contributes to differential accumu-
lation of K in Canadian early-maturing soybean lines.
For S content, we identified a gene (Gly-
ma.20G151500) that codes for ATP sulfurylase 1, the
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first enzyme known to be involved in the sulfate assimi-
lation pathway in A. thaliana (AT3G22890.1; ASAI)
[25]. An A thaliana cDNA encoding ASAI successfully
complemented a Saccharomyces cerevisiae ATP sulfury-
lase mutant (met3), thereby restoring both methionine
heterotrophy and sulfate transport [26]. Intriguingly, a
paralog of our candidate gene was found on Gm10 by
[16] (Glyma.10g242600). This again suggests that the
same enzymatic activity is contributing to S accumula-
tion, but that different copies of the gene control S con-
tent in different sets of germplasm.

Finally, for Ca content, the candidate gene Gly-
ma.06G046000 was annotated as a calcium transporting
ATPase involved in calcium transport. This gene is
orthologous to an A. thaliana locus (ATI1G27770.1;
ACA1) that encodes a chloroplast envelope Ca2'-
ATPase which is known to bind the calmodulin that
leads to activation of a Ca2" pump [27]. It has been
shown that Ca2*-ATPases are enzymes that actively
transport Ca2+ in eukaryotic cells [28] and are involved
in all stages of the plant life cycle including growth and
development [29].

Conclusions

Compared to previous studies, the high density of
markers used in this study has contributed to the repro-
ducible detection of several new loci associated with the
content of mineral elements in soybean seeds. In
addition to providing details on the range of phenotypic
variation encountered within the Canadian soybean
germplasm for mineral elements content in the seeds,
this study also provided more information on the genetic
architecture underlying their accumulation. The markers
and genes identified in this study will be useful for the
genetic improvement of soybeans through marker-
assisted selection.

Methods

Plant material and experimental design

A set of 137 of early maturing soybean lines (belonging
to maturity groups 000-II, MG000-II), was selected from
a larger group of 304 accessions based on the analysis of
population structure as described in Sonah et al [30] to
be representative of the genetic diversity in Canadian
short-season soybean. Soybean lines were sourced from
Drs. Louise O’Donoughue (CEROM, St-Mathieu-de-
Beloeil, QC), Elroy Cober (Agriculture and Agri-Food
Canada, Ottawa, ON), Istvan Rajcan (University of
Guelph, Guelph, ON) and Mr. Eric Gagnon (Semences
Prograin Inc., St-Césaire, QC). In a first (discovery)
phase, lines were phenotyped in two environments,
namely Woodstock (ON) and St-Mathieu-de-Beloeil
(QC) in Canada in 2013. The experimental design was a
generalized lattice in which all lines were planted in a
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single-row plot with two replicates at each location. In a
second (validation) phase, the same lines were grown in
three environments at the Central Experimental Farm in
Ottawa (ON) in 2017 (17) and 2018 (18). The lines were
planted in a modified augmented design as four-row
plots with a single replicate. Within each year, two dif-
ferent treatments were applied: no irrigation (N) or drip
irrigation (I). As a full set of lines/seed was not available
for the N_17 trial, the robustness of the discovered
QTLs was carried out using data from [_17,1_18 and N_
18 trials only.

Calibration and validation

Calibration of the energy-dispersive X-ray fluorescence
(ED-XRF) spectrometer was achieved by an empirical cali-
bration approach [31] in which sets of standards with simi-
lar composition and morphology to the samples of interest
were used. Here, elemental concentrations were measured
in a set of samples using flame atomic absorption spec-
trometry (FAAS) for Ca and K as per [32] and by spectro-
photometry for P content as per [33]. For S content, we
proceeded by successive addition of Na,SO, on reference
materials (WEPAL, IPE 885 (Maize)) supplied by the Na-
tional Institute of Standards and Technology (NIST) whose
S content was known. The values thus obtained served as
baselines to calibrate the standard curve of our ED-XRF de-
vice (Niton XL3t955 GOLDD). To determine the accuracy
and reliability of our ED-XRF measurements, thirty seed
samples were analyzed by both ED-XRF and wet chemistry
for their concentration in Ca, K and P. no wet chemistry
validation was necessary for S content.

Phenotyping and statistical analysis
For each sample, 10 g of whole seeds were ground using a
grinder (Foss A/S: Cyclotec™ 1093 Sample Mill). A 0.3-g
sample of homogenous fine powder from each line was
pressed using a stainless-steel pellet die in a hydraulic pel-
let press (Carver 4350.L) to produce compact 13-mm pel-
lets (~0.2mm thick). The pellets were stored until the
measurement of Ca, K, P and S content by the ED-XRF.

Descriptive statistics, genotypic variance, environment
and genotype by environment effects as well as correl-
ation analysis between these mineral contents were per-
formed using an R package « Ilmer ». To combine
information from different environments, best linear un-
biased predictions (BLUPs) were calculated using the re-
stricted maximum likelihood in META-R [34]. The
broad-sense heritability H> across environments was cal-
culated as follows:

) %

- Gé + Gée/nEnv + 02/(nEnv x nrep)

where 02, 62

o Oge and o? are the genotype, the genotype x
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environment interaction and the error variance compo-
nent, respectively. The nEnv is the number of environ-
ments, and nrep is the number of replicates.

