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Abstract

Background: Rice is an important human staple food vulnerable to heavy metal contamination leading to serious
concerns. High yield with low heavy metal contamination is a common but highly challenging goal for rice
breeders worldwide due to lack of genetic knowledge and markers.

Results: To identify candidate QTLs and develop molecular markers for rice yield and heavy metal content, a total
of 191 accessions from the USDA Rice mini-core collection with over 3.2 million SNPs were employed to investigate
the QTLs. Sixteen ionomic and thirteen agronomic traits were analyzed utilizing two univariate (GLM and MLM) and
two multivariate (MLMM and FarmCPU) GWAS methods. 106, 47, and 97 QTLs were identified for ionomics flooded,
ionomics unflooded, and agronomic traits, respectively, with the criterium of p-value < 1.53 × 10− 8, which was
determined by the Bonferroni correction for p-value of 0.05. While 49 (~ 20%) of the 250 QTLs were coinciding with
previously reported QTLs/genes, about 201 (~ 80%) were new. In addition, several new candidate genes involved in
ionomic and agronomic traits control were identified by analyzing the DNA sequence, gene expression, and the
homologs of the QTL regions. Our results further showed that each of the four GWAS methods can identify unique
as well as common QTLs, suggesting that using multiple GWAS methods can complement each other in QTL
identification, especially by combining univariate and multivariate methods.

Conclusions: While 49 previously reported QTLs/genes were rediscovered, over 200 new QTLs for ionomic and
agronomic traits were found in the rice genome. Moreover, multiple new candidate genes for agronomic and
ionomic traits were identified. This research provides novel insights into the genetic basis of both ionomic and
agronomic variations in rice, establishing the foundation for marker development in breeding and further
investigation on reducing heavy-metal contamination and improving crop yields. Finally, the comparative analysis
of the GWAS methods showed that each method has unique features and different methods can complement
each other.

Keywords: Rice, Ionomic traits, Agronomic traits, Multivariate GWAS

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: zp7@bch.msstate.edu
†Shuai Liu and Hua Zhong contributed equally to this work.
1Department of Biochemistry, Molecular Biology, Entomology and Plant
Pathology, Mississippi State University, Starkville, MS 39762, USA
Full list of author information is available at the end of the article

Liu et al. BMC Plant Biology          (2020) 20:441 
https://doi.org/10.1186/s12870-020-02603-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s12870-020-02603-0&domain=pdf
http://orcid.org/0000-0001-6047-8434
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:zp7@bch.msstate.edu


Background
Rice is an important cereal which feeds more than half the
world’s population [1]. With the rapid expansion of global
population, food security has become a highly challenging
task. Meanwhile, anthropogenic activities such as mining,
smelting, chemical engineering, energy related industry,
and broad application of pesticides & fertilizers in agricul-
ture have led to frequent heavy metal contamination in
soil, including Cadmium (Cd), Manganese (Mn), Nickel
(Ni), and metalloid Arsenic (As) [2]. Soil with excessive
heavy metal elements represses plant germination and
growth, resulting in a decrease of crop yield [3, 4]. Mean-
while, plants uptake the toxic heavy metal elements from
contaminated soil and accumulate them in edible plant
tissues, leading to food contamination.
The anaerobic growing conditions of flooded rice pad-

dies and the unique physiology of the rice plant allow
rice to take up some heavy metals from water and soils
in a highly efficient manner and sequester it in different
organs within the plants, including the grains consumed
by humans. The arsenic concentration in rice grains is
roughly about 10 times higher than other crops grown in
the same region even if the soil has no or limited an-
thropogenic contamination [5]. Rice has been reported to
contribute substantially to inorganic and organic arsenic
[6–8] intake by the human population in many regions of
the world. As was ranked on the top of the US Agency for
Toxic Substances and Disease Registry (ATSDR) Priority
List of Hazardous Substances since 1997 (https://www.
atsdr.cdc.gov/spl/index.html#2017spl). It has also been
listed as a toxic component by many other countries and
treated as a critical contaminant during food safety inspec-
tion. Cd is one of the most toxic heavy metals, and can
easily reach the food chain due to strong assimilation by
crops [9, 10]. Once absorbed, Cd is efficiently retained in
the human body and may cause it to stay throughout the
life span with an estimated half biology life between 6 to
38 years in kidney and between 4 to 19 years in the liver
(ATSDR, 1999).
In contrast to heavy metals, many mineral elements

are essential to humans but deficient in rice grains, for
example, zinc, calcium, and iron [11]. Increasing the
concentrations of these minerals can improve the nutri-
tional value of rice thus promoting human health for
those consuming rice as the staple food. However, it is
highly challenging to either increase the essential min-
erals or reducing the heavy metal due to lack of under-
standing of the genetic bases and molecular mechanisms
of the related traits. Further, it is still poorly explored
whether the concentration of mineral or heavy metal is
associated with agronomic traits. Although there are
multiple rice association mapping studies with specific
minerals, heavy metals, and agronomic traits, respect-
ively, these studies used either different mapping

populations or different statistical analyses [12–14].
Therefore, each of the studies revealed some but not all
facets of the genetic bases of rice variations. Recent ac-
cessibility to comprehensive sequence data, and the de-
velopment of software facilitating the use of more
powerful statistical analytics, opens the opportunity for
more comprehensive study and understanding of the
genetic bases of these traits.
The USDA Rice Core Collection, containing about

10% of the whole NSGC (National Small Grains Collec-
tion) Rice Collection, was assembled by stratified ran-
dom sampling method in 2002, which has been
evaluated comprehensively for 25 characteristics and
proven to be highly representative of the whole collec-
tion [15]. The Rice Mini-Core Collection contains ap-
proximately 10% of the Core Collection [16]. The grain
mineral concentrations have been analyzed under
flooded and unflooded growth conditions [17], and the
agronomic traits have also been evaluated for the Core
Collection [18]. But most of these researches were done
before the genome sequencing data was available.
Biparental genetic mapping and Genome-wide-

association-study (GWAS) are the two different tools for
mapping Quantitative Trait Locus (QTL). GWAS involves
studying natural populations with greater historical re-
combination events, which could detect more QTLs from
broader genetic variation [19]. Therefore, it can explore
genetic resources that cannot be revealed by studying the
offspring of biparental crosses in linkage mapping [20].
GWAS has been applied successfully to a variety of plants,
including Arabidopsis [21], maize [22, 23], barley [24],
wheat [25], rice [26, 27], soybean [28], and cotton [29]. It
is a critical tool for crop improvement.
Univariate GWAS is a mapping method that has been

successfully used for gene mapping in plants and ani-
mals. However, a large number of genes may not be de-
tected (false negative QTLs) due to the confounding
problems between population structure, kinship, and
markers. The population structure causes genome-wide
linkage disequilibrium between unlinked loci, which
leads to statistical confounding in genome-wide associ-
ation studies. Mixed models have been shown to deal
well with the confounding effects of a large number of
small effect loci in the diffusion background, but they do
not always account for large effect loci [30]. Multivariate
GWAS method considers the confounding problem be-
tween covariates and test marker to detect more QTLs
and previous reports showed that multivariate GWAS
had lower FDR when using the same threshold compared
with univariate GWAS method [30]. In recent years, a large
number of multivariate GWAS methods have been devel-
oped, including MLMM (multi-locus mixed-model) [30],
FarmCPU (Fixed and random model Circulating Probabil-
ity Unification) [31], mrMLM (multi-locus random-SNP-
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effect MLM) [32], FASTmrMLM (fast mrMLM) [33], FAS-
TmrEMMA (fast multi-locus random-SNP-effect efficient
mixed model analysis) [34], pLARmEB (polygenic-
background-control-based least angle regression plus
empirical Bayes) [35], pKWmEB (integration of
Kruskal-Wallis test with empirical Bayes) [36], ISIS
EM-BLASSO (iterative modified-sure independence
screening expectation-maximization-Bayesian least ab-
solute shrinkage and selection operator) [37], and
GPWAS (Genome-Phenome Wide Association Study)
[38]. The MLMM [30] uses forward-backward step-
wise linear mixed-model regression, forward stepwise
uses the most significant associated SNP as a new
fixed-effect covariate (cofactor) and creates a new
model until reaching a pre-specified maximum num-
ber of forward steps, backward stepwise means to re-
move least significant SNP and create a new smaller
model until only one selected marker is left. Whereas,
FarmCPU [31] performs marker tests with associated
markers as covariates in a Fixed Effect Model (FEM),
and then optimization on the associated covariate
markers in a Random Effect Model separately. These
multivariate GWAS methods were successfully applied
to several different crop species, including cotton
[39], rice [40, 41], foxtail millet [42], soybean [43, 44],
maize [45, 46], and wheat [47, 48].
GWAS has been widely used for rice mapping re-

search. However, most of the studies used univariate
methods. The multivariate analysis methods and the
deep DNA sequencing resources are still poorly ex-
plored. For example, Yan et al.(2014) [49] performed
limited GWAS on agronomic traits using only 155 mo-
lecular markers (154 SSR makers and one indel marker).
However, the related loci could not be precisely defined
in the study due to limited number of markers. With the
development of the sequencing technology, more
markers, especially SNP markers, become available and
have been shown to be successful in association map-
ping studies [50, 51]. The resequencing data of the mini
core has been deposited to SRA database https://www.
ncbi.nlm.nih.gov/sra (Accession: PRJNA301661) recently
[52], which opened an opportunity for us to improve
GWAS with higher density of genotypic data and evalu-
ate the validity of different GWAS analysis methods. In
order to identify all possible QTLs controlling the
ionomic and agronomic traits for marker development
and gene characterization, we employed two univariate
GWAS methods (GLM and MLM) and two multivariate
GWAS methods (MLMM and FarmCPU) to detect the
related QTLs in USDA rice mini core collection. The
analyzed ionomics traits included As, Ca, Co, Cd, Cu,
Fe, K, Mg, Mn, Mo, Ni, P, Rb, S, Sr, and Zn) and the
agronomic traits involved amylose [AMYLOSE], awn
type [AWNTYPE], flowering time [DAYSFLOWER], hull

color [HULLCOLOR], hull cover [HULLCOVER], kernel
length [KERNELLEN], kernel width [KERNELWID],
kernel rate [KERNELRAT], kernel weight [KERNEL
WT], lodging [LODGING], panicle type [PANICLET
YPE], plant height [PLANTHT], and plant type [PLAN
TTYPE]). Our results showed that we successfully re-
mapped 49 loci/genes which have been shown to play
essential roles in rice agronomic and ionomic trait con-
trol. Meanwhile, over 200 novel loci involved in heavy
metal, minerals, and agronomic traits control were dis-
covered. In addition, multiple candidate genes involved
in ionomic and agronomic traits control were identified
via DNA sequence, expression, and homologous ana-
lyses. These studies provided novel insights into the gen-
etic basis of ionomic and agronomic trait variations in
rice and possible correlations among these traits. The re-
sults will have critical reference value in further fine
mapping the related genetic loci and in guiding rice
breeding.

Results
Characteristics of SNPs
High-quality re-sequencing raw data of 191 accessions
derived from the USDA Rice Mini Core (Supplemen-
tary Table S1), was retrieved from NCBI SRA data-
base (Accession: PRJNA301661) [52]. Genotyping of
the 191 accessions were performed by GATK soft-
ware. A total of 3,259,478 SNPs was obtained after
filtration by minor allele frequencies (≥0.05) and in-
tegrity (≥0.4). Imputed SNPs, which were generated
by Beagle 5.0 software [53], were used for further
analyses. Distribution of these SNPs in the genome is
summarized in Table 1 and Fig. 1a, and the overall

Table 1 Summary of the SNPs across 12 chromosomes of Oryza
sativa

Chromosome Number of SNPs Length of
Chromosome (bp)

Density of SNP
(bp/SNP)

1 375,296 43,270,923 115.30

2 301,111 35,937,250 119.35

3 294,312 36,413,819 123.73

4 279,049 35,502,694 127.23

5 253,001 29,958,434 118.41

6 287,238 31,248,787 108.79

7 253,651 29,697,621 117.08

8 261,070 28,443,022 108.95

9 212,238 23,012,720 108.43

10 222,521 23,207,287 104.29

11 289,053 29,021,106 100.40

12 230,938 27,531,856 119.22

Total 3,259,478 373,245,519 114.51
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SNP density in the genome was 114.51 (bp/SNP). The
number of SNPs ranged from 212,238 to 375,296
across the twelve rice chromosomes. Chromosome 4
held the minimum marker density with 127.23 (bp/
SNP), while chromosome 11 exhibited a maximum
marker density with one SNP per 100.40 bp.

Population structure and linkage disequilibrium
Admixture analysis divided the 191 accessions into four
ancestries, including Indica (63 accessions), Aus (37 acces-
sions), Temperate Japonica (28 accessions), and Tropical
Japonica (31 accessions) under the best K model (K = 4)
(Fig. 1b), which was determined by the lowest CV (cross-

Fig. 1 Sequence and structure analysis of USDA mini core collection. a Distribution of SNPs on the rice chromosomes. Number of SNPs per 0.1
Mb window was shown as a color index (bottom right), b Ancestries analysis for each individual was inferred using admixture, c Cross-validation
error (CV) score across different K value. The best K value (K = 4) was chosen according to the lowest CV score for the admixture analysis, d
Phylogenetic tree of 191 rice accessions. Green indicated Indica (IND) rice, Red indicated Aus (AUS) rice, Purple represented Tropical Japonica
(TRJ) rice; Blue represented Temperate Japonica (TEJ) rice, e PCA showing genetic variation in the rice accessions with first and second PCs, the
color was defined by current Admixture analysis. f PCA showing genetic variation in the rice accessions with second and third PCs, the color was
defined by current Admixture analysis. g Genome-wide average LD decay estimated from the whole population and each subpopulation
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validation error) score (Fig. 1c). Thirty-two accessions are
classified as admixture (ADM) since the ratio from each
single subpopulation is below 70%.
In order to reduce the amount of calculations, high-

quality SNPs (SNPs integrity above 0.8) were selected to
construct a maximum likelihood (ML) tree to illustrate
the phylogenetic relationship of the 191 rice accessions
(Fig. 1d). The population was divided into four subpopu-
lations and the color for each clade was determined ac-
cording to the Admixture analysis results. The
relationship obtained from phylogenetic tree is in line
with the Admixture analysis.
Principal component analysis (PCA) was performed

based on the 3,259,478 SNPs. Four conceivable subpop-
ulations were separated by PC1, PC2, and PC3. The first
three principal components (PCs) explained over 50% of
the genetic variation. The first PC separates Indica and
Japonica subpopulations (35.70%), the second PC distin-
guishes the Aus and Indica varieties, while the third PC
separates Temperate Japonica and Tropical Japonica var-
ietal groups (Fig. 1e and f). Based on the results from
the Admixture analysis, phylogenetic tree and PCA, the
population was divided into four subgroups. In addition,
the decay of LD with the physical distance between
SNPs in all population occurred at 191 kb (r2 = 0.2) (Fig.
1g), which is similar to that of a previous study [54].
Indica subpopulation exhibited the most rapid LD decay
and Temperate Japonica showed the most extended LD.

Correlation of different traits
Correlation analyses between grain ionomics in flooded
environment and agronomic traits (Supplementary Fig.
S1a), between grain ionomics in unflooded environment
and agronomic traits (Supplementary Fig. S1b), and be-
tween grain ionomics in flooded versus unflooded
growth conditions (Supplementary Fig. S1c) were con-
ducted. The results showed that days to flowering has
strong correlation with Rb in flooded (0.53) and
unflooded (0.57) (Supplementary Fig. S1a and b) envi-
ronments. The accumulation of Cd, Mo, and Rb in rice
grain in flooded environment and unflooded environ-
ment are correlated at r = 0.52, 0.81, and 0.60, respect-
ively (Supplementary Fig. S1c).

Genome-wide association study by univariate GWAS and
multivariate GWAS
Sixteen grain ionomic traits (As, Ca, Co, Cd, Cu, Fe, K,
Mg, Mn, Mo, Ni, P, Rb, S, Sr, and Zn) under flooded
and unflooded conditions were the same as reported
[17]. Thirteen agronomic traits, including AMYLOSE,
AWNTYPE, DAYSFLOWER, HULLCOLOR, HULL-
COVER, KERNELLEN, KERNELWID, KERNELRAT,
KERNELWT, LODGING, PANICLETYPE, PLANTHT,
and PLANTTYPE [18] were shared by Yan as reported

[55, 56] and recorded using the methods described by Li
et al [57–59]. All these traits were analyzed using two
univariate GWAS (GLM and MLM) and two multivari-
ate GWAS (MLMM and FarmCPU) methods to identify
QTLs. A total of 106 significant QTLs (p-value < 1.53 ×
10− 8) were detected to be associated with concentrations
of 9 ionomic traits (Cd, Co, Cu, K, Mo, Ni, Rb, Sr, and
Zn) in rice grain under flooded condition, in which 63,
68, 17, and 44 significant QTLs were identified by GLM,
MLM, MLMM, and FarmCPU, respectively (Fig. 2 and
Supplementary Fig. S4b). For Cd, twenty-eight signifi-
cant QTLs were identified. Three of them located near
published genes (CAL1 [14], OsHMA2 [60], rgMT [61])
which have shown to be related to Cd accumulation or
resistance. Seven of them were identified in previous
mapping studies using univariate methods (Supplemen-
tary Table S2). All of the seven QTLs were identified by
univariate GWAS methods (GLM and MLM) but only
two of the seven were also detected by multivariate
methods (MLMM and FarmCPU) in our study. For Co,
a total of eleven significant QTLs were detected. Two
(one was identified by univariate methods and the other
was detected by FarmCPU) of them co-located with
previously reported QTLs. Nine of them were new QTLs
discovered in the current study, MLMM method discov-
ered 2 significant QTLs and FarmCPU method identified
7 QTLs, respectively. Three QTLs were detected to be
significantly associated with K, one of which (only de-
tected by FarmCPU) was also detected in previous stud-
ies [62]. For Zn, ten significant QTLs were identified,
three of which co-located with previously reported loci
[12, 13, 62, 63]. Among them, one significant QTL pos-
ited around 18,001,929 bp of Chromosome 7 was de-
tected by both univariate and multivariate methods,
which located near reported QTL qZN-7 [13]. The other
two QTLs were detected by FarmCPU method only.
In the unflooded environment, only 47 QTLs were de-

tected to be significantly associated with Cd, Fe, Mo, Ni,
and Zn concentration. Specifically, 29, 25, 10, and 20 sig-
nificant QTLs were identified by GLM, MLM, MLMM,
FarmCPU, respectively (Fig. 2 and Supplementary Fig.
S4c). Twenty-three identified QTLs were related to Cd,
one of which located near CAL1 gene [14], eight QTLs
co-located with previous studies (Supplementary Table
S2). Among the eight co-localization QTLs, five were de-
tected by univariate methods and three were identified
by multivariate methods. For Fe, seven significant QTLs
were identified, two of which were also reported by pre-
vious studies [62, 63], and both were detected by Farm-
CPU only in the current study. We noticed that for the
traits that many QTLs were identified using GLM and
MLM methods, the numbers of QTLs identified by
MLMM and FarmCPU were less as shown in the case of
Cd and Mo. When GLM and MLM method failed to
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identify or only identified a few significant QTLs, QTLs
were successfully identified by MLMM and FarmCPU
methods as shown in the case of identifying QTLs for
Co, Fe, K, and Zn concentration regulation (Supplemen-
tary Fig. S2). The QQ-plots in Fig. S2 (c) shows the power
of MLMM and FarmCPU, which indicated no evidence
for inflation but strong evidence for real effects. In con-
trast, the QQ-plots of GLM and MLM in Fig. S2 (c) shows
the tendency of false positive peaks. This observation was
further confirmed when mining the key candidate genes
controlling ionomic and agronomic traits as shown in the
section below. Interestingly, only 3 of the 106 (ionomic)

QTLs identified in flooded growth condition were shared
with the QTLs identified in unflooded condition. The
three QTLs (QTLs marked with an asterisk on Chromo-
some 5, 6, and 12; Fig. 2, Supplementary Fig. S2, and Sup-
plementary Table S2) share by both growth condition
were associated with Cd and Mo concentration regulation,
indicating that the traits of these three QTLs were not im-
pacted by water conditions. Furthermore, several loci were
shown to be associated with more than one trait, indicat-
ing these QTLs may be pleiotropy. For example, the re-
gion around 15.5Mb on chromosome 2 is associated with
Cd and Mo (Fig. 2).

Fig. 2 QTLs related to ionomic traits. a Distribution of significant QTLs for ionomic traits across the 12 chromosomes of rice under flooded and
unflooded environment. Leading SNP was mapped to the chromosome to represent the QTLs’ physical location (Mb). The physical position of
each lead SNP was shown on the left side and the corresponding ionomic traits displayed on the right side. QTLs from different growth
conditions were distinguished by different colors: green, flooded condition; blue, unflooded condition. An asterisk indicates the locus which was
detected from both conditions, b The Venn diagram shows the numbers of overlapped loci within or between different conditions
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For agronomic traits, a total of 97 significant QTLs (p-
value < 1.53 × 10− 8) were detected for the thirteen agro-
nomic traits described above except for KERNELWT
and PLANTTYPE (Fig. 3, Supplementary Table S2). In
detail, 39, 16, 29, and 50 significant QTLs were identified
by GLM, MLM, MLMM, and FarmCPU, respectively
(Supplementary Fig. S4a). Wax [64] and ALK [65] genes
were shown to be significantly associated with amylose
content, which is consistent with previous reports. Gain
size is a key agronomic trait that strongly linked to yield
and quality. Many QTLs have been reported associating
with rice grain size, which is decomposed into grain
length, width, and thickness (GS3 [66], GS5 [67], GW5
[68], GW8 [69], GL7 [70], TGW6 [71], etc.). In this
study, four types of rice grain size-related traits included
kernel length (KERNELLEN), kernel width (KERNELWI

D), kernel rate (KERNELRAT), and kernel weight
(KERNELWT) were analyzed. A total of 13 QTLs were
detected by univariate and multivariate GWAS methods.
Among them, three were detected by univariate (GLM
or MLM) GWAS methods and twelve of them were de-
tected by multivariate (MLMM and FarmCPU) GWAS
methods. Six, two, and five of the 13 QTLs were found
to be associated with KERNELLEN, KERNELWID, and
KERNELRAT, respectively. No significant QTL was
shown to be associated with KERNELWT. Remarkably,
one QTL (Chromosome 3 position 16,733,441) was de-
tected by all the four methods (Supplementary Fig. S3f).
The QTL locates on gene GS3 [66], which is a major
gene regulating grain size and organ size. It is worth not-
ing that, five more significant SNPs were identified by
FarmCPU and one of them located on chromosome 4

Fig. 3 Distribution of significant QTLs for agronomic traits on 12 Chromosomes. Leading SNP was mapped to the chromosome to represent the
QTLs’ physical location (Mb). The physical position of each lead SNP was shown on the left side and the corresponding agronomic traits
displayed on the right side. QTLs of different type of agronomic traits were distinguished by different colors: red, amylose; blue, grain size (kernel
length, kernel width, and kernel rate); black, hull cover and hull color; purple, days to flower; brown, panicle type; green, lodging and awn type
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situated nearby the NAL1 gene, which has been shown
to be related to rice yield [72]. For the trait of KERNEL
WID, two significant QTLs were only detected by
MLMM method solely and other methods failed to iden-
tify candidate QTLs. One of the identified QTLs posi-
tioned around 5,364,561 bp of chromosome 5, which
was found approximately 0.56 kb apart from a well-
known GW5 gene controlling rice grain width (Supple-
mentary Fig. S3g) [73]. These results demonstrated the
power of GWAS, especially the power of the multivariate
(MLMM and FarmCPU) GWAS methods.

Mining candidate genes of agronomic-related traits
Lodging and Plant height are both related to cell wall
properties, which could impact rice yield. Appropriate
plant height and the strong stem are required for stable
production [74]. A cluster of SNPs around 33.4Mb on
chromosome 1 (Lodging: 33,010,693 to 33,975,764 with
leading SNP at 33,469,251; Plant height: 33,181,529 to
33,730,067 with leading SNP at 33,363,796) is shown to
be significantly associated with lodging and plant height
(Supplementary Fig. S3j and k). Through LD block ana-
lysis, we defined a 72.37 kb blocks (33,458,683- 33,531,
049) containing 12 genes to be the candidate locus.
Among these genes, OsPME6 (Os01g0788400) is anno-
tated as pectin methylesterase 6, which is related to the
cell wall modification process. We further conducted
blastP analysis with Arabidopsis thaliana and found that
it shares high homology (E value = 3E-178) with Arabi-
dopsis gene PME18 (AT1G11580) (Supplementary Table
S3). The expression of PME18 increased dramatically
under hyper gravity stimulus. It is speculated that pectin
esterases induced pectin demethylation of carboxyl
groups which increased the rigidity of pectin gel in the
cell wall through calcium bridges [75]. Therefore, it is
worth to test if OsPME6 regulates rice lodging and
height.
Flowering time is another important trait critical to

rice production. Rice is a typical short-day (SD) flower-
ing plant whose flowering is greatly affected by day
length. A number of genes [76–79] have been reported
to regulate rice flowering-time. In the current study, a
total of three QTLs were significantly associated with
the flowering time. Two of them were detected by Farm-
CPU exclusively on Chromosome 7 and 10. The other
QTL on Chromosome 6 was detected by all the four dif-
ferent GWAS methods (Supplementary Fig. S3c). The
haplotype analysis showed that this region only harbored
2 genes (OsPLL9 and OsPLL10). Among them, OsPLL9
(Os06g0583900) located 7.15 kb away from the leading
SNP. This gene is a homolog of pectate lyase gene,
which may play crucial roles during rice panicle develop-
ment [80]. OsPLL9 is highly expressed in Stamen (one
day before flowering), Palea (one day before flowering),

and Panicle5 (heading stage) (Supplementary Fig. S5).
Thus, OsPLL9 has the potential to be a candidate gene
with a critical role in rice flowering.

Mining candidate genes of ionomic traits
As a result, 28 and 23 significant QTLs were detected to
be associated with Cd concentration in the flooded and
unflooded environment, respectively. QTLs near CAL1
(Chr2:25,190,487-25,191,188) were associated with rice
grain Cd accumulation in both flooded (Leading SNP;
Chr2: 24,968,588) and unflooded condition (Leading
SNP; Chr2: 25,143,071). CAL1 was annotated as a
defensin-like protein, which could regulate Cd accumu-
lation of rice leaves through translocating Cd from cyto-
sol into extracellular spaces, but not rice grains [14]. We
then further analyzed the genes around the QTLs and
found that there is an ABC transporter (Os01g0121700),
its phosphorylation level was up-regulated under high
Cd treatment (100 μM CdCl2·2.5H2O) and it has been
shown that the transporter reduces the concentration of
Cd 2+ through transporting PCs-Cd into vacuole [81].
Another QTL (Chr6: 29,733,715) is also showed strongly
related to Cd concentration in rice grain. This QTL lo-
cates near a known gene OsHMA2 (about 253 kb away
from the leading SNP, but not in LD region), which may
decrease rice grain Cd concentration through suppress-
ing the expression level of OsHMA2 [60]. In addition,
significantly associated SNP (Chr11: 29,014,045) posited
near rgMT gene, which was a metallothionein protein
responded to the Cd stress in E. coli [61]. Comparing
the QTLs detected in this study with previously reported
studies, we found that over fifteen QTLs were co-
localized with reported loci. The details were shown in
Supplementary Table S2. Meanwhile, thirty-two new
QTLs were identified.
By applying the procedure mentioned in the methods

section, we obtained a list of genes that represent plaus-
ible candidates of the causal gene for each of the loci
controlling elemental concentrations in rice (Supple-
mentary Table S3 and S5). We select three loci associ-
ated with Cd for further investigation with the aim of
identifying the causal novel genes. A significant QTL as-
sociated with Cd was identified on Chromosome 1
around nucleotide at 4,348,829 bp with p-value 3.37E-10
(MLM method). This QTL posited within a 9.97 kb
block (Chr1: 4,345,517 - 4,355,489) containing only one
candidate gene OsWRKY102 (Os01g0182700) (Fig. 4a
and b). BlastP analysis showed that the OsWRKY102
(Os01g0182700) was highly homologous (1.00E-58) to
Arabidopsis WRKY13 (AT4G39410) gene (Supplemen-
tary Table S4). WRKY13 activates the expression of gene
PDR8 that encodes a Cd2+ extrusion pump, resulting in
reduced Cd accumulation [82]. The expression profile
from public data showed that OsWRKY102 was
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intensively higher expressed in stem comparing to other
tissues (Supplementary Fig. S6a). When treated with a
high concentration of cadmium, the expression level of
OsWRKY102 increased rapidly in both shoot and root
(Supplementary Fig. S6b). Overall, the results suggested
that OsWRKY102 responds at high-level cadmium
treatment and regulates cadmium uptake and accu-
mulation in rice. Another QTL (Chromosome 5 pos-
ited around 14,941,717) was identified in a flooded
environment. Through LD analysis, we defined an

18.65 kb block (Chr5: 14,930,444 - 14,949,090) con-
taining two genes, Os05g0321600 and Os05g0321900.
Among them, Os05g0321900 (OsWRKY75) was anno-
tated as DNA-binding WRKY domain-containing pro-
tein (Fig. 5a). BlastP analysis found that this gene
shared high homology (4E-52) with WRKY55
(AT2G40740) in Arabidopsis thaliana, which regu-
lated gold uptake and tolerance. Remarkably, one
QTL (Chromosome 6 around position 11,906,590)
was identified under both growth environments (Fig.

Fig. 4 Identification of OsWRKY102 as a Cadmium concentration QTL in rice grain in flooded condition using MLM method. (a) Genome-wide
association signals on chromosome 1, (b) Genome-wide association signals in the region at 4.299–4.399 Mb on chromosome 1 and LD
heatmap (bottom)
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5a and b). This SNP is a singleton, and we failed to
define haplotype blocks for it. For further mining
causal gene, we expanded the region as we mentioned
in the method section. Finally, we found an important
gene OsMan07 (Os06g0311600) was only 24.75 kb
away from the leading SNP. This region was reported
in previous study [83]. BlastP analysis found this gene
had a high similarity (6E-108) to Man3 (AT3G10890)
gene in Arabidopsis thaliana (Supplementary Table
S4). Overexpression of MAN3 enhanced Cd accumu-
lation and tolerance, whereas loss-of-function of
MAN3 led to decreased Cd accumulation and toler-
ance [84]. All the genes’ expression patterns located in
the haplotype region associated with Cd were showed in
Supplementary Figure S7. Overall, thirty-two new QTLs
were identified in addition to precise identification of the
loci reported in previous Cd studies.
PIP2;6 has been suggested to be involved in arsenic

concentration control [85]. Although no SNP with
Bonferroni-corrected significant thresholds -log 10(p)
above 7.81 was discovered, there was an SNP peak with
-log(p) around 6 on the chromosome 4 near the pub-
lished gene PIP2;6 (Supplementary Fig. S2a), suggesting
that PIP2;6 is located near a candidate QTL revealed by
GWAS analysis.

Comparison of univariate and multivariate GWAS
methods
Our results demonstrated that there was not a single
method that was able to detect all the QTLs while many
loci were detected by all methods. The GS3 gene was
shown to be associated with grain length by all the four
tested methods. However, the GW5 gene was detected to
be related to grain width only by multivariate GWAS.
Similarly, the Cu related QTLs in flooded conditions
and Fe related QTLs in unflooded condition were also
detected by multivariate method only. Interestingly,
when a large number of QTLs were identified by the
univariate method, the QTLs identified by multivariate
method were substantially reduced. For example, over
29 QTLs for Cd were identified by univariate methods
in flooded and unflooded environments but only six
QTLs were identified by multivariate. Further, it ap-
peared that the multivariate methods were able to pin-
point the location of the QTLs more precisely on the
chromosome compared with the univariate methods in
many cases. As shown in Supplementary Figure 3f, the
peaks identified by univariate method were much broad
than the peaks identified by multivariate methods. On
the other hand, the univariate methods also identified
many loci exclusively. In the case of LODGING, the

Fig. 5 Genome-wide association analysis of Cd concentration with GLM, MLM, MLMM, and FarmCPU methods. a in flooded condition and, b
unflooded condition. Quantile-quantile plot of each model. Black arrows indicated candidate genes. The horizontal dot grey line and green dots
indicated the Bonferroni-corrected significance thresholds and SNPs at -log10(p) = 7.81. The horizontal solid grey line and red dots indicated the
Bonferroni-corrected significance thresholds and SNPs at -log10(p) = 8.51. The vertical dash grey lines indicate the common QTL detected in
flooded and unflooded condition
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QTL (candidate gene: OsPME6) located on chromosome
1 was only detected by GLM (Supplementary Figure 3j)
and this gene was related with cell wall formation bio-
logical process, indicating that some of candidate QTLs
might be ignored when we pursued lower FDR in multi-
variate methods.

Discussion
The reliability of the GWAS analyses
In this study, many previously reported loci important
for agronomic and ionomic traits were rediscovered.
The amylose controlling locus Wax [86] gene was
rediscovered by all four analysis methods and the ALK
[87] gene was mapped by the two univariate analysis
methods. The hull cover genes OsTCL2 [88] and
OsWOX3 [89] were mapped by the GLM and MLM
methods. The kernel length genes GS3 [66] were
mapped by all four methods and the NAL1 [72] was
mapped by the FarmCPU method. The kernel rate gene
GS3 was mapped by GLM, MLMM, and FarmCPU
methods and the kernel wide gene GW5 [73] was
mapped by the MLMM method. The two lodging genes
(OsSPL14 [90] and OsCESA9 [91]) were also successfully
mapped by univariate methods. Further, the three
known Cd related genes (CAL1 [14], OsHMA2 [60], and
rgMT [61]) were mapped by GLM and MLM methods.
Since 49 genes/loci with known functions had been suc-
cessfully remapped, the results confirmed the accuracy
of the imputed SNP dataset and the power of mapping
QTLs with GWAS. More importantly, these observa-
tions also suggested that the 201 new QTLs discovered
in this study are worth to be further validated.

Different GWAS analysis methods possess unique features
and complement each other
While many loci were mapped by all of the four tested
GWAS methods, each of the four methods identified
some of the function known loci exclusively. A kernel
length QTL was only identified by FarmCPU method
near the yield related gene NAL1 [72]. The kernel width
gene GW5 [73] on chromosome 5 was only mapped by
MLMM method. The lodging gene OsSPL14 [90] on
chromosome 8 was identified by GLM method alone,
and the lodging gene OsCESA9 [91] was only mapped by
FarmCPU. There were many genes were mapped by only
two or three of the four tested methods. For example,
the amylose gene ALK [87] on chromosome 6 was
mapped by univariate methods GLM and MLM; The
kernel rate gene GS3 [66] on chromosome 3 was
mapped by GLM, MLMM, and FarmCPU. These results
described above clearly demonstrated that all four
methods can be effectively used to perform GWAS ana-
lysis and able to identify some of the known loci. How-
ever, none of the methods identified all the previously

reported loci. Meanwhile, every method successfully
mapped some loci while the other three methods failed
to identify. Therefore, it is worth to test every method
when our goal is to identify as many of related loci as
possible. In addition, it is worth noting that the differ-
ences within univariate or within multivariate methods
are smaller compared to the differences between univari-
ate and multivariate methods. Therefore, our results sug-
gest that it is better to include at least one univariate
and one multivariate method in GWAS analyses for the
best coverage of the QTLs.

The relationship between rice grain ionome content and
environment
In this study, we conducted the ionomic test of rice
grain in flooded and unflooded environment. The results
showed the accumulation of most minerals and heavy
metals was significantly different in flooded and
unflooded environment, indicating the element accumu-
lation in rice grain was affected by water condition,
which was coherent with previous studies [92]. However,
the content of some minerals and heavy metals was less
affected by water conditions. Among them, Mo showed
the top consistent accumulation in both flooded and
unflooded conditions with correlation efficiency of 0.81,
followed by Rb of 0.60, and Cd of 0.52 (Supplementary
Fig. S1c). For the identified QTLs, the similar results
were obtained. Two Mo QTLs (Chr5:5.77Mb and
Chr12:25.93Mb) were repeatedly detected in both
flooded and unflooded growth conditions. This trend
was in agreement with previous study [93], suggesting
Mo accumulation in rice was steady and not significantly
affected by environment. For the Rb, we only identified
significant QTLs in flooded environment, which was not
consistent with the correlation study results. For the
third-ranked element - Cd, we repeatedly identified one
QTL (Chr6: 11.91Mb) in both flooded and unflooded
environments, respectively. Other two Cd concentration
related QTLs were detected in a proximate region
around 25Mb on chromosome 2 (24.97Mb in flooded
condition and 25.14Mb in unflooded condition). The re-
sults above suggested that Mo and Cd accumulation in
rice grain was barely affected by water conditions while
the other elements analyzed in this study were
dependent upon the irrigation conditions.

Potential application of the candidate new genes and
significant QTLs in future research and breeding
Forty-nine QTLs or genes with known functions in min-
eral, heavy metal, or important agronomic trait control
were rediscovered in the study. Additionally, 201 new
QTL loci with critical roles in regulating these traits
were identified. More importantly, multiple candidate
genes were identified following programmed and manual
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sequence analysis of the QTL loci in the mini core col-
lection. Cd and As contamination are a major global
concerns for rice production due to widespread contamin-
ation resulted from anthropogenic activities and their high
toxicity to humans [2]. Cd has an extremely long half-life in-
side the human body especially in the kidney and liver [94]
and inorganic As is a strong carcinogen. We identified 18
QTLs/genes which have been reported to play a role in Cd
content control and 32 new QTLs. Moreover, our analyzing
results suggested that genes OsWRKY102 (Os01g0182700),
OsWRKY75 (Os05g0321900), and OsMan07 (Os06g0311600)
are potential candidate genes involved in Cd control in rice.
Our results also suggested that the locus with PIP2;6 gene is
probably a QTL involved in As control, thus provided gen-
etic evidence to support prior reports of PIP2;6’s potential
function in rice, which were based on heterologous expres-
sion studies in Xenopus laevis oocytes and Arabidopsis [85].
The candidate genes involved in heavy metal content regula-
tion are important resources for understanding the under-
lying mechanism of heavy metal control and agriculture
breeding. We found that OsPME6 has the potential to regu-
late rice lodging and height and OsPLL9 has the potential to
be a candidate gene with a critical role in rice flowering.
Plant height, lodging, and flowering time regulation are crit-
ical traits directly related to crop production. Identifying
these candidate genes provided new resources for marker de-
velopment in rice breeding and molecular investigation on
the control mechanism of lodging and flower timing. How-
ever, it is critical to note that all these candidate genes were
identified base on sequence, expression, and homologous
analysis of the QTLs, further tests are required to confirm
the results before final conclusions.

Conclusion
In this study, comprehensive GWAS analyses for
ionomic and agronomic traits based on 3,259,478 SNPs
were performed using two univariate methods and two
multivariate methods. Under the criterium p-value
< 1.53 × 10− 8, 106, 47, and 97 QTLs were identified for
ionomics in flooded environment, unflooded environment,
and agronomic traits, respectively. Under flooded environ-
ment, 28, 11, 4, 3, 40, 3, 4, 3, and 10 significant QTLs were
shown to be associated with Cd, Co, Cu, K, Mo, Ni, Rb,
Sr, and Zn, respectively. In unflooded condition, 23, 7, 7,
7, and 3 significant QTLs were detected to be associated
with Cd, Fe, Mo, Ni, and Zn, respectively. In addition, 18,
3, 5, 19, 6, 5, 2, 28, 4, and 7 significant QTLs were tightly
associated with amylose concentration, flowering time,
hull color, hull cover, kernel length, kernel rate, kernel
width, lodging, panicle type, and plant height, respectively.
Detailed analysis of the QTLs revealed that 49 of the iden-
tified QTLs are co-localized or posited near the genes/
QTLs with known functions in the related traits, respect-
ively, and 201 QTLs are newly discovered. Moreover,

sequence, expression and homologous analyses of the
QTLs suggested that three candidate genes (OsWRKY102,
OsWRKY75, and OsMan07) are tightly associated with Cd
concentration and PIP2;6 gene may play role in As regula-
tion in rice. Further, OsPME6 or nearby gene may regulate
plant height and OsPLL9 or its nearby gene may play a
role in flowering time control. Our results showed that
each of the four GWAS methods can identify its unique as
well as common QTLs and using multiple GWAS
methods can complement each other in QTL identifica-
tion. Using at least one univariate and one multivariate
method in GWAS studies is highly recommended for bet-
ter results. Our comprehensive GWAS analysis of the
ionomic and agronomic traits with large scale DNA se-
quencing data of the USDA mini core collection sets a
foundation for further genetic and molecular biology stud-
ies on mineral, heavy metal, and agronomic trait
regulation.

Methods
Plant materials and Phenotyping
Sixteen grain ionomic traits (As, Ca, Co, Cd, Cu, Fe, K,
Mg, Mn, Mo, Ni, P, Rb, S, Sr, and Zn) [17] and thirteen
agronomic traits (AMYLOSE, AWNTYPE, DAYS
FLOWER, HULLCOLOR, HULLCOVER, KERNELLEN,
KERNELWID, KERNELRAT, KERNELWT, LODGING,
PANICLETYPE, PLANTHT, and PLANTTYPE) [18] of
the mini core collection were the same as reported. Di-
verse rice accessions were grown over 2 years in Beau-
mont, Texas under both flooded (anaerobic) and
unflooded (aerobic, flush irrigated) irrigation schemes for
testing ionomics. The planting, field management, and
harvest methods were as reported [55–59]. The correla-
tions of the traits were calculated by Pearson’s correlation
and visualized with R corrgram package [95]. The details
of the samples are listed in Supplementary Table S1.

Genotyping
In order to obtain high-quality sequencing data, the raw
reads were downloaded from NCBI (Accession:
PRJNA301661). Through comparing the materials be-
tween phenotype and available genotyping data, the
overlap of 191 accessions were selected for further
analysis. The raw data were firstly filtered by NGS QC
Toolkit (v2.3.3) with default settings [96]. Then, the
high-quality sequences were mapped to Nipponbare
MSU7.0 genomic reference (http://rice.plantbiology.msu.
edu/index.shtml, Release 7) with bwa program (version
0.7.17) using default parameters [97]. PCR duplicates
were marked by Picard (version 2.18). Then, Haploype-
Caller of GATK was used to identify SNPs. The raw
SNPs were filtered by PLINK software with parameter
‘--maf 0.05 --geno 0.6 --snps-only’. Genotype imputation
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was performed for the remaining 3,259,478 SNPs with
Beagle 5.0 [97] for further analysis.

Population structure, genetic analysis, and linkage
disequilibrium analysis
The raw SNPs with integrity higher than 0.8 (181,448
SNPs) were extracted for estimating individual ancestries
and constructing a phylogenetic tree. A PLINK software
tool [98] was used to calculate the potential unlinked
SNPs with parameter --indep-pairwise 50 10 0.2. The
potentially unlinked SNPs were submitted to ADMIX-
TURE [99] to assess the population structure with vary-
ing K from 2 to 10. Cross-validation error was calculated
for each K, and the clustering model with the lowest
cross-validation error (K = 4) was selected. Population
structure was displayed using online software Pophelper
(http://pophelper.com/). Each individual was assigned to
one of the four subpopulations based on having ≥70%
genetic ancestry derivation, the accessions that had <
70% ancestry from one specific subpopulation were
assigned to a fifth group called ‘Admix’. The matrix of
pairwise genetic distance was used to construct phylo-
genetic trees using the software SNPhylo [100] with pa-
rameters set to ‘default’. Principal component analysis
(PCA) and kinship matrix (K matrix) were performed
with 3,259,478 SNPs using default parameter by GAPIT
[101]. The decay distance of LD (linkage disequilibrium)
in each subpopulation and in the whole mini-core popu-
lation were determined by software PopLDdecay [102].

Genome-wide association study (GWAS)
GWAS was performed among 191 rice accessions de-
rived from USDA mini-core collection with 3,259,478
high-quality SNPs. Univariate GWAS methods (GLM
and MLM) and multivariate GWAS methods (MLMM
and FarmCPU) were employed to evaluate the trait-SNP
associations for grain ionomic and agronomic traits
using the Genomic Association and Prediction Inte-
grated Tool (GAPIT) [101]. Principal component ana-
lysis (PCA) result was used as covariates to correct
population structure due to subpopulations in the Mini
Core. The genome-wide significant thresholds of the
GWAS (p-value = 1.53 × 10− 8) was determined by 0.05/n
(n is the number of markers) [93] and a higher signifi-
cant threshold was set at 3.06 × 10− 9 (0.01/n) [103]. The
Manhattan and QQ plots for GWAS were visualized
using the R package CMplot (https://github.com/YinLi-
Lin/R-CMplot). Leading SNPs of each significant SNPs
cluster (in 200 kb) were selected to display the location
of the QTLs.

Haplotype block estimation
Haplotype blocks containing at least two SNPs were cal-
culated with all imputed SNP using the PLINK software

[98] with the following parameters: ‘ --blocks no-pheno-
req --blocks-max-kb 2000 --blocks-inform-frac 0.95
--blocks-strong-highci 0.98 --blocks-recomb-highci 0.9’.
The haplotypic blocks of each significant SNP were de-
termined by Confidence Intervals described by Gabriel
[104]. The LD heatmap was visualized by software Hap-
loview [105]. The annotated genes located in each haplo-
type block were extracted from RAP-DB (https://rapdb.
dna.affrc.go.jp/) (Supplementary Table S5).

Gene expression data
The gene expression profile across 15 tissues (Endo-
sperm, Callus, Seed, Radicle, Root, Plumule, Stem, Seed-
ling, Shoot, Sheath, Leaf, Panicle, Spikelet, Lemma, and
Stamen) was obtained from CREP (Collection of Rice
Expression Profiles): http://crep.ncpgr.cn/crep-cgi/home.
pl [106]. Gene expression data of rice plants treated with
different cadmium concentration [107, 108] was adopted
from TENOR (Transcriptome ENcyclopedia Of Rice):
https://tenor.dna.affrc.go.jp/.

Mining causal candidate genes
The QTLs identified by four different GWAS methods
provide important clues for understanding the genetic
architecture of agronomic and ionomic in rice. To ex-
plore candidate genes responsible for each QTLs, we ex-
tracted all genes located in the haplotype block of
leading SNPs and considering their annotations (Supple-
mentary Table S5). For the leading SNP not posited in
the haplotype block, we defined the boundary to within
190 kb of the locus. Besides, functions of homologous
gene in Arabidopsis and gene expression changes under
corresponding stress from published database such as
TENOR were also used to narrow down the candidate
genes.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12870-020-02603-0.

Additional file 1: Supplementary Figure 1. Pearson correlation
among ionomics and agronomic traits. (a) Ionomics in flooded
environment and agronomic traits. (b) Ionomics in unflooded
environment and agronomic traits. (c) Ionomics in flooded environment
(with 1 as suffix) and unflooded environment (with 2 as suffix).

Additional file 2: Supplementary Figure 2. (a). Genome-wide
association analysis for As with GLM, MLM, MLMM, and FarmCPU
methods (left) in flooded condition. Quantile-quantile plot of each model
(right). Red arrow indicates published gene, black arrow indicates
candidate gene. The horizontal dot grey line and green dots indicate the
Bonferroni-corrected significance thresholds and SNPs at −log10(P) =
7.81. The horizontal solid grey line and red dots indicate the Bonferroni-
corrected significance thresholds and SNPs at −log10(P) = 8.51. (b)
Genome-wide association analysis for Cd with GLM, MLM, MLMM, and
FarmCPU methods (left) in flooded condition. Quantile-quantile plot of
each model (right). Black arrows indicate candidate genes. The horizontal
dot grey line and green dots indicate the Bonferroni-corrected
significance thresholds and SNPs at −log10(P) = 7.81. The horizontal solid
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grey line and red dots indicate the Bonferroni-corrected significance
thresholds and SNPs at −log10(P) = 8.51. (c) Genome-wide association
analysis for Cd with GLM, MLM, MLMM, and FarmCPU methods (left) in
unflooded condition. Quantile-quantile plot of each model (right). Black
arrows indicate candidate genes. The horizontal dot grey line and green
dots indicate the Bonferroni-corrected significance thresholds and SNPs
at −log10(P) = 7.81. The horizontal solid grey line and red dots indicate
the Bonferroni-corrected significance thresholds and SNPs at −log10(P) =
8.51. (d) Genome-wide association analysis for Cu with GLM, MLM,
MLMM, and FarmCPU methods (left) in flooded condition. Quantile-
quantile plot of each model (right). The horizontal dot grey line and
green dots indicate the Bonferroni-corrected significance thresholds and
SNPs at −log10(P) = 7.81. The horizontal solid grey line and red dots
indicate the Bonferroni-corrected significance thresholds and SNPs at
−log10(P) = 8.51. (e) Genome-wide association analysis for Co with GLM,
MLM, MLMM, and FarmCPU methods (left) in flooded condition.
Quantile-quantile plot of each model (right). The horizontal dot grey line
and green dots indicate the Bonferroni-corrected significance thresholds
and SNPs at −log10(P) = 7.81. The horizontal solid grey line and red dots
indicate the Bonferroni-corrected significance thresholds and SNPs at
−log10(P) = 8.51. (f) Genome-wide association analysis for Fe with GLM,
MLM, MLMM, and FarmCPU methods (left) in unflooded condition.
Quantile-quantile plot of each model (right). The horizontal dot grey line
and green dots indicate the Bonferroni-corrected significance thresholds
and SNPs at −log10(P) = 7.81. The horizontal solid grey line and red dots
indicate the Bonferroni -corrected significance thresholds and SNPs at
−log10(P) = 8.51. (g) Genome-wide association analysis for K with GLM,
MLM, MLMM, and FarmCPU methods (left) in flooded condition.
Quantile-quantile plot of each model (right). The horizontal dot grey line
and green dots indicate the Bonferroni-corrected significance thresholds
and SNPs at −log10(P) = 7.81. The horizontal solid grey line and red dots
indicate the Bonferroni-corrected significance thresholds and SNPs at
−log10(P) = 8.51. (h) Genome-wide association analysis for Mo with GLM,
MLM, MLMM, and FarmCPU methods (left) in flooded condition.
Quantile-quantile plot of each model (right). The horizontal dot grey line
and green dots indicate the Bonferroni-corrected significance thresholds
and SNPs at −log10(P) = 7.81. The horizontal solid grey line and red dots
indicate the Bonferroni-corrected significance thresholds and SNPs at
−log10(P) = 8.51. (i) Genome-wide association analysis for Mo with GLM,
MLM, MLMM, and FarmCPU methods (left) in unflooded condition.
Quantile-quantile plot of each model (right). The horizontal dot grey line
and green dots indicate the Bonferroni-corrected significance thresholds
and SNPs at −log10(P) = 7.81. The horizontal solid grey line and red dots
indicate the Bonferroni-corrected significance thresholds and SNPs at
−log10(P) = 8.51. (j) Genome-wide association analysis for Ni with GLM,
MLM, MLMM, and FarmCPU methods (left) in flooded condition.
Quantile-quantile plot of each model (right). The horizontal dot grey line
and green dots indicate the Bonferroni-corrected significance thresholds
and SNPs at −log10(P) = 7.81. The horizontal solid grey line and red dots
indicate the Bonferroni-corrected significance thresholds and SNPs at
−log10(P) = 8.51. (k) Genome-wide association analysis for Ni with GLM,
MLM, MLMM, and FarmCPU methods (left) in unflooded condition.
Quantile-quantile plot of each model (right). The horizontal dot grey line
and green dots indicate the Bonferroni-corrected significance thresholds
and SNPs at −log10(P) = 7.81. The horizontal solid grey line and red dots
indicate the Bonferroni -corrected significance thresholds and SNPs at
−log10(P) = 8.51. (l) Genome-wide association analysis for Rb with GLM,
MLM, MLMM, and FarmCPU methods (left) in flooded condition.
Quantile-quantile plot of each model (right). The horizontal dot grey line
and green dots indicate the Bonferroni-corrected significance thresholds
and SNPs at −log10(P) = 7.81. The horizontal solid grey line and red dots
indicate the Bonferroni-corrected significance thresholds and SNPs at
−log10(P) = 8.51. (m) Genome-wide association analysis for Sr with GLM,
MLM, MLMM, and FarmCPU methods (left) in flooded condition.
Quantile-quantile plot of each model (right). The horizontal dot grey line
and green dots indicate the Bonferroni-corrected significance thresholds
and SNPs at −log10(P) = 7.81. The horizontal solid grey line and red dots
indicate the Bonferroni-corrected significance thresholds and SNPs at
−log10(P) = 8.51. (n) Genome-wide association analysis for Zn with GLM,
MLM, MLMM, and FarmCPU methods (left) in flooded condition.

Quantile-quantile plot of each model (right). The horizontal dot grey line
and green dots indicate the Bonferroni-corrected significance thresholds
and SNPs at −log10(P) = 7.81. The horizontal solid grey line and red dots
indicate the Bonferroni-corrected significance thresholds and SNPs at
−log10(P) = 8.51. (o) Genome-wide association analysis for Zn with GLM,
MLM, MLMM, and FarmCPU methods (left) in unflooded condition.
Quantile-quantile plot of each model (right). The horizontal dot grey line
and green dots indicate the Bonferroni-corrected significance thresholds
and SNPs at −log10(P) = 7.81. The horizontal solid grey line and red dots
indicate the Bonferroni-corrected significance thresholds and SNPs at
−log10(P) = 8.51.

Additional file 3: Supplementary Figure 3. (a) Genome-wide associ-
ation analysis for AMYLOSE with GLM, MLM, MLMM, and FarmCPU
methods (left). Quantile-quantile plot of each model (right). Red arrows
indicate published genes. The horizontal dot grey line and green dots in-
dicate the Bonferroni-corrected significance thresholds and SNPs at
−log10(P) = 7.81. The horizontal solid grey line and red dots indicate the
Bonferroni-corrected significance thresholds and SNPs at −log10(P) = 8.51.
(b) Genome-wide association analysis for AWNTYPE with GLM, MLM,
MLMM, and FarmCPU methods (left). Quantile-quantile plot of each
model (right). The horizontal dot grey line and green dots indicate the
Bonferroni-corrected significance thresholds and SNPs at −log10(P) = 7.81.
The horizontal solid grey line and red dots indicate the Bonferroni-
corrected significance thresholds and SNPs at −log10(P) = 8.51. (c)
Genome-wide association analysis for DAYSFLOWER with GLM, MLM,
MLMM, and FarmCPU methods (left). Quantile-quantile plot of each
model (right). Black arrow indicates candidate gene. The horizontal dot
grey line and green dots indicate the Bonferroni-corrected significance
thresholds and SNPs at −log10(P) = 7.81. The horizontal solid grey line
and red dots indicate the Bonferroni-corrected significance thresholds
and SNPs at −log10(P) = 8.51. (d) Genome-wide association analysis for
HULLCOLOR with GLM, MLM, MLMM, and FarmCPU methods (left).
Quantile-quantile plot of each model (right). The horizontal dot grey line
and green dots indicate the Bonferroni-corrected significance thresholds
and SNPs at −log10(P) = 7.81. The horizontal solid grey line and red dots
indicate the Bonferroni-corrected significance thresholds and SNPs at
−log10(P) = 8.51. (e) Genome-wide association analysis for HULLCOVER
with GLM, MLM, MLMM, and FarmCPU methods (left). Quantile-quantile
plot of each model (right). The horizontal dot grey line and green dots
indicate the Bonferroni-corrected significance thresholds and SNPs at
−log10(P) = 7.81. The horizontal solid grey line and red dots indicate the
Bonferroni-corrected significance thresholds and SNPs at −log10(P) = 8.51.
(f) Genome-wide association analysis for KERNELLEN with GLM, MLM,
MLMM, and FarmCPU methods (left). Quantile-quantile plot of each
model (right). Red arrow indicates published gene. The horizontal dot
grey line and green dots indicate the Bonferroni-corrected significance
thresholds and SNPs at −log10(P) = 7.81. The horizontal solid grey line
and red dots indicate the Bonferroni-corrected significance thresholds
and SNPs at −log10(P) = 8.51. (g) Genome-wide association analysis for
KERNELWID with GLM, MLM, MLMM, and FarmCPU methods (left).
Quantile-quantile plot of each model (right). Red arrow indicates pub-
lished gene. The horizontal dot grey line and green dots indicate the
Bonferroni-corrected significance thresholds and SNPs at −log10(P) = 7.81.
The horizontal solid grey line and red dots indicate the Bonferroni-
corrected significance thresholds and SNPs at −log10(P) = 8.51. (h)
Genome-wide association analysis for KERNELRAT with GLM, MLM,
MLMM, and FarmCPU methods (left). Quantile-quantile plot of each
model (right). Red arrow indicates published gene. The horizontal dot
grey line and green dots indicate the Bonferroni-corrected significance
thresholds and SNPs at −log10(P) = 7.81. The horizontal solid grey line
and red dots indicate the Bonferroni-corrected significance thresholds
and SNPs at −log10(P) = 8.51. (i) Genome-wide association analysis for
KERNELWTB with GLM, MLM, MLMM, and FarmCPU methods (left).
Quantile-quantile plot of each model (right). The horizontal dot grey line
and green dots indicate the Bonferroni-corrected significance thresholds
and SNPs at −log10(P) = 7.81. The horizontal solid grey line and red dots
indicate the Bonferroni-corrected significance thresholds and SNPs at
−log10(P) = 8.51. (j) Genome-wide association analysis for LODGING with
GLM, MLM, MLMM, and FarmCPU methods (left). Quantile-quantile plot
of each model (right). Black arrow indicates candidate gene. The
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horizontal dot grey line and green dots indicate the Bonferroni-corrected
significance thresholds and SNPs at −log10(P) = 7.81. The horizontal solid
grey line and red dots indicate the Bonferroni-corrected significance
thresholds and SNPs at −log10(P) = 8.51. (k) Genome-wide association
analysis for PLANTHT with GLM, MLM, MLMM, and FarmCPU methods
(left). Quantile-quantile plot of each model (right). Black arrow indicates
candidate gene. The horizontal dot grey line and green dots indicate the
Bonferroni-corrected significance thresholds and SNPs at −log10(P) = 7.81.
The horizontal solid grey line and red dots indicate the Bonferroni-
corrected significance thresholds and SNPs at −log10(P) = 8.51.

Additional file 4: Supplementary Figure 4. The number of QTLs
identified by four different methods. (a) Agronomic traits; (b) Ionomic
traits in flooded environment; (c) Ionomic traits in unflooded
environment. Different color represents different methods; blