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Abstract

Background: Cucumber (Cucumis sativus L) is an economically important vegetable crop species. However, it is
susceptible to various abiotic and biotic stresses. WRKY transcription factors play important roles in plant growth
and development, particularly in the plant response to biotic and abiotic stresses. However, little is known about
the expression pattern of WRKY genes under different stresses in cucumber.

Results: In the present study, an analysis of the new assembly of the cucumber genome (v3.0) allowed the
identification of 61 cucumber WRKY genes. Phylogenetic and synteny analyses were performed using related
species to investigate the evolution of the cucumber WRKY genes. The 61 CsWRKYs were classified into three main
groups, within which the gene structure and motif compositions were conserved. Tissue expression profiles of the
WRKY genes demonstrated that 24 CsWRKY genes showed constitutive expression (FPKM > 1 in all samples), and
some WRKY genes showed organ-specific expression, suggesting that these WRKYs might be important for plant
growth and organ development in cucumber. Importantly, analysis of the CsWRKY gene expression patterns
revealed that five CsWRKY genes strongly responded to both salt and heat stresses, 12 genes were observed to be
expressed in response to infection from downy mildew and powdery mildew, and three CsSWRKY genes
simultaneously responded to all treatments analysed. Some CsWRKY genes were observed to be induced/repressed
at different times after abiotic or biotic stress treatment, demonstrating that cucumber WRKY genes might play
different roles during different stress responses and that their expression patterns vary in response to stresses.

Conclusions: Sixty-one WRKY genes were identified in cucumber, and insight into their classification, evolution, and
expression patterns was gained in this study. Responses to different abiotic and biotic stresses in cucumber were
also investigated. Our results provide a better understanding of the function of CsWRKY genes in improving abiotic
and biotic stress resistance in cucumber.
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Background

Throughout their lifecycle, plants frequently encounter
many different types of stresses that severely prevent
them from reaching optimal growth and that may have a
great impact on yield production [1-4]. Some of these
stresses are abiotic stress factors such as temperature,
drought, salt, and heavy metal stress. By contrast, biotic
stress factors involve the interaction of plants with in-
sect, nematode, viral, bacterial, fungal, or oomycete ori-
gins that use the plant as a food source [2, 5]. To
withstand or cope with these different stresses, plants
have evolved a series of adjustment mechanisms includ-
ing a broad regulation of numerous genes to mediate
plant physiological and biochemical processes [6, 7].
Therefore, the study of genes involved in these mecha-
nisms is important for the development of biotechno-
logical tools to enhance desirable agronomic traits, such
as plant growth and productivity. Transcription factors
(TFs), including members of the AP2/ERF, NAC, MYB,
and WRKY families, participate in plant tolerance
against abiotic and biotic stresses by modulating the ex-
pression of defence-related genes [8—14].

The WRKY gene family is one of the largest and most
extensively studied TF families in higher plants [15]. Since
the first WRKY gene was cloned in sweet potato, the iden-
tification of WRKY genes has been performed in various
plant species, including Arabidopsis thaliana (72) [16],
Oryza sativa (103) [17], Zea mays (120) [18], and Solanum
lycopersicum (81) [19]. WRKY TFs share a conserved
DNA-binding domain that contains a highly conserved
WRKYGQK heptapeptide followed by a C2H2- or C2HC-
type zinc finger motif [15, 20]. WRKY TFs function by
recognizing and binding W-box cis-elements (TTGACC/
T) of target genes, and both the heptapetide sequence and
zinc finger motif are required for this high binding activity
[15, 21, 22]. Based on the number of WRKY domains and
the type of zinc fingers, WRKY TFs can be classified into
three phylogenetically distinct groups: Group I WRKYs,
which have two WRKY domains; Group II WRKYs, which
have one WRKY domain, while both group I and II
WRKYs contain one C2H2-type zinc finger motif (C-X4—
5-C-X22-23-H-X1-H); and Group III members, which
feature one WRKY domain and a C2HC-type motif (C-
X7-C-X23-H-X1-C). Moreover, Group II is further di-
vided into five subgroups (Ila-Ile) based on phylogenetic
analyses [23-25].

WRKY TFs have been reported to be involved in many
aspects of plant development [25, 26], including senes-
cence [27, 28], trichome development [29], biosynthesis
of secondary metabolites [21, 30-32], flowering [33, 34],
and seed development and germination [35-37]. Sub-
stantial evidence has demonstrated that many WRKY
genes also participate in various stress responses. For ex-
ample, the expression of 18 WRKY genes was shown to
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be induced by exposure to salt stress in the roots of Ara-
bidopsis [38]. WRKY6 and WRKY42 were identified to
participate in the response to low Pi stress by regulating
PHOI1 expression [39]. WRKY TFs from Arabidopsis
were also shown to regulate the defence response posi-
tively and/or negatively against bacterial pathogens [16,
40], fungal pathogens [41-43] and nematodes [44, 45].
The expression levels of 13 OsWRKY genes from rice
were examined in response to different treatments, in-
cluding salt, polyethylene glycol (PEG), and cold or heat
stresses, and 10 WRKY genes were down- or upregulated
in response to these abiotic stresses. Moreover, WRKY
proteins from tomato (S. lycopersicum) [19, 46], Brassica
napus [47], soybean (Glycine max) [48], rice (O. sativa)
[49, 50], wheat (Triticum aestivum L.) [51] and other
plant species were shown to play critical roles in the re-
sponse to various biotic and abiotic stresses.

According to the above mentioned discussion, WRKY
TFs may participate in multiple pathways, leading to an
array of physiological responses. The elucidation of the
evolution and duplicative expansion of WRKY genes
seems to be related to the diversity of their functions
[20, 24]. The evolutionary studies of the WRKY gene
family and large-scale genome-wide analyses of WRKY
genes indicated that Group Ila genes, which compose
the group with the fewest number of members, were the
last to evolve and appear to have originated from Group
IIb genes. Furthermore, Group Ila TFs play many im-
portant roles in the regulation of biotic and abiotic stress
responses [20].