Genotyping and SNPs imputation

A total of ~203 million 100-bp Illumina HiSeq2000
single-end reads derived from sequencing 192-plex GBS
libraries were available for the 137 lines (as detailed pre-
viously [30]). Briefly, the restriction enzyme ApeK1 was
used to produce a single 192-plex GBS library (contain-
ing additional unrelated samples) that was sequenced on
a single lane of an Illumina HiSeq2000 sequencer. Ap-
proximately 203 million 100-bp single-end reads were
obtained for the entire population of 137 lines. The
Fast-GBS pipeline [35] and the Wm82.a2.vl reference
genome [36] were used for SNP calling with a minimal
read depth of two reads and removing loci with more
than 80% missing data. A first imputation step of miss-
ing genotypes was performed on this set of GBS-derived
SNPs using BEAGLE v5 [37]. Secondly, a reference panel
of 4.3 M SNPs, obtained from whole-genome resequen-
cing of a set of 102 partially overlapping (56 shared)
lines was used to perform missing loci imputation on
the set of GBS-derived SNPs [38]. The accuracy of im-
putation of such untyped loci was previously assessed
[38] and found to be 96.4%.

Population structure and kinship analyses

For the population structure analysis, we used a pruned
(r*>0.5) catalogue of 14 K SNPs obtained using Plink
v1.9 [39]. The Bayesian model implemented in the pro-
gram fastSTRUCTURE [40] was used to analyze the
population stratification. The number of subpopulations
(k) was set from 1 to 12 with 3 independent itterations.
The number of subpopulations (k) was determined using
a python script (“choosek”) implemented in fastSTRUC-
TURE. In addition to fastSTRUCTURE, two different
methods were used to infer population structure: (i) a
consensus phylogenetic tree computed with the
Tamura-Nei model with a boostrapping based on 2000
iterations, implemented in MEGA?7 [41] and (ii) a princi-
pal component analysis (PCA) implemented in the pro-
gram GAPIT [42].

Genome-wide association analysis

Genome-wide association between markers and the phe-
notypes was assessed in GAPIT using a pruned cata-
logue of 243 K SNPs (r? > 0.9) and the BLUP values for
each trait. CMLM was used for single-locus GWAS
while MLMM and FarmCPU were used for multi-locus
GWAS. The genetic relatedness between the lines con-
veyed through the kinship matrix (K) and the population
structure matrix (Q) estimated through fastSTRUC-
TURE were used to control for false positive
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associations. The threshold of significance of marker-
trait associations for the three models (CMLM, MLMM
and FarmCPU) was an adjusted p-value with the false
discovery rate (FDR) set at <0.05, as per the Benjamini
and Hochberg procedure [43]. We assumed that all sig-
nificant marker-trait associations marked the same QTL
when these markers resided within the same haplotype
block (a region delimited by the left-most and right-
most flanking markers that were in perfect LD (D’=1)
with the peak SNP). When different peak SNPs were de-
tected by the different models, the one detected by two
models was chosen. In addition, when the same peak
SNP was detected by at least two models, the lowest un-
corrected p-value was reported. We chose to report and
investigate only co-detected QTLs, ones that were de-
tected by at least two models for each trait. For the iden-
tification of candidate genes, genomic regions of interest
surrounding a peak SNP were defined as extending be-
tween the left-most and right-most flanking markers
that were in perfect LD (D’ = 1) with the peak SNP.

Validation of the allelic effect of the co-detected QTLs in
three environments

To assess the reproducibility of the QTLs identified in
the discovery phase, we validated the allelic effects of the
QTLs in three different environments (I_17, I_18 and
N_18) using the same set of 137 lines. Marker-trait asso-
ciations were tested using a t-test. The population was
divided into two groups according to the allelic class at
the peak SNP. We performed a t-test between the mean
phenotypic values of the two groups. The threshold of
significance for marker-trait associations was adjusted
for multiple tests (o = 0.05/n, where n is the total num-
ber of QTLs for a trait). The significance test was
assessed using a t-test function implemented in R ver-
sion 3.5.1 according to the equation described in [44]:
Y = pu +f (marker) + error, where Y is equal to the trait
value, p is equal to the population mean, and f (marker)
is a function of the significant markers.

Candidate genes and their functional analysis
By using a data mining algorithm [45], all genes residing
within haplotype blocks of interest were extracted from
the SoyBase Browser, and their GO annotations were ex-
amined. After identifying a candidate gene, further ana-
lyses were performed to identify in what tissues and at
which developmental stages these candidate genes were
expressed using the electronic fluorescent pictograph
(eFP) Browser (www.bar.utoronto.ca) for soybean.
Altered transcripts resulting from potential loss-of-
function (LOF) alleles among the list of candidate genes
were investigated by inspecting the catalogue of struc-
tural variants reported by [46]. For LOF analysis, only
the whole-genome sequencing dataset (56 lines) was
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used. For the study nucleotide variants located within
genic regions, SnpEff [47] was used with the full set of
nucleotide variants (prior to pruning, 2.18 M SNPs).

To further support the involvement of candidate genes
in the observed phenotypic variation, a gene-centric
haplotype (GCH) approach was used to identify poly-
morphic markers that defined the haplotypes inside the
candidate genes using HaplotypeMiner [48] and the full
catalogue of 2.18 SNPs. A t-test was then used between
the mean phenotypic values for each haplotype.
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