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Abstract

Background: Seed weight is a complex yield-related trait with a lot of quantitative trait loci (QTL) reported through
linkage mapping studies. Integration of QTL from linkage mapping into breeding program is challenging due to
numerous limitations, therefore, Genome-wide association study (GWAS) provides more precise location of QTL due
to higher resolution and diverse genetic diversity in un-related individuals.

Results: The present study utilized 573 breeding lines population with 61,166 single nucleotide polymorphisms
(SNPs) to identify quantitative trait nucleotides (QTNs) and candidate genes for seed weight in Chinese summer-
sowing soybean. GWAS was conducted with two single-locus models (SLMs) and six multi-locus models (MLMs).
Thirty-nine SNPs were detected by the two SLMs while 209 SNPs were detected by the six MLMs. In all, two
hundred and thirty-one QTNs were found to be associated with seed weight in YHSBLP with various effects. Out of
these, seventy SNPs were concurrently detected by both SLMs and MLMs on 8 chromosomes. Ninety-four QTNs co-
localized with previously reported QTL/QTN by linkage/association mapping studies. A total of 36 candidate genes
were predicted. Out of these candidate genes, four hub genes (Glyma06g44510, Glyma08g06420, Glyma12g33280
and Glyma19g28070) were identified by the integration of co-expression network. Among them, three were
relatively expressed higher in the high HSW genotypes at R5 stage compared with low HSW genotypes except
Glyma12g33280. Our results show that using more models especially MLMs are effective to find important QTNs,
and the identified HSW QTNs/genes could be utilized in molecular breeding work for soybean seed weight and
yield.

Conclusion: Application of two single-locus plus six multi-locus models of GWAS identified 231 QTNs. Four hub
genes (Glyma06g44510, Glyma08g06420, Glyma12g33280 & Glyma19g28070) detected via integration of co-
expression network among the predicted candidate genes.
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Background
The world’s human population is estimated to reach 10
million by 30-year time [1] with increasing abiotic and
biotic stress as well as reduction in arable land for agri-
cultural activities [2]. This implies that food and nutri-
tional security is under threat. Legume crops including
soybean (Glycine max L. Merr.) play a significant role in
ensuring global food and nutritional security in addition
to their abilities to improve soil quality through nitrogen
fixation [3]. Consumption of legume crops is associated
with health and physiological benefits like prevention of
cardiovascular diseases, obesity, diabetes mellitus, cancer
and relief of menopausal symptoms [4–6]. However, the
insufficient soybean production in China and many
under-developing countries is a big challenge and per
unit yield of soybean needs to be improved rapidly.
One of the major determinants of soybean yield, seed

use and evolutionary fitness is seed weight [7–9]. For ex-
ample, large-seeded cultivars are used for boiled soybean
(nimame), green soybean (edamame), soymilk and soy-
bean curd (tofu), while small-seeded cultivars are suit-
able for fermented soybean (nattō) and sprout
production [10–12]. Soybean breeders need to create big
variation of seed weight for selection of varieties with
different end-use purposes. Seed weight is also an im-
portant trait that was targeted during soybean domesti-
cation [13–16], and the range of 100-seed weight can
vary from less than 1 g in wild soybean (Glycine soja
Sieb. et Zucc.) accessions to more than 60 g in some spe-
cific edamame varieties.
As a complex quantitative trait, seed weight is assumed

to be controlled by several major genes/loci plus numer-
ous undetectable loci with minor effects (thus, polygenes),
interacting with environments. More than 300 quantita-
tive trait loci /nucleotides (QTL/QTNs) for soybean seed
weight have been reported on SoyBase (www.soybase.org)
via linkage mapping. However, integrating results from
linkage mapping into breeding program is challenging due
to the higher confidence interval and less genetic variation
[17]. As a result in the recent years, marker-trait associ-
ation is used to take advantage of all recombination events
that occur in the evolutionary history of a natural popula-
tion based on linkage disequilibrium (LD) [18, 19].
Marker-trait association allows researchers to utilize nat-
ural diversity and locate valuable genes in the genome
[18]. For instance, Miao et al. [20] recently applied re-
gional association mapping for seed oil and identified
GmSWEET39 (Glyma.15 g049200/Glyma15g05470) which
was subsequently overexpressed in Arabidopsis leading to
at least 10% increase in seed oil content.
Tens of QTNs have been detected and reported through

genome-wide association studies (GWAS) across the 20
chromosomes [13, 21–30]. However, different mapping
results can be obtained due to population type, size and