Cucumber (Cucumis sativus L.), one of the most eco-
nomically important vegetable crop species, produces
tender fruits that are edible organs [52, 53]. In addition,
cucumber is extensively used as a model system in the
study of sex determination, vascular biology, and in-
duced defence responses [54]. In cucumber cultivation,
yield and quality are frequently affected by different
types of biotic and abiotic stresses, leading to a decline
in cucumber output. Therefore, the identification of new
functional genes for resistance to stresses is gaining con-
siderable interest. Based on the cucumber genome
(v1.0), 57 WRKY genes were identified, and 23 of them
had been shown to be differentially expressed in re-
sponse to at least one abiotic stress [55]. Low-coverage
Sanger sequences and short high-coverage Illumina se-
quences were used to assemble draft cuicumber genomes
(v1.0 and v2.0); thus, these genomes are incomplete and
of low quality. A high-quality and complete cucumber
genome assembly (v3.0) is currently available for use in
comparative genomics and genetic research [56]. Here, a
new genome-wide identification of cucumber WRKYs
was performed by the use of the cucumber (Chinese
Long, 9930) genome (v3.0). We identified 61 WRKY
genes and classified them into three groups.
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Comprehensive analyses including the gene structures,
chromosomal locations, conserved protein domains, and
phylogenetic analysis were further performed. The ex-
pression profiles of genome-wide CsWRKY genes in cu-
cumber plants under different stresses were investigated.
Our results will provide valuable clues for future work
on the function of WRKYs in cucumber.

Results

The cucumber genome contains 61 WRKY genes

In a previous study, 57 WRKY genes were identified in
the cucumber (Chinese long, 9930) genome (v1.0) [55].
Recently, an updated version (v3.0) was released in
CuGenDB (http://cucurbitgenomics.org/), and the v1.0
was eliminated. Therefore, we identified cucumber
WRKY genes in the cucumber genome (v3.0), and 61
WRKY genes were identified by a hidden Markov model
(HMM) search using the WRKY domain (PF03106).
These genes were proven to contain WRKY domains ac-
cording to Pfam and SMART analysis. Among the previ-
ous 57 WRKY genes, five (CsWRKY53-CsWRKY57) were
not conclusively mapped to any chromosome on the
basis of the cucumber genome (v1.0) [55]; however, all
61 of the WRKY genes identified in this study could be
mapped onto the chromosomes on the basis of the
current version of the cucumber genome (v3.0) (Add-
itional file 1: Fig. S1). There are seven chromosomes in
the cucumber genome; the WRKY genes were not evenly
dispersed across all chromosomes. Chromosome 3 har-
boured the highest number of CsWRKY genes (15,
24.59%), while only five (8.20%) were found on chromo-
some 5. Except for chromosomes 1 and 4, the number
of WRKY genes we identified mapped onto every
chromosome was at least one more than that in a previ-
ous study (Additional file 2: Fig. S2). Based on their
order on the chromosomes, the WRKY genes identified
in this study were renamed CsWRKYI to CsWRKY61
(Additional file 1: Fig. S1), and this nomenclature ap-
proach was identical to that used in the previous study.
A comparison of the currently known WRKY TFs in the
cucumber genomes (Gyl4, v1.0; 9930, v2.0 and v3.0) is
listed in Additional file 3: Table S1.

For these 61 WRKY genes, the length of the coding
DNA sequence (CDS) and the protein sequence, the
protein molecular weight (MW), and the isoelectric
point (pI) were analysed (Table 1 and Additional file 3:
Table S1). The largest protein was CsWRKY8, compris-
ing 1118 amino acids (aa), whereas the smallest one was
CsWRKY47 (119 aa), corresponding to MWs ranging
from 13.95 (CsWRKY47) to 124.59 (CsWRKYS8) kDa.
The pls of the WKRYs ranged from 5.11 (CsWRKY10)
to 10.08 (CsWRKY54). According to the predicted re-
sults of subcellular localization, all these CsWRKY pro-
teins might be localized to the nucleus. The subcellular
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localization of CsWRKY50 (in this paper named

CsWRKY47) [53] could support this claim.

Multiple sequence alignment, phylogenetic relationship,
and classification of CSWRKY proteins

The WRKY domains, which comprise approximately 60
aa, of the newly identified CsWRKYs were first aligned,
and seven AtWRKY domains (AtWRKY58, 56, 21, 35,
46, 40, and 6) from each group or subgroup were ran-
domly selected as representatives for analysis. The highly
conserved sequence WRKYGQK was found within a
total of 58 CsWRKY proteins, while the others
(CsWRKY10, CsWRKY47, and CsWRKY50) had a single
amino acid substitution: K for Q (Fig. 1 and Table 1).

A phylogenetic tree was constructed using the
neighbour-joining (NJ) method by MEGA 5.0 software
with 1000 bootstrap tests and based on multiple align-
ments of cucumber and Arabidopsis [16] WRKY domain
aa sequences (Additional file 4: Table S2). As shown in
Fig. 2, cucumber WRKY proteins could be categorized
into three large groups (Group I-III) on the basis of the
classifications of WRKYs in Arabidopsis [25]. Among
the sequences of the 61 CsWRKY proteins, 11 sequences
were assigned to Group I, 43 sequences belonged to
Group II, and seven were assigned to Group III. In
Group I, 10 members contained two WRKY domains
(an N-terminal and a C-terminal WRKY domain),
whereas CsWRKY42 had lost its C-terminal WRKY
GQK-like stretch; these 11 members all harboured
C2H2-type zinc finger motifs (C-X4-C-X22-24-H-X-H).
The members of Group II contained a WRKY domain
and could be further classified into five subgroups (Ila-
Ile). Moreover, three members were classed in IIa, which
was the group with the smallest number of members; 5,
IIb; 20, Ilc; 7, 11d; and 8, Ile. Although most of the mem-
bers of Group II had integral C2H2-type zinc finger mo-
tifs, partial absence of the zinc finger motif sequence
was present in CsWRKY14 and CsWRKY47. Except for
CsWRKY40, whose zinc finger motif was almost entirely
absent, the CsWRKYs classed in Group III harboured a
WRKY domain and contained a C2HC-type zinc finger
motif. The ‘leucine-rich repeat’ (LRR) motif, which is a
typical domain of resistance (R) proteins and is found in
WRKY proteins of some species, such as Arabidopsis
and rice, was not observed in the WRKY proteins of
cucumber.