GWAS method. Single-marker genome-wide scan models
such as mixed linear model (MLM) and general linear
model (GLM) are mostly frequently used in genetic dis-
section of soybean seed weight. These models have certain
limitations including the issue of multiple test correction
for threshold value of significance, and mapping power
[31]. A number of multi-locus models have been devel-
oped and applied in recent GWAS in several crops includ-
ing soybean. Six of such models (mrMLM, FASTmrMLM,
FASTmrEMMA, pLARmEB, pKWmEB & ISIS EM-
BLASSO) are implemented in R with the mrMLM.GUI
package [32]. These models have become the state-of-the-
art procedure to identify QTNs with complex traits due to
their detection power and robustness [33–37].
Bioinformatics tools have enhanced easy identification

of potential genes for target QTL. One of the strategies is
to utilize co-expression network which aims at prioritizing
functionally related genes. It has been successfully used in
several crops such as maize [38], rice [39], peanut [40],
Arabidopsis [41], soybean [42, 43], among others. By inte-
gration of co-expression network analysis, a class of hub
genes which induce major transcriptome reprogramming
during grapevine development were identified Palumbo
et al. [44]. The hub genes (genes highly connected) may
give clue on the role of those genes in the network [45].
In most of the earlier reported GWAS for seed weight,

population sizes were mostly < 500 [29, 30, 46–48]. The
population size, genetic diversity as well as genome cover-
age/number of SNPs, linkage disequilibrium, and statis-
tical methods used have been reported to affect the power
of GWAS [17, 49, 50]. Therefore, our present study uti-
lized 573 breeding lines with 61,166 SNPs to conduct
marker-trait association viz., two single-locus models
(SLMs) and six multi-locus models (MLMs) to identify
significant SNPs. Also, potential candidate genes were pre-
dicted, out of which hub genes were identified by the inte-
gration of functional co-expression network. Application
of multiple models of GWAS detected 231 QTNs, out of
which 94 co-localized with earlier reported QTL/QTNs.
This demonstrate the use of multiple models of GWAS to
unravel the complex architecture of seed weight in our re-
cently developed diverse breeding lines.

Results
Phenotypic variation of HSW in the YHSBLP
The phenotypic variation of HSW in YHSBLP across the
four environments (E1, E2, E3 and E4) followed a normal
distribution, typical of quantitative traits (Fig. 1). In the
E1, HSW ranged from 7.24–37.19 g with the mean of
19.40 ± 4.47 g whereas E2, E3 and E4 had a range (mean ±
standard deviation) of 8.23–39.70 g (21.22 ± 4.62 g), 7.71–
36.32 g (20.43 ± 4.80 g) and 8.38–36.78 g (20.09 ± 4.78 g),
respectively (Additional File 1: Table S1). The HSW was
significantly (P < 0.001) affected by genotype, environment
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and genotype by environment interaction (Table 1). The
broad-sense heritability (h2) was 98.53%. These suggest
that HSW in the summer sowing of YHSBLP was mainly
influenced by genetic factors with less effect by environ-
mental factors (Table 1).

SNPs distribution and population structure in the YHSBLP
All the 573 accessions were genotyped by RAD-seq tech-
nology. After removing monomorphic markers as well as
markers with MAF < 5% and missing and heterozygous al-
lele rate > 30%, a total of 61,166 SNPs were used for this
study. The total length of the genome was 950,068,807 bp
(950.07Mb) representing 85.21% of the genome of soy-
bean. The range of the number of SNPs per chromosome
was 1467–4844 with chromosome 5 and 18 having the
least and highest, respectively. The highest and lowest
SNP density of 91.9 SNPs/Mb and 35 SNPs/Mb were
found on chromosome (Chr.) 15 and Chr.05, respectively,
with the longest chromosome being Chr.18 (Fig. 2).
The 573 accessions were grouped into three subpopu-

lations as evident by population structure obtained from

ADMIXTURE software (Fig. 3a & b), phylogenetic analysis
(Fig. 3c) and PCA (Fig. 3d). The first two PC accounted
for 22.60% variation (Fig. 3d). The lines with the probabil-
ity (Q) more than 0.70 score were considered as pure lines
while those with Q ≤ 0.7 were considered as admixtures.
The subpopulation 1 comprised 107 pure lines with an
average HSW of 17.68 g. The subpopulation 2 and 3 con-
sisted of 101 and 92 pure lines, respectively, with average
HSW of 22.95 g and 19.73 g in that same order. The HSW
differed significantly among the subpopulations. The
remaining 273 admixtures had average HSW of 20.52 g.

SNP-trait association mapping
A total of 39 SNPs significantly associated with HSW in
at least one environment were detected via MLM (K +
Q) and CMLM (K + PCA), respectively, with −log10(P) =
4.00–12.25 (Additional File 2: Table S2; Additional File 3:
Fig. S1; Additional File 4: Fig. S2). Among the 39 loci,
twenty-four were detected by both models (MLM and
CMLM) (Additional File 2: Table S2; Additional File 5:
Fig. S3A). These QTNs were distributed unevenly on 11

Fig. 1 Variation of HSW in each of the environments. The black in the middle of the box shows the median, the white box indicates the range
from the lower quartile to the upper quartile, the black line represents the dispersion and frequency distribution of the phenotypic data. The
black dots represent phenotypic data that were extreme in each environment

Table 1 Joint ANOVA for HSW across the 4 environments

Source DF SS MS F Value P value h2

Environment 3 15,355.00 5118.39 5.26 0.0261 98.53%

Rep(Environment) 8 7871.95 983.99 715.38 < 0.0001

Genotype 572 119,437.00 208.81 17.64 < 0.0001

Genotype×Environment 1665 19,977.00 12.00 8.72 < 0.0001

Residual 4228 5849.90 1.38
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chromosomes. Each of the models (MLM and
CMLM) detected the highest number of six QTNs on
Chr.02 and Chr.13, respectively. Out of these QTNs,
seven were detected in two environments by the two
SLMs on five chromosomes. Chromosome 14 har-
bored three QTNs (qHSW-14-5, qHSW-14-10 &
qHSW-14-11) whereas one QTN each was harbored
on Chr08 (qHSW-8-8), Chr.13 (qHSW-13-26), Chr.15

(qHSW-15-4) and Chr.16 (qHSW-16–5) (Add-
itional File 2: Table S2). The highest number of 16
QTNs were detected in environment (E4) by MLM
whereas CMLM detected 12 QTNs in either E2 or E4
(Fig. 4). Most of the SNPs detected overlapped with
QTL detected by earlier linkage mapping studies pub-
lished on SoyBase and some association mapping
studies (Additional File 2: Table S2).

Fig. 2 Distribution of 61,166 SNPs on the 20 chromosomes of soybean. The horizontal axis shows chromosome length (Mb); the vertical axis
gives the chromosome number and the different colors depict SNP density (the number of SNPs per window)

Fig. 3 Population structure of 573 accessions. a Plot of ΔK calculated for K = 1–10. b Population structure obtained from ADMIXTURE software.
Three colors (blue, green and red) represent three subpopulations. Each color represents one inferred ancestral population. Each vertical column
represents one individual and colored segment in each column represents percentage of the individual inferred ancestral population in the
YHSBLP. c A neighbor-joining tree of the YHSBLP with three clusters. d Principal Component Analysis plot
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Six MLMs viz. mrMLM, FASTmrMLM, FASTEMMA,
pLARmEB, pKWmEB and ISIS EM-BLASSO detected a
total of 209 QTNs across all the 20 chromosomes un-
evenly with the range of logarithm of odd (LOD) = 3.01–
17.31 (Additional File 2: Table S2). The highest number
of 13 QTNs were detected on Chr.13 by mrMLM
whereas 25 QTNs were identified in E2 by pLARmEB
(Fig. 4; Additional File 2: Table S2). The number of

QTNs detected by either of the six MLMs ranged
32–75, out of these, 11–44 QTNs were detected by
at least two of the models concurrently (Add-
itional File 2: Table S3). Out of the total 209 QTNs
detected by six MLMs, thirty-nine were detected sim-
ultaneously in at least two environments with at least
two models including qHSW-13-26 & qHSW-14-10
(Additional File 2: Table S2).

Fig. 4 Total number of SNPs detected by the 8 models in each environment. The X and Y-axis represent the environments (E1, E2, E3 & E4) and
number of SNPs detected, respectively

Fig. 5 Manhattan plots, haplotype block analyses of selected QTNs and allele effect on seed weight (boxplot). qHSW-8-8 are in a, e & i. qHSW-9-4
are in b, f & j. qHSW-13-26 are in c, g & k. qHSW-14-10 & qHSW-14-11 are in d, h & l. The significant SNPs detected within each block are
displayed in the Manhattan plots (a, b & c) and the dotted red line represents the reduced threshold (4) whereas the completed red line
represents the Bonferroni correction threshold (4.79). The SNPs detected in each block are shaded red and purple for those that exceeded the
4.79 and 4, respectively. The boxplot for each of the blocks were obtained by the average seed weight across the 4 environments (E1, E2, E3 &
E4) (I, J, K & L). The accessions were grouped and pairwise comparisons conducted by Duncan’s Multiple Range Test at P < 0.05. The boxes with a
common alphabet indicate no significant difference in seed weight. Number of accessions (n) in each sub-class is represented on top of each
box. GI-GVI represents a number of groupings of the 573 accessions in each block
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A total of 231 QTNs were identified by the two SLMs plus
the six MLMs, out of these, seventeen were detected concur-
rently by the two categories of models (Additional File 2:
Table S2; Additional File 5: Fig. S3B). qHSW-2-1, qHSW-2-8,
qHSW-2-10, qHSW-9-12, qHSW-13-8, qHSW-13-26, qHSW-
14-10, qHSW-14-12 & qHSW-17-4 were detected by more
than of two the MLMs in at least three environments as well
as by at least one of the SLMs in one environment (Add-
itional File 2: Table S2). Pairwise comparison among the
eight models showed vary range of QTNs (2–44) detection
concurrently (Additional File 5: Fig. S3).

Allele effect of QTNs on seed weight
Haplotype block analyses were conducted for qHSW-8-8
(Gm08_15803242), qHSW-9-4 (Gm09_3461722), qHSW-
13-26 (Gm13_43480280) and two tightly linked SNPs,
Gm14_40721910 (qHSW-14-10) & Gm14_40721920
(qHSW-14-11) in Haploview software with four gamete
rule method (Fig. 5a-l). The distance within each block
ranged 46–490 kb with range of 4–97 SNPs. The 573 ac-
cessions were grouped into 3–6 categories in each block
with significant variation in seed weight.

Candidate genes prediction and further analyses
Potential candidate genes were mined from 500 kb upstream
and downstream of significant SNPs that were detected in at
least two environments. SNPs within a block that were de-
tected in at least one environment, only one was used to
identify candidate genes. In all, thirty-six candidate genes
were identified using the orthologs in Arabidopsis of which
14 and 22 were located upstream and downstream of the
SNPs positions, respectively (Additional File 6: Table S4). Five
SNPs had two potential candidate genes each, for instance,
SNP at Gm08_15803242 (qHSW-8-8) had Glyma08g20770
and Glyma08g20780 at 38.65 and 27.86 kb downstream.
These two genes code for ATP binding cassette (ABC) trans-
porter protein with biological function of transport; trans-
membrane transport which have been demonstrated to play
significant role in regulating seed size/weight with effect on
seed yield [51]. These two genes together with Gly-
ma06g17520, Glyma06g44510, Glyma09g04840, Gly-
ma11g27070, Glyma12g33280, Glyma13g18280 and
Glyma13g17890 are annotated to be involved in sugar/su-
crose/ monosaccharide transport. The remaining 25 genes
are involved in two or more biological processes such as cell
proliferation, regulation of cell size, cell wall modification,
flower/its part development, seed development, seed coat de-
velopment and other biological processes which play key
roles in regulating seed size/weight (Additional File 6: Table
S4). From the RNA-Seq Atlas developed by Severin et al. [52]
available on SoyBase database, it was discovered that all the
predicted candidate genes are highly expressed in seed-
related tissues as well as seed developmental stages except
Glyma09g24020 (Additional File 6: Table S5).

The 1.5 kb upstream of each candidate gene was ex-
plored for seed-related regulatory elements. Three seed-
related cis-elements (GCN4_motif, MSA-like and RY-
element) were identified in the promoter regions of 13
of the predicted candidate genes (Additional File 6:
Table S6). GCN4_motif [TGAGTCA] which is involved
in endosperm expression was found in Glyma01g38450,
Glyma04g06760, Glyma13g17890, Glyma15g17040, Gly-
ma15g39730 and Glyma19g28070 [53]. MSA-like [(T/
C)C(T/C)AACGG(T/C)(T/C)A] element which is in-
volved in cell cycle regulation was found in Gly-
ma02g07240, Glyma09g04840 and Glyma14g11930 [54].
RY-element [CATGCATG] involved in seed-specific
regulation was identified in Glyma03g06420, Gly-
ma03g06600, Glyma06g17520 and Glyma12g33280 [55].
Plant growth and development are regulated by circa-
dian related genes especially flowering time. In addition,
the circadian clock [CAAAGATATC] was detected in
Glyma01g38450, Glyma04g06760, Glyma06g44510, Gly-
ma07g11550, Glyma08g20780 and Glyma13g17890. A
study conducted by Hudson [56] demonstrated that the
circadian clock controlled transcriptome of developing
soybean seeds. Twenty of the predicted candidate genes
had ABRE element involved in the abscisic acid respon-
siveness which have been reported to play a primary role
in seed maturation [57].
To understand possible interaction among the 36 candi-

date genes whilst mining for other genes, the predicted can-
didate genes were subjected to SoyNet which has 40,182
soybean genes (73% of the coding genome) with two million
functional network in soybean [58]. A dense interaction net-
work among 213 genes distributed across the 20 chromo-
somes were found comprising 15 of the predicted genes in
this study (Additional File 7: Fig. S4A&B). Four hub genes
(Glyma06g44510, Glyma08g06420, Glyma12g33280 and
Glyma19g28070) in the network were among the predicted
candidate genes. These hub genes were confirmed by qRT-
PCR with seven extreme genotypes, thus, five high HSW ge-
notypes (P048, P130, P227, P589 and P602) and two low
HSW genotypes (P415 and P579) in seed sampled at R5
and R7 stages. With the exception of Glyma12g33280, the
remaining three hub genes (Glyma06g44510, Gly-
ma08g06420 and Glyma19g28070) were relatively expressed
higher in the high HSW genotypes at R5 stage compared
with low HSW genotypes (Fig. 6). However, the expression
were not consistent in the R7 stage.

Discussion
Phenotype variation and genetic basis of seed weight in
YHSBLP
Identification of molecular markers associated with a
trait of interest is one of the prerequisites of molecular
breeding. Soybean seed weight is one of the most critical
traits having direct effect on yield as a yield component,
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with much importance as a quality attribute and its influ-
ence on seed use [7–9]. The seed weight (HSW) ultimately
determines the economic return on soybean production.
However, this trait is a complex trait controlled by many
polygenes with both major and minor effects, which is also
significantly influenced by the environment and genotype
by environment interaction. This makes screening on the
basis of phenotype alone very difficult and inefficient.
Hence, identifying QTL/QTNs for marker-assisted breed-
ing for seed weight would be beneficial.
The HSW in soybean is a typical quantitative trait which

is easily influenced by genotype, environment or by geno-
type × environment interaction (G × E) which are in con-
sonance with several earlier studies [30, 46]. There was
much variability in the YHSBLP (7.24–39.70 g) (Add-
itional File 1: Table S1) which together with larger popula-
tion size and high SNPs enhanced effectiveness and
efficiency of QTN detection via SNP-trait association [49,
50, 59]. The HSW showed normal distribution in each en-
vironment (E1, E2, E3 and E4) (Fig. 1) coupled with high
h2 which indicated that variation in HSW is controlled by
multiple genetic loci with both major and minor effects
(Table 1). This study utilized 573 recently developed
breeding line population (YHSBLP) compared with most
of the earlier studies that used wild accession, landraces
and elite cultivars [24, 26, 27, 30, 46]. The high genetic
variability shows the potentials of YHSBLP for genetic im-
provement aimed at seed weight [60].

QTNs detected by the single and multi-locus models and
their comparisons
Most of the earlier reported QTL/QTNs were performed
with < 500 accessions and SNPs were < 60,000 [29, 30,
46–48]. The power of detection in GWAS is constrained

by the population size, genetic diversity as well as genome
coverage/number of SNPs, linkage disequilibrium, and
statistical models [17, 49, 50]. Therefore, this study used
two SLMs (MLM & CMLM) together with six MLMs
(mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB,
pKWmEB and ISIS EM-BLASSO) to identify genomic re-
gions associated with seed weight. A total of 39 SNPs were
significantly associated with HSW by the two single-locus
models (MLM & CMLM) across ten out of the 20 chro-
mosomes viz. Chr.01, Chr.02, Chr.04, Chr.08, Chr.09,
Chr.11, Chr.13, Chr.14, Chr.15, Chr.16 and Chr.17 (Add-
itional File 2: Table S2; Additional File 3: Fig. S1; Add-
itional File 4: Fig. S1). Out of these, 24 were mutually
detected by both MLM & CMLM whereas 6 and 9 SNPs
were exclusively detected by CMLM and MLM, respect-
ively (Additional File 5: Fig. S3A). On the other hand, two
hundred and nine SNPs were associated with HSW via
the six MLMs across the 20 chromosomes (Add-
itional File 2: Table S2). Each of the six models detected
varied number of SNPs: pLARmEB (82) >mrMLM (75) >
pKWmEB (61) > FASTmrMLM (56) > ISIS EM-BLASSO
(47) > FASTmrEMMA (32). This indicates varied detec-
tion of each model. Also, pairwise comparisons of the 6
models demonstrated that each of the models has the
power to detect SNPs concurrently from each other,
though no SNP was detected by all the six models simul-
taneously. For the example mrMLM & FASTmrMLM
concurrently detected 44 SNPs followed by mrMLM &
pKWmEB (22) and least by ISIS EM-BLASSO with
FASTmrMLM (11) and FASTmrEMMA (11) (Add-
itional File 2: Table S3). Multiple multi-site association
analysis methods cannot only improve the reliability of
QTNs detected, but also complement each other to detect
more QTNs. In this study, two important QTNs: qHSW-

Fig. 6 Seed weight among selected genotypes and relative expression of 4-hub genes by qRT-PCR. a & b Phenotypic characterization of selected genotypes
for qRT-PCR. Relative expression of Glyma06g44510 (c), Glyma08g06420 (d), Glyma12g33280 (e) and Glyma19g28070 (f) by qRT-PCR with seed at R5 and R7
stages of seed development. (LHSW and HHSW represent Low HSW and High HSW, respectively. The error bars represent standard error of means)
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8-1 and qHSW-19-4/qHSW-19-5 harbored 2 of the 4
hub genes identified were solely detected by only the
MLMs. This also buttresses the usefulness of MLMs in
GWAS.
In comparison of the two SLMs and six MLMs, 17

common SNPs were detected on 6 chromosomes
(Chr.02, Chr.08, Chr.09, Chr.11, Chr.13 and Chr.14)
(Additional File 5: Fig. S3B; Additional File 4: Fig. S2).
Even though, the threshold of the significance in SLMs
was adjusted to 4 instead of 4.79 (Bonferroni correction),
the number of significant SNPs detected by SLMs were
lower than those detected by MLMs, which confirm the
robustness and power of detection of the later models.
The combination of both SLMs and MLMs enhanced
the detection of both major and minor QTNs. Several
SNPs were detected in specific environment which are
in consonance with ANOVA, indicating that seed weight
of Chinese summer sowing soybean is also regulated by
the environment. The combination of the two SLMs as
well as the six MLMs complemented each other in iden-
tifying 231 QTNs which could have been lost in either
of the models. However, the MLMs proved to be more
robust and powerful in detecting more SNPs than the
SLMs. Similar trend have been reported in soybean [34],
cotton [35], maize [61] and flax [62] where more num-
ber of significant SNPs were detected by the MLMs
comparing with SLMs. Therefore, the use of multi-locus
models with their power of detection can facilitate gen-
omic selection in breeding.
The stability of QTL/QTNs is essential for the use in a

breeding program. Ninety-four of the QTNs identified in
this study co-localized with several earlier reported
QTL/QTNs could be exploited and integrated into
breeding (Additional File 2: Table S2). Whereas 137
novel QTNs are being reported for the first time based
on QTL/QTNs documented on SoyBase as some re-
cently published reports need further verification. This
could be attributed to the diverse background of our re-
cently developed breeding lines pointing to their poten-
tial for breeding programs. Out of 137 novel loci, 22
were detected in at least two environments by at least
two models (Additional File 2: Table S2). Also, allele ef-
fect on seed weight by haplotype block analyses could be
utilized to conduct haplotype-based breeding scheme to
develop genotypes with desirable seed weight whilst ex-
ploring the vast genetic base of YHSBLP.

Candidate genes predicted and further analysis
Identification and utilization of candidate genes is one of
the key objectives of GWAS. So far few genes have been
validated and confirmed to regulate seed weight/size in
soybean [63–65] compared with Arabidopsis and rice
[66–71]. A mature seed consists of embryo, endosperm
and seed coat derived from zygote, fertilized central cell

and maternal integuments, respectively [67, 72]. Seed
weight/size is also dependent on cell size and its prolifera-
tion, flower development, sucrose transport and other re-
lated activities which are regulated by several signaling
pathways [66–68, 73–75]. Sucrose which is the major
sugar composition accounts 97% in embryo during seed
development process [76]. In our study, five of the thirty-
six candidate genes are related with sucrose transport
(Additional File 6: Table S4). For example, within the
haplotype block Gm06_13796257–13926598 had a signifi-
cant SNP at 13909376 bp (qHSW-6-5) with three sucrose
transporter genes (Glyma06g17520, Glyma06g17530 and
Glyma06g17540) at 40.04 kb, 21.72 kb and 7.62 kb up-
stream of the SNP, respectively (Additional File 6: Table
S4). These genes are 99.68, 99.62 and 99.61% similar to
AtSWEET12, AtSWEET13 and AtSWEET10, respectively.
Again, another sucrose transporter gene Glyma11g27070
which is ortholog to AtSWEET15 was found 450.05 kb
downstream of the SNP at 27075467 (Gm11_26861064-
27075467). Less is known of the role of GmSWEET genes
in seed development and its related traits in soybean [20,
77] compared to other crops [78, 79].
The functional network obtained from SoyNet revealed

4 hub-genes viz. Glyma06g44510, Glyma08g06420, Gly-
ma12g33280 and Glyma19g28070 in our predicted candi-
date genes (Additional File 7: Fig. S4). Although, the
functional relationship depicted in the co-expression net-
work did not include all the 36 candidate genes predicted
in this study, it gives better clues about 15 genes out of
the predicted genes together with other genes which were
not captured in this study. There is intensive literature on
the interaction of ribosomal proteins and kinesin proteins
in regulating embryo/seed size and radicle growth [80].
Such interaction was evident in the network constructed
in this study. Some members of kinesin protein have been
demonstrated to regulate embryo/seed size in rice [81,
82]. The network captured two genes (Glyma17g17850
and Glyma17g18360) within the block Gm17_15178123-
15400615 (SNP at 15346512). These two genes belong to
Subtilase family protein and CYCLIN D3;2 which are in-
volved in seed coat and other essential processes in seed
weight regulation, respectively [73, 83]. Similarly, Gly-
ma10g38580 which is a K-box region and MADS-box
transcription factor was captured in the network. MADS-
box genes have been reported to be jack of all traits [84].
The network also covered the two genes from multidrug
resistance-associated protein 6; ABC transporter trans-
membrane region; ABC transporter proteins which have
recently demonstrated to enhance seed yield and quality
in chickpea [51]. The functional co-expression network
capturing some key genes which had some orthologs dem-
onstrated to regulate seed development, implies that inte-
gration of co-expression can be one of the strategies to
identify keys underlying major agronomic traits in crops.
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Cis-acting regulatory elements (CAREs) are major
switches for transcriptional regulation of a dynamic net-
work of gene expression regulating different biological
processes such as abiotic stress responses, hormone re-
sponses and developmental processes [85]. Further bio-
informatics analysis showed that three of the four hub
genes (Glyma06g44510, Glyma12g33280, Gly-
ma19g28070) together with others possess seed-related
cis-elements, thus, GCN4_motif, MSA-like, RY-element,
circadian clock and ABRE element (Additional File 6:
Table S6) [53–55, 86]. The predicted candidate genes es-
pecially the hub-genes will be validated in our future
works to ascertain their actual roles in seed weight regu-
lation via overexpression, CRISPR/Cas9 and other func-
tional methods.

Conclusion
The genetic architecture of YHSBLP planted in summer
are regulated by varied QTNs unevenly distributed on
the 20 chromosomes. Seventeen QTNs were detected
concurrently representing 43.54 and 8.13% of the total
QTNs by the two SLMs and six MLMs, respectively.
Among the six MLMs, mrMLM and pLARmEB are most
robust in detecting more QTNs. A number of SNPs in-
cluding Gm08_15803242, Gm09_3461722, Gm13_
43480280 and Gm14_40721910/ Gm14_40721920 de-
tected by multiple models in at least two environments
could further be validated and used for marker-assisted
breeding (MAB). In all, thirty-six candidate genes that
may regulate seed weight in soybean were identified.
These will be useful in comparative genomics aimed at
unraveling the molecular mechanism underlying seed
development/weight in soybean. Four hub genes viz.,
Glyma06g44510, Glyma08g06420, Glyma12g33280 and
Glyma19g28070, were identified by the integration of
co-expression network. All the hub genes were found to
have higher expression in the seeds of high HSW geno-
types than low HSW at R5 stage except Glyma12g33280,
therefore, they could be cloned to study their regulating
role in seed development. The findings in this study
would be valuable for breeding geared toward desirable
seed weight via MAB and haplotype-based breeding
scheme.

Materials and methods
Germplasm, field evaluation and phenotyping
The tested panel named as YHSBLP includes a total of
573 breeding lines adapted to Chinese Yangtze-Huai river
region for both grain and vegetable soybean use. All lines
were obtained from National Center for Soybean Im-
provement, Nanjing Agricultural University (NAU),
Nanjing-China. This population was mainly derived from
the core parents in breeding programs (Nannong 86–4,
Nannong 88–48, Yuchu 4 and Nannongcaidou 5), other

local and foreign elite cultivars. The hybrid method was
used to select pods in F2-F4 generation of each combin-
ation, and the high-yield and good plant type were se-
lected in F5-F6 generation. The lines selected for this study
comprised high-yield and stable lines in F8-F14 generation.
Field evaluation of the population was conducted in

Jiangpu (Latitude 33°03′ N; Longitude 118°63′ E), Ex-
perimental Station of NAU in summer 2013, 2014, 2017
and 2018 coded E1, E2, E3 and E4, respectively (Add-
itional File 9: Table S8, or available in the National Cen-
ter for Soybean Improvement website, http://ncsi.njau.
edu.cn/info/1150/2069.htm). The lines were planted in
randomized complete block design with 50 cm × 50 cm
hill plots in 3 replications. All recommended agronomic
and cultural practices were followed. A 100-seed weight
(HSW) for each replication was measured with 2 tech-
nical repeats at 13% moisture content via electronic bal-
ance. The mean of each genotype from the 2 technical
repeats were computed for each replication.

Statistical analysis of 100-seed weight
Data collected were subjected to analysis of variance
(ANOVA) in SAS (SAS Institute, 2010. SAS/STAT soft-
ware version 9.2. SAS Institute Inc., Cary, NC) following
statistical model:

ymlo ¼ μþ Gm þ El þ GEml þ Ro lð Þ þ εmlo;

where ymlo stands for the individual observation of mloth

experiment unit, μ is the total average HSW, Gm is the
effect of the mth genotype, El is the effect of the lth envir-
onment, GEml is the interaction effect between the mth

genotype and the lth environment, Ro(l) is the effect of
the oth block within the lth environment, and εmlo is the
residual error. All factors were considered as random.
Descriptive statistics such as mean, standard error of

mean, kurtosis and skewness were computed in each envir-
onment with OriginPro 8 Statistical Software (Origin Cor-
poration, Northampton, MA, USA) whereas variation in
HSW among the genotypes was visualized using Violin plot
with ggplot2 package in R [87]. Broad-sense heritability (h2)
were computed for the combined environment following
h2 ¼ σ2g=ðσ2g þ σ2ge=nþ σ2e=nrÞ where σ2g is the genotypic

variance, σ2ge is the genotype by environment interaction

variance, σ2e is the error variance, n is the number of envi-
ronments, and r is the number of replications [88].

Genotyping
The DNA sample of each accession was genotyped by
the Restriction site-associated DNA sequencing (RAD-
seq) technology to generate high throughput SNPs.
Briefly, the genomic DNA of the 573 accessions was ex-
tracted from young leaves using the CTAB method [89].
All DNA fragments between 400 bp and 600 bp were
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obtained by TaqI digestion. The fragments were se-
quenced using an Illumina HiSeq 2000 instrument with
a paired-end reads length of 90 bp(including 6 bp index)
of read length [90]. All sequence reads were aligned
against the reference Glyma.Wm82.a1.v1.1 [91] using
SOAP2 software [92], and SNP calling was performed by
RealSFS software [93]. The criteria filtering SNPs of the
573 accessions were as follows: a rate of missing and
heterozygous allele calls ≤30%, minor allele frequency
(MAF) ≥ 5%. The fastPHASE software [94] was used for
genotyping the SNP imputation after the heterozygous
alleles were turned into missing alleles, resulting in 61,
166 high-quality SNP markers (Available on NCBI data-
base: PRJNA648781, or available in the National Center
for Soybean Improvement website, http://ncsi.njau.edu.
cn/info/1149/2070.htm). The SNP density plot was con-
structed with CMPlot package in R [95].

Genetic diversity, population structure and haplotype
block
The filtered SNPs were further pruned using the –
indep-pairwise command option of pLINK. The pruned
SNPs were then used to estimate population structure
via ADMIXTURE V1.3.0 software [96]. In the ADMIX-
TURE setting, the number of clusters (K) was set from 1
to 10 initially; then, each Q and the relevant P-value was
estimated. The most likely number of subpopulations
was determined using the method described in Evanno
et al. [97]. Principal Component Analysis (PCA) was car-
ried out in Trait Analysis by aSSociation, Evolution and
Linkage (TASSEL) software, version 5.2 [98]. A pairwise
Nei’s genetic distance matrix was calculated in TASSEL
for Neighbor-joining tree construction.

Association mapping and haplotype block analysis
Two SLMs of GWAS viz. MLM (Q + K) and compres-
sion MLM (CMLM)(PCA + K) were conducted in TASS
EL 5.2 [98] and Genome wide Association Prediction
Tool (GAPIT) environment in R [99], respectively,
where Q matrix was obtained from population structure
computed in ADMIXTURE V1.3.0 software [96], kinship
matrix (K) was estimated in each software and 3 PCs
were used for PCA in the CMLM. A threshold value
(−log10(P) ≥ 4.00) was adopted to declare a significant as-
sociation of SNPs with seed weight.
Six MLMs viz. mrMLM [100], FASTmrMLM [101],

FASTEMMA [31], pLARmEB [102], pKWmEB [103]
and ISIS EM-BLASSO [104] were computed in R with
the package mrMLM.GUI (https://cran.r-project.org/
web/packages/mrMLM.GUI/index.html). In these
models, Q matrix was used to account for population
structure whilst the kinship matrix (K) was computed in
the mrMLM.GUI environment. A critical LOD value
was set at 3. The SNPs detected by at least 2 models in

least one environment was considered as relatively stable
SPNs. QTL naming was done following the nomencla-
ture of McCouch et al. [105], thus starting with ‘q’,
followed by an abbreviation of the trait name (HSW,
hundred seed weight) and the name of the chromosome,
followed by the number of QTL detected on the same
chromosome.
Haplotype block analysis of the relatively stable SNPs

across the 2 of the single-locus plus at least 2 multi-
locus models was conducted in Haploview software with
the four-gamete rule method with default parameters in
Haploview software version 4.2 [106, 107]. Duncan
Range Multiple test (pairwise comparison) was used to
assess variation in seed weight among accession group-
ings in each haplotype block at the significant level of
P ≤ 0.05.

Candidate genes prediction and analysis
Potential candidate genes were retrieved within 500 kb of
significant SNPs detected in at least 2 environments by ei-
ther single-locus models or multi-locus models in the G.
max William 82 reference gene models 1.0 in SoyBase
[108]. The functional annotations of model genes down-
loaded from SoyBase which were screened manually. The
predicted candidate genes were further compared with
their orthologs in other legume crops to confirm their
functions in relation to seed development using an Inte-
grative Platform to study gene function and genome evo-
lution in legumes(LegumePI) version 2 (http://plantgrn.
noble.org/LegumeIP) [109] and Legume Information Sys-
tem (LIS) (https://legumeinfo.org/) [110].
The sequence of 1.5 kb upstream (before ATG) of each

gene was obtained from Phytozome database (https://
phytozome.jgi.doe.gov). The obtained sequences were
then submitted to PlantCare database available on
http://bioinformatics.psb.ugent.be/webtools/plantcare/
html to identify cis-elements related to seed-related
functions in the promoter region of each gene [111].
A functional network of protein-protein interaction

among the predicted candidate genes and other related
genes were obtained via SoyNet (https://www.inebio.org/
soynet/serach.php) [58]. The functional network derived
from SoyNet was then visualized in standalone version of
Cytoscape software [112] and NetworkAnalyst 3 [113].

Validation of hub genes by real time quantitative
polymerase chain reaction (qRT-PCR)
Seven genotypes of YHSBLP with extreme differences in
HSW (comprising 2 and 5 genotypes with low HSW and
high HSW, respectively) were sampled at R5 and R7 stages
of seed development [114] of 2019 summer season at
Jiangpu Experimental station. Total RNA was isolated
using Plant RNA Extract Kit (TIANGEN Co., Ltd. China)
and complementary DNA (cDNA) synthesis obtained by
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using HiScript II QRT SuperMix for qPCR (+gDNA
wiper) (Vazyme Biotech, Nanjing, China). The enzyme 2x
ChamQ™ SYBR qPCR Master Mix Kit (Vazyme Biotech,
Nanjing, China) was used following standard protocol and
program in a Light Cycler 480 system (Roche, Roche
Diagnostic, Basel, Switzerland). Three biological and three
technical replicates were used. The GmActin 11 (Gly-
ma18g52780) was used as a housekeeping gene to
normalize the relative expression level in R5 and R7 stages
of the selected genotypes seed. The primers used for qRT-
PCR are presented in Additional File 8: Table S7.
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