The Group Ila WRKY genes were found to be the last
to evolve, as these genes compose the only group absent
from the spike moss Selaginella moellendorffii [20]. The
WRKY gene family members in many species have been
identified, and their detailed numbers were listed in
Table 2. Thus, we investigated the duplication and diver-
sification of Group Ila WRKYs during evolution based
on the available WRKY Ila genes in different species,
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Table 1 Features of WRKY genes identified in cucumber
Name Gene ID (V3) ORF Intron AA WRKY domain Group

number Conserved heptapeptide Zinc-finger type Domain

number

CsWRKY1 CsaV3_1G002180 1773 4 590 WRKYGQK C2H2 1 b
CsWRKY2 CsaV3_1G004720 1731 4 576 WRKYGQK/WRKYGQK C2H2 2 1
CsWRKY3 CsaV3_1G007870 1845 3 614 WRKYGQK C2H2 1 b
CsWRKY4 CsaV3_1G028960 1521 4 506 WRKYGQK/WRKYGQK C2H2 2 |
CsWRKY5 CsaV3_1G032000 849 2 282 WRKYGQK C2H2 1 Id
CsWRKY6 CsaV3_1G033110 858 2 285 WRKYGQK C2H2 1 e
CsWRKY7 CsaV3_1G037680 1242 2 413 WRKYGQK C2H2 1 e
CsWRKY8 CsaV3_1G044520 3357 6 1,118 WRKYGQK/WRKYGQK C2H2 2 1
CsWRKY9 CsaV3_2G013650 1047 2 348 WRKYGQK C2H2 1 Ihd
CsWRKY10 CsaV3_2G017720 618 2 205 WRKYGKK C2H2 1 Ilc
CsWRKY11 CsaV3_2G017760 74 3 246 WRKYGQK C2H2 1 Ilc
CsWRKY12 CsaV3_2G032460 939 3 312 WRKYGQK C2H2 1 Ila
CsWRKY13 CsaV3_2G032470 612 3 203 WRKYGQK C2H2 1 Ila
CsWRKY14 CsaV3_2G034030 681 2 226 WRKYGQK C2 1 Ilc
CsWRKY15 CsaV3_2G035630 882 2 293 WRKYGQK C2H2 1 Id
CsWRKY16 CsaV3_3G003840 2244 4 747 WRKYGQK/WRKYGQK C2H2 2 |
CsWRKY17 CsaV3_3G004410 1602 5 533 WRKYGQK/WRKYGQK C2H2 2 |
CsWRKY18 CsaV3_3G007160 660 3 219 WRKYGQK C2H2 1 Ilc
CsWRKY19 CsaV3_3G008170 1014 2 337 WRKYGQK C2HC 1 n
CsWRKY20 CsaV3_3G008580 546 1 181 WRKYGQK C2H2 1 Il c
CsWRKY21 CsaV3_3G008610 1011 2 336 WRKYGQK C2H2 1 e
CsWRKY22 CsaV3_3G015290 972 2 323 WRKYGQK C2H2 1 Il c
CsWRKY23 CsaV3_3G018790 1521 4 506 WRKYGQK C2H2 1 b
CsWRKY24 CsaV3_3G021980 1101 2 366 WRKYGQK C2HC 1 1]
CsWRKY25 CsaV3_3G026600 9299 3 332 WRKYGQK C2H2 1 Ilc
CsWRKY26 CsaV3_3G026920 513 1 170 WRKYGQK C2H2 1 Il c
CsWRKY27 CsaV3_3G033000 990 1 329 WRKYGQK C2HC 1 1]
CsWRKY28 CsaV3_3G033350 1431 4 476 WRKYGQK/WRKYGQK C2H2 2 |
CsWRKY29 CsaV3_3G035430 1419 4 472 WRKYGQK/WRKYGQK C2H2 2 |
CsWRKY30 CsaV3_3G047140 1053 2 350 WRKYGQK C2H2 1 Id
CsWRKY31 CsaV3_4G001260 873 2 290 WRKYGQK C2H2 1 e
CsWRKY32 CsaV3_4G003030 648 1 215 WRKYGQK C2H2 1 Il c
CsWRKY33 CsaV3_4G006110 810 1 269 WRKYGQK C2H2 1 e
CsWRKY34 CsaV3_4G006120 603 1 200 WRKYGQK C2H2 1 Il c
CsWRKY35 CsaV3_4G006480 1068 2 355 WRKYGQK C2HC 1 ]l
CsWRKY36 CsaV3_4G025110 840 2 279 WRKYGQK C2H2 1 Ilc
CsWRKY37 CsaV3_4G034570 1176 2 391 WRKYGQK C2H2 1 Id
CsWRKY38 CsaV3_4G036610 981 4 326 WRKYGQK C2H2 1 Ila
CsWRKY39 CsaV3_5G001010 1035 2 344 WRKYGQK C2H2 1 e
CsWRKY40 CsaV3_5G011060 639 1 212 WRKYGQK - 1 n
CsWRKY41 CsaV3_5G011080 849 2 282 WRKYGQK C2HC 1 1]
CsWRKY42 CsaV3_5G033090 1173 3 390 WRKYGQK C2H2 1 |
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Table 1 Features of WRKY genes identified in cucumber (Continued)
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Name Gene ID (V3) ORF Intron AA WRKY domain Group

number Conserved heptapeptide Zinc-finger type Domain

number

CsWRKY43 CsaV/3_5G038330 1521 3 506 WRKYGQK/WRKYGQK C2H2 2 |
CsWRKY44 CsaV/3_6G013820 921 2 306 WRKYGQK C2H2 1 Ilc
CsWRKY45 CsaV/3_6G018960 1287 4 428 WRKYGQK/WRKYGQK C2H2 2 |
CsWRKY46 CsaV3_6G028510 1359 4 452 WRKYGQK C2H2 1 Il c
CsWRKY47 CsaV/3_6G032100 360 3 119 WRKYGKK C2 1 Ilc
CsWRKY48 CsaV3_6G032480 921 2 306 WRKYGQK C2H2 1 Ilc
CsWRKY49 CsaV3_6G042200 735 2 244 WRKYGQK C2H2 1 Ilc
CsWRKY50 CsaV3_6G042280 600 2 199 WRKYGKK C2H2 1 Ilc
CsWRKY51 CsaV3_6G043450 885 2 294 WRKYGQK C2H2 1 Id
CsWRKY52 CsaV3_6G048830 1872 5 623 WRKYGQK C2H2 1 Ilb
CsWRKY53 CsaV3_6G051490 786 2 261 WRKYGQK C2H2 1 Ilc
CsWRKY54 CsaV3_6G052610 1566 2 521 WRKYGQK C2H2 1 e
CsWRKY55 CsaV/3_7G002670 1302 4 433 WRKYGQK/WRKYGQK C2H2 2 |
CsWRKY56 CsaV3_7G003470 1608 4 535 WRKYGQK C2H2 1 II-b
CsWRKY57 CsaV3_7G005750 897 2 298 WRKYGQK C2H2 1 e
CsWRKY58 CsaV3_7G022650 894 2 297 WRKYGQK C2H2 1 Il c
CsWRKY59 CsaV3_7G025370 891 2 296 WRKYGQK C2HC 1 1l
CsWRKY60 CsaV3_7G027490 768 3 255 WRKYGQK C2H2 1 Ild
CsWRKY61 CsaV3_7G030110 729 2 242 WRKYGQK C2H2 1 Il c

including eight dicots (Arabidopsis, castor bean, cucum-
ber, grape, tomato, pear, potato, and poplar) and six
monocots (barley, rice, maize, bread wheat, Brachypo-
dium and millet). The WRKY domain sequence of these
WRKY Ila genes was used to construct a phylogenetic
tree via MEGA 5.0 (Additional file 5: Table S3).

As shown in the phylogenetic tree we constructed, the
WRKY IIa proteins were categorized into seven clades
(Fig. 3). WRKYs from the phylogenetically closer species
clustered together in the same clade. For example, the
members of clades 1 and 2 were all from dicots, whereas
clades 4-7 contained proteins only from monocots;
clade 3 was further divided into two different subclades
(clades 3a and 3b) based on members from dicots or
monocots, implying that the different evolutionary pat-
terns of Group Ila WRKYs in dicots and monocots may
have occurred after their divergence. WRKY members
from one species clustered together at most within the
three clades, and all the WRKY proteins that divided
into three clades were from monocots. For the WRKYs
from dicots, each of the four species (cucumber, grape,
pear, and poplar) contributed at least one gene to clade
1 and clade 2; however, the three species (castor bean,
tomato, and potato) clustered specifically within clade 1
or clade 2. These results suggested that numerous

evolutionary splits and diversifications of WRKYs have
occurred among different species.

Gene structure and motif composition of CsWRKYs

Gene structural diversity can reflect the evolution of
multigene families [68]. Therefore, we analysed the
exon-intron organization within the ORF (open reading
fame) sequences of each CsWRKY gene (CsWRKY40,
which lacked a zinc finger motif, was removed) to ac-
quire more insight into the evolution of the WRKY
family in cucumber. Previous studies showed that the
majority of Populus and soybean WRKY members har-
boured two to four introns [48, 62]. Consistently, more
than 80% of the members of the CsWRKY genes con-
tain two to four introns (seven with one intron, 29 with
two introns, 10 with three introns, 12 with four introns,
two with five introns, and one with six introns) (Fig. 4
and Table 1). As shown in Fig. 4, a greater number of
introns were observed in Group I, which varied from
three to six. All WRKY domains typically contain an
intron, and the position of this intron is extremely
highly conserved [57]. We found that all CsWRKYs
contained an intron in their WRKY domains. This in-
tron within the Groups I (the C-terminal WRKY do-
main), Ilc, IId, Ile, and III WRKY genes had the same
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Fig. 1 Alignment of 61 cucumber (CsSWRKY) and 8 Arabidopsis (AtWRKY) WRKY domain sequences. For Group | WRKY proteins, N-terminal and C-
terminal WRKY domains are represented by ‘N and ‘C’, respectively. The typical amino acid residues within WRKY domain and zinc-finger motif
are in green and red color, respectively. The position of the intron in the genome is indicated by a red line for each WRKY subfamily
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location, which was after the codons for the invariant
PR amino acid sequence (PR intron) (Fig. 1). The VQR
intron, which occurs before the invariant VQR amino
acid sequence, was observed in the Group Ila and IIb
genes.

To better understand the conservation and diversifica-
tion of CsWRKYs, the putative motifs of all CsWRKY

proteins were predicted by MEME motif analysis. As ex-
pected, the CsWRKYs that were categorized into the
same group shared highly similar motif compositions
(Fig. 4 and Additional file 6: Table S4). For instance,
motif 9 was found to be specific to Groups IId and Ile,
whereas motif 10 was unique to Groups IIb and Ilc;
Groups Ile and Ilc contained only two or three motifs,
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while Group IIb harboured 5 motifs. The functions of
most of these motifs remain to be elucidated.

Overall, the closely related CsWRKYs in the phylogen-
etic tree shared similar gene structural and common
motif compositions, suggesting that the CsWRKYs
within the same group may play similar functional roles.

Synteny analysis of CsSWRKY genes

The segmental duplication events occurring in the cu-
cumber WRKY family were investigated by conducting a
synteny analysis of the CsWRKY genes using BLASTP
and MCScanX. As shown in Fig. 5, 14 segmental dupli-
cation events involving 25 WRKY genes were observed
(Additional file 7: Table S5). In contrast, tandem dupli-
cation events, which were defined by a chromosomal re-
gion within 200 kb containing two or more genes, were
not identified for cucumber WRKY genes. These results
suggested that some CsWRKYs were possibly generated
by segmental duplication events and that the evolution
of CsWRKY genes may have been driven, at least in part,
by segmental duplication events.

The phylogenetic mechanisms of the cucumber WRKY
family were further explored by constructing compara-
tive syntenic maps of cucumber associated with five rep-
resentative species, including three dicots (Arabidopsis,
tomato and watermelon) and two monocots (rice and
maize) (Fig. 6). Fifty-two, 29, 27, 9, and 5 CsWRKY genes
showed syntenic relationships with those in the other
five species: watermelon, tomato, Arabidopsis, rice and
maize, respectively. A total of 52 WRKY collinear gene
pairs between cucumber and watermelon were identi-
fied, followed by cucumber and Arabidopsis (41), cu-
cumber and tomato (37), cucumber and rice (9), and
cucumber and maize (7) (Additional file 8: Table S6).
Both cucumber and watermelon belong to the gourd
family, and more than 85% of the CsWRKY genes
showed a syntenic relationship with WRKYs in water-
melon, and one CsWRKY gene was associated with only
one syntenic gene pair, indicating that WRKY genes in
cucumber and watermelon evolved from the same an-
cient WRKY genes. CsWRKY21 and CsWRKY28 were
found to be associated with two syntenic gene pairs
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Table 2 Summary of the number of WRKY proteins in diverse plant species

Species Name Total Group NG References

I lla IIb llc Iid lle I

Ananas comosus ACWRKY 54 12 2 7 13 7 5 8 0 [22]
Arabidopsis thaliana AtWRKY 72 13 4 7 18 7 9 14 0 [e]
Brachypodium distachyon BdWRKY 86 15 3 6 21 6 10 23 2 [57]
Brassica napus BnWRKY 300 78 1 34 55 28 30 51 13 [47]
Cucumis sative CsWRKY 61 14 3 5 17 7 8 7 0 This study
Glycine max GmWRKY 188 32 14 33 42 21 20 26 0 [48]
Gossypium raimondii GrWRKY 112 20 7 16 26 16 13 14 0 [58]
Gossypium arboreum GaWRKY 109 19 7 16 26 14 13 14 0 [58]
Hordeum vulgare HVWRKY 45 8 4 1 1 5 3 13 0 [59]
Manihot esculenta MeWRKY 85 17 5 14 20 8 9 12 0 [60]

Musa acuminate MusaWRKY 153 14 7 1 15 15 13 6 72 [61]

Oryza sativa OsWRKY 103a 15 4 8 15 7 11 36 0 (7]
Populus trichocarpa PtrwRKY 100 22 5 9 27 13 13 10 1 [62]

Pyrus bretschneideri PbrWRKY 103 17 6 10 24 15 16 15 0 [63]
Ricinus communis RCWRKY 47 9 3 10 12 3 5 5 0 [64]
Sesamum indicum SIWRKY 71 12 4 11 18 7 8 7 4 [65]
Solanum lycopersicum SIWRKY 81 15 5 8 16 6 17 11 3 [19]
Solanum tuberosum StWRKY 82 14 6 5 16 15 12 14 0 [66]
Triticum aestivum TaWRKY 160 20 16 3 34 17 1 57 2 [51]

Vitis vinifera VWWRKY 72 15 5 7 22 8 8 7 0 [67]

Zea mays ZmWRKY 120b 15 6 8 22 13 16 30 0 [18]

a98 WRKY genes in japonica and 102 in indica rice. bother 10 ZmWRKY genes were classied in Group Il. NG no group

between cucumber and tomato/rice/maize; some
CsWRKY genes were associated with three collinear gene
pairs (between cucumber and tomato/Arabidopsis
WRKY genes), speculating that these CsWRKYs may play
an important role in the evolution of the WRKY gene
family. Importantly, collinear CsWRKY21 gene pairs
were observed between cucumber and all of the other
five species, suggesting that this orthologous pair may
have formed before the divergence of dicotyledonous
and monocotyledonous plants.

CsWRKYs expression profiles in different organs

The expression patterns of all 61 CsWRKYs were investi-
gated using a standard transcriptome analysis procedure
based on public transcriptomic data of different tissues
of cucumber, including roots, stems, leaves, female
flowers, male flowers, ovaries, expanded unfertilized
ovaries, expanded fertilized ovaries, and tendrils [69].
Among the 61 CsWRKY genes, 41 CsWRKYs were
expressed in all detected samples (FPKM>0), and 24
genes showed constitutive expression (FPKM>1 in all
samples) (Additional file 9: Table S7). Some CsWRKY
genes showed preferential expression across all tissues
tested. Nineteen genes in the roots, two genes in the

tendrils (CsWRKY50/59), and two genes in the female
flowers (CsWRKY48/12) exhibited the highest transcript
levels. The expression analysis of the different fruit de-
velopmental stages showed that several genes
(CsWRKY9/40/54) had higher expression in the ovaries
than in the expanded ovaries (fertilized and unfertilized).
In addition, the transcript levels of some CsWRKYs
(such as CsWRKY19/27/41/57) decreased in the fertil-
ized expanded ovaries (Fig. 7). These results indicated
that these genes may play roles in many aspects of cu-
cumber plant development, including ovary development
and fruit fertilization.

Expression patterns of CsWRKYs in response to abiotic
and biotic stresses

To confirm whether CsWRKYs are involved in the re-
sponse to various stresses, we analysed the comprehen-
sive expression patterns of CsWRKY genes under
different abiotic and biotic stresses, including salt, heat,
downy mildew (DM, Pseudoperonospora cubensis) and
powdery mildew (PM, Podosphaera fusca), based on
public transcriptome information [54, 70, 71] and tran-
scriptomic data that we generated.
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Fig. 3 Phylogenetic clustering of group lla WRKY proteins among
fourteen different plant species. The phylogenetic tree was constructed
by MEGA 5.0 using the Neighbor-Joining method. The WRKYs are
classified into seven main clades with two subclades. The different-
colored branch represents different clades. The red solid star indicates
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To investigate the potential functions of CsWRKYs in
resistance to salt stress, we performed a CsWRKYs ex-
pression analysis after salt treatment based on public
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transcriptomic data [70] (Additional file 10: Table S8).
We observed that the expression levels of CsWRKY27,
CsWRKY41 and CsWRKY50 considerably increased in
response to salt stress. Moreover, seven genes exhibited
the opposite trend with exposure to salt stress (Fig. 8a).
Previous studies have shown that Silicon (Si) application
can improve plant growth under salt stress [72]. Among
the seven genes that were downregulated under salt
stress, the expression levels of six genes reverted to nor-
mal expression levels, and the DEGs (differentially
expressed genes) were all upregulated in response to ex-
ogenous Si treatment, implying a potential role of these
WRKY genes in the Si-based alleviation of salt stress
(Fig. 8a). Furthermore, the expression patterns of all 61
CsWRKY genes in the transcriptomic data, which were
derived from leaves subjected to different heat treatment
durations, were investigated in this study (Add-
itional file 10: Table S8). Correlation and cluster analyses
were used to explore the similarity among the transcrip-
tomes. Two samples (HT3h_2 and HT6h_2) were re-
moved due to their poor uniformity, and the remaining
seven samples were used for the following analysis (Add-
itional file 11: Fig. S3). As shown in Fig. 8b, 21 CsWRKY
genes were significantly induced/repressed by heat
stress. The variation trend of the expression of most
WRKY genes in response to heat stress for 3h (hours)
was consistent with that for 6 h. Overall, the transcript
levels of five CsWRKY genes (CsWRKY27/41/50/52/57)
were significantly affected by both salt and heat stress
treatments.

To explore the potential functions of CsWRKYs in re-
sistance to biotic stresses, we performed a CsWRKYs ex-
pression analysis of the susceptible and resistant
cucumber lines inoculated with PM for 48 h based on
published RNA-seq data [71] (Fig. 9a and Add-
itional file 10: Table S8). Eleven and 12 CsWRKY genes
that were differentially expressed were identified in the
susceptible and resistant cucumber lines, respectively,
compared with the controls. These results indicated that
these WRKYs may be influenced by PM stress. The ex-
pression patterns of CsWRKY10 and CsWRKY50 were
opposite in the susceptible and resistant cucumber lines
under inoculation with PM, implicating the important
role of these two WRKY genes in the response to PM in-
fection. The expression of CsWRKY genes in response to
DM infection was obtained by transcriptome analysis
based on RNA-seq data published by Adhikari et al. [54]
(Additional file 10: Table S8). Twenty-five CsWRKY
genes in cucumber were involved in responses to DM
infection, indicating that they were induced to play a
role in response to DM infection (Fig. 9b). We identified
12 CsWRKY genes (CsWRKY10/14/19/27/28/32/35/46/
50/52/59/61) that were differentially expressed in re-
sponse to the inoculation of PM and DM (Fig. 9),
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indicating that these genes may play key roles in re-
sponses to biotic stresses. Some CsWRKY genes were af-
fected only by inoculation of PM and/or DM and not by
abiotic (heat and salt) stresses (Figs. 8 and 9). For in-
stance, CsWRKY46 was expressed significantly in re-
sponse to inoculation of PM and DM but not to salt and
heat stresses; moreover, CsWRKY15 was not induced/re-
pressed by any of the tested treatments except inocula-
tion of PM. In addition, the expression levels of several
CsWRKY genes were significantly affected by both abi-
otic stresses and biotic stresses (Figs. 8 and 9). For in-
stance, CsWRKY27, CsWRKY50 and CsWRKY52
simultaneously responded to all treatments analysed,
and the expression of CsWRKY59 was affected by all
tested treatments except salt treatment.

Discussion
Although WRKY genes had been identified in the cu-
cumber (9930) genome (v1.0) [55], it is essential to re-

identify them. Because the information of the WRKY
genes identified in v1.0 were no longer available, due to
the elimination of v1.0 from CuGenDB (http://cucurbit-
genomics.org/), whereas the assemblies (v2.0 and v3.0)
were available. Therefore, we identified and character-
ized the WRKY family in the cucumber (9930) genome
(v3.0). It is composed of 61 members, which were desig-
nated CsWRKY1 to CsWRKY61 on the basis of their
chromosomal location; this number is higher than that
identified in a previous study (57 WRKY genes) [55].
Compared with these previously reported CsWRKY
genes, nine new CsWRKY genes were mapped onto the
chromosomes, and five previous CsWRKY genes that
could not be conclusively mapped to any chromosome
were considered obsolete according to the current ver-
sion of the cucumber genome (v3.0) (Additional file 1:
Fig. S1 and Additional file 2: Fig. S2).

Based on the gene structures, amino acid sequences,
conserved  structural domains and phylogenetic
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relationships with A. thaliana, the 61 CsWRKY proteins
were similar to the typical WRKY family proteins in
other species with classifications into Groups I, Ila, IIb,
Ilc, I1d, Ile and III (Table 1, Figs. 1 and 2). Rinerson et al.
[20] proposed that there were four major WRKY TF lin-
eages in flowering plants, Groups I+ Ilc, Groups Ila +
IIb, Groups IId + Ile, and Group III, accurately reflecting
the evolution of the WRKY family. This was also verified
in cucumber; for example, the members of Groups Ila
and IIb (or Groups IId and Ile) were divided into two
subclades, which involved the same clade; some WRKY
TFs from Group Ilc were classified into one subclade to-
gether with the members of Group I (Fig. 2). Three
CsWRKY proteins (CsWRKY10/47/50) in Group Ilc
showed sequence variation in their WRKY domains. Do-
main loss, which seems to be common in monocotyle-
dons, is one of the divergent forces for expansion of the
WRKY gene family [73, 74]; however, these loss-of-
domain events occur less for dicotyledons than for
monocotyledons. For example, Group I contains one
protein (AtWRKY10) having only one WRKY domain in
Arabidopsis [74]. In cucumber, except CsWRKY42, all
WRKY proteins of Group I have two WRKY domains,
and the event by which the zinc finger motif was lost
was also found in three WRKY TFs (CsWRKY14/40/47)
(Fig. 1 and Table 1). According to previous studies, both

the heptapeptide motif WRKYGQK and the zinc finger
motif are required for the high binding affinity of WRKY
TFs to their cognate cis-acting W-box element (TTGA
CC/T). Therefore, variations in the heptapeptide motif
and loss of the zinc finger motif might influence normal
interactions of CsWRKYs with target genes, and it might
be worth further studying the binding specificities and
functions of these five CsWRKY proteins.

Both tandem duplication and chromosomal/segmental
duplications contributed to the expansion of the WRKY
gene family [24]. Comparison of the number of WRKY
genes in the cucumber genome with other sequenced di-
cotyledon genomes showed that cucumber has fewer
genes (Table 2). Fourteen segmental duplication events
within 25 WRKY genes were observed (Fig. 5 and Add-
itional file 7: Table S5), while tandem duplication events
were lacking. Therefore, the lack of tandem duplication
might be a possible reason for the smaller number of
CsWRKY genes, and segmental duplication was a major
driver of WRKY gene expansion during the cucumber
evolutionary process. Moreover, we identified that more
than 85% (52 of 61) of CsWRKY genes showed ortholo-
gous relationships with CIWRKY genes (Additional file
8: Table S6), indicating that the segmental duplication of
WRKY genes might have occurred in diploid progenitors
before the divergence of the cucumber and watermelon.
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Fig. 6 Synteny analysis of WRKYs between cucumber and other plant species. The collinear blocks are marked by gray lines, while the collinear
gene pairs with WRKY genes are highlighted in the red lines. 'C. sativus’, ‘O. sativa','Z. mays', 'A. thaliana','S. lycopersicum’ and ‘C. lanatus’ indicate
Cucumis sativus, Oryza sativa, Zea mays, Arabidopsis thaliana, Solanum lycopersicum, and Citrullus lanatus, respectively

In 2015, Rinerson et al. used the genome sequences of
a moss to propose the hypothesis that Group III genes
were not the last to evolve; rather, Group Ila genes were
[20]. Among the WRKY gene family, Group Ila genes
compose the subclade with the smallest number of
members and appear to play many important roles in
the response to different stresses [20]. The availability of
increased numbers of Group Ila members of sequenced
plant genomes could provide additional clues about the
evolution of the WRKY TF family. In this study, we
found that members of the plant WRKY Group Ila from

closely related species tended to be clustered together,
and there were monocot (clades 1, 2 and 3a)- and dicot
(clades 3b and 4-7)-specific clades (Fig. 3). These results
suggested that WRKY Ila genes might have evolved inde-
pendently after the divergence of monocots and dicots.
It is well known that gene expression is correlated with
gene function [75]. In this study, the expression pattern
of all 61 CsWRKY genes was analysed in nine different
tissues of cucumber, including the roots, stems, leaves,
flowers, ovaries, and tendrils. We found that 19
CsWRKY genes were expressed specifically in the roots
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Fig. 7 Tissue-specific expression of WRKY genes in cucumber. The
transcriptional levels of CsWRKY genes in nine tissues of cucumber
9930 were investigated based on a public transcriptome data, and
only one biological replication was used for each tissue sample [69].
The genome-wide expression of CsWRKY genes was shown on a
heatmap using FPKM value, and the expression data were gene-
wisely normalized by MeV (Multiple Experiment Viewer) software.
-2.0 to 4.0 was artificially set with the color scale limits according to
the normalized value. The color scale shows increasing expression
levels from green to red. L, leaves; O, ovary; EOF, expanded fertilized
ovary; S, stem; T, tendril; R, root; EO, expanded unfertilized ovary; FF,
female flower; MF, male flower
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(Fig. 7). As previously reported, AtWRKY23, AtWRKY75
and AtWRKY6 were found to regulate root development
[76, 77], and their close genetic homologous genes in cu-
cumber, CsWRKY25, CsWRKY32 and CsWRKYS52, re-
spectively, were expressed specifically in the roots.
According to these results, all genes expressed specific-
ally in the roots were assumed to be key regulators of
root development and may play roles in response to
various stresses that first affect plants below ground.
Additionally, CsWRKY50 and CsWRKY59 were highly
expressed in the tendrils, which are considered abnormal
leaves in cucumber, implying that they may regulate leaf
morphogenesis in cucumber. Noticeably, the expression
profiles of cucumber WRKY genes in this study were not
consistent with the results in the study of Ling et al
[55]. For example, WRKY18 and WRKY56 have ex-
tremely different patterns of expression profiles between
these two studies (Fig. 7) [55]. The reason might be that
although they have the same name, they actually are dif-
ferent genes. This prediction could be supported by that
WRKY56 could not be conclusively mapped to any
chromosome in the previous study [55], but to chromo-
some 7 in our study (Additional file 1: Fig. S1), and that
WRKYI18 was localized in different position on chromo-
some 3 (Additional file 1: Fig. S1) [55]. However, now it
is very difficult to clarify the reason because that the
v1.0 of the cucumber genome sequences is not available
yet, and Ling et al. did not provide the gene or protein
sequences of WRKYs in their paper [55].

WRKY proteins constitute one of the most important
TF families and are involved in responses to biotic and
abiotic stresses [25]. At least 26 and 54 WRKY genes
were identified to respond to abiotic stress in Arabidop-
sis and rice, respectively [38, 78]. In this study, we fur-
ther explored the expression of 61 CsWRKY genes under
multiple stresses. Most of them were induced/repressed
by at least one of the stresses that we tested (heat, salin-
ity, and inoculation of DM and PM), indicating that the
CsWRKYs play crucial roles in cucumber stress re-
sponses. Four CsWRKY genes, CsWRKY9, CsWRKY18,
CsWRKY48 and CsWRKY57, were responsive to heat
and/or salinity stress but not to the inoculation of DM
and PM (Figs. 8 and 9). Previous studies have revealed
that one WRKY gene can function in response to several
stresses. For example, overexpressing AtWRKY30 im-
proved tolerance to oxidative and salinity stresses during
seed germination [79]. Among these four genes, the
transcript level of CsWRKY57 was significantly affected
by both salt and heat stress treatments (Fig. 8), suggest-
ing that this gene acts as the most important gene to
regulate susceptibility to abiotic stresses in cucumber.
Correspondingly, 10 CsWRKY genes (CsWRKY1/3/4/15/
21/22/30/46/53/58) were affected only by inoculation of
PM and/or DM and not by abiotic (heat and salt)
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Fig. 8 Expression profiles of CsWRKY genes in response to various abiotic stress treatments. The transcriptional levels of CsSWRKY genes in response to
salt (@) and heat (b) stresses were investigated based on a public transcriptome data [70] and transcriptome data that we performed, respectively. The
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stresses (Figs. 8 and 9), and only CsWRKY46 was observed
to be differentially expressed in response to inoculation of
PM and DM. These results revealed significant differences
in the stress-induced expression of WRKYs in response to
abiotic and biotic stresses. In addition, 22 CsWRKY genes
were significantly affected by both abiotic stresses and bi-
otic stresses (Figs. 8 and 9), indicating that some CsWRKY
genes have similar functions in response to both abiotic

and biotic stresses. For instance, the expression of
CsWRKYS59 was affected by all tested treatments except
salt treatment; CsWRKY27, CsWRKY50 and CsWRKY52
simultaneously responded to all treatments that we ana-
lysed. The expression of OsWRKY67 was activated by rice
blast inoculation; overexpression of OsWRKY67 in rice
plants enhanced resistance to leaf blast, panicle blast and
bacterial blight [80]; and its orthologue in cucumber,
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CsWRKY50, was also induced by biotic stresses, sug-
gesting the potential value of CsWRKY27, CsWRKY50
and CsWRKYS52 in improvements to cucumber abiotic
and biotic stress tolerance. Moreover, the expression
of 12 CsWRKY genes (CsWRKY6/16/17/24/29/31/38/
39/42/43/55/60) was not observed in response to ei-
ther the biotic stresses or abiotic stresses we analysed
in this study.

As shown in Fig. 9, the expression of CsWRKY19 was
downregulated by PM infection but upregulated by DM.
The results indicated that WRKY genes might play

different roles under different stress responses. Further
analysis showed that responses to stresses occurred at
different timepoints. CsWRKY10 and CsWRKY47
responded to heat stress at 3 h, whereas the expression
of CsWRKY28 and CsWRKY35 was affected at 6 h after
heat stress began; CsWRKY56 was highly expressed only
at 2 dpi, while infection by DM upregulated the expres-
sion of CsWRKY12 and CsWRKY50 between 2 to 8 dpi,
suggesting that CsWRKY genes might play important
regulatory roles at different stages in cucumber abiotic
and biotic stress tolerance.
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Overall, these above findings provide insights into the
potential functions of cucumber WRKY genes. The dif-
ferential expression in response to different stresses indi-
cated their functional diversification. Some CsWRKY
genes might specifically respond to biotic or abiotic
stress, while several genes may respond to both biotic
and abiotic stress. In addition, some CsWRKY genes
might not be involved in stress responses. These results
are helpful for future functional characterization of
CsWRKY genes and for the genetic improvement of the
abiotic and biotic stress resistance of cucumber.

Conclusions

In the present study, 61 cucumber WRKY genes were
identified, and a comprehensive analysis of those
CsWRKY genes was carried out. First, the chromosomal
location, conserved motifs, evolutional relationships and
gene structure of the cucumber WRKY genes were ex-
amined. The expression patterns of the CsWRKY genes
in nine different tissues of cucumber cultivar 9930 and
in response to various stresses then showed that these
genes may play important roles in cucumber growth and
development. Furthermore, our results revealed differ-
ences and similarities in the stress-induced expression of
CsWRKYs in response to abiotic and biotic stresses. In
conclusion, our study provided a foundation for future
studies into the functions of WRKY genes important in
responses to abiotic and biotic stresses and the identifi-
cation of new sources of resistance for breeding
programmes.

Methods

Gene identification and chromosomal locations

The hidden Markov model (HMM) file of the WRKY
domain (PF03106), downloaded from the Pfam pro-
tein family database (http://pfam.sanger.ac.uk/), was
used for the identification of WRKY genes from the
cucumber genomic database (v3.0) by HMMER 3.0.
The default parameters were employed, and the cutoff
value was 0.01. All CsWRKY genes that were queried
from the cucumber genomic data based on the
HMMER results were further examined to confirm
the existence of the WRKY domain sequences
through the Pfam (http://pfam.xfam.org/search#tab-
view=tabl) and SMART (http://smart.embl-heidelberg.
de/) databases. We then manually examined each can-
didate gene to ensure the conserved heptapeptide se-
quence within the predicted WRKY domain and used
PCR amplification and sequencing to further validate
select CsWRKY genes. Sixty-one WRKY genes were
ultimately identified and mapped to cucumber chro-
mosomes according to their physical location infor-
mation from the cucumber genomic database. The

Page 16 of 19

subcellular localization of CsWRKY proteins was pre-
dicted using CELLO (http://cello.life.nctu.edu.tw/).

CsWRKY genes structure analysis, classification and
phylogenetic analysis

The gene structures of all identified cucumber WRKY
genes were identified by the Gene Structure Display Ser-
ver (GSDS, http://gsds.cbi.pku.edu.cn/). The cucumber
WRKY genes were classified into different groups ac-
cording to the classification scheme of Arabidopsis
WRKY genes and the WRKY domain alignments of
CsWRKY and AtWRKY proteins. Alignments of the
amino acid sequences of the following were performed
using ClustalX with default settings: WRKY domains
from cucumber and Arabidopsis (excluding the C-
terminal domains of Group I); 61 full-length CsWRKYs;
and the Group Ila WRKY domains from Arabidopsis
[16], castor bean [64], cucumber, grape [67], tomato
[19], pear [63], potato [66], poplar [62], barley [59], rice
[17], maize [18], bread wheat [51], Brachypodium [57]
and millet [81]. Phylogenetic trees were then constructed
based on the alignments using the neighbour-joining
(N]) method of MEGA 5.0. The trees were visualized
and optimized via Evolview (http://www.evolgenius.info/
evolview).

Motif composition analysis of CSWRKY proteins

The motifs within the 61 cucumber WRKY protein se-
quences were identified using the MEME online pro-
gram (http://meme.nbcr.net/meme/intro.html) with the
following parameters: number of repetitions, any; max-
imum number of motifs, 10; and optimum width of each
motif, between 6 and 300 residues.

Analysis of gene duplication

The Multiple Collinearity Scan toolkit (MCScanX) was
used to examine the gene duplication events, with the
default parameters [82]. To explore the syntenic rela-
tionships of the WRKY genes obtained from cucumber
and other selected species, syntenic analysis maps were
constructed using MCScanX.

Regulatory elements in the promoter regions of CsWRKY
genes

The elements in the 1.5kb promoter fragments (up-
stream sequences of the CsWRKY-encoding sequences)
of the CsWRKY genes were analysed using the online
PlantCARE database (http://bioinformatics.psb.ugent.be/
webtools/plantcare/html/).

Transcriptome analysis of WRKY genes in cucumber

The expression patterns of the CsWRKYs were analysed
based on published RNA-seq data (SRA046916) [69].
Clean tags were remapped to the cucumber genome
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sequence (http://cucurbitgenomics.org/, v3.0) by Bio-
marker Technologies (Beijing, China), and the FPKM
values were recalculated. These analyses were performed
on 9 different cucumber tissues: roots, stems, leaves, fe-
male flowers, male flowers, ovaries, expanded unfertilized
ovaries, expanded fertilized ovaries, and tendrils. Only one
biological replication was used for each tissue sample [69].
The genome-wide expression of the CsWRKY genes was
shown on a heatmap using MeV (Multiple Experiment
Viewer) software, and the expression levels are shown by a
colour bar that changes from green to red.

Transcriptome analysis of CsWRKYs in response to abiotic

and biotic stresses

The expression regulation of CsWRKY genes responsive
to different stresses was obtained from publicly available
transcriptomic data, which were downloaded from Gene
Expression Omnibus and analysed to reveal the genome-
wide differentially expressed genes after treatment with
salt (GSE116265) [70] and inoculation with DM
(SRP009350) [54] and PM (GSE81234) [71]. Every treat-
ment had three or two biological replicates. The FDR (or
P value) and absolute value of log2 (fold-change) that were
published in the original literature were used for the iden-
tification of DEGs [54, 70, 71]. Because the gene ID shown
was according to the cucumber genome v2.0, we cross-
referenced the gene IDs of the CsWRKYs with those of the
cucumber genome v3.0. The expression of the CsWRKY
genes was then shown by a heatmap using MeV software.

The seedlings of the ‘Chinese long’ inbred line 9930,
which was obtained from X. Gu Lab of Institute of Vege-
tables and Flowers, Chinese Academy of Agricultural Sci-
ences, and used for cucumber genome sequencing, were
treated at 42 °C, and the leaves of the seedlings were taken
at 0, 3 and 6 h after treatment for transcriptome sequen-
cing in Novogene (Beijing, China). Three biological repli-
cates were performed. The transcript abundance of
CsWRKY genes was calculated as fragments per kilobase
of exon model per million mapped reads (FPKM). The se-
quencing reads data were submitted to the National Cen-
ter for Biotechnology Information (NCBI) GEO Sequence
Read Archive with accession number of GSE151055.

For the transcriptome analysis of CsWRKYs in re-
sponse to abiotic and biotic stresses, a threshold of FDR
(or P value) <0.05 and an absolute value of log2 (fold-
change) > 1 were used to define DEGs.
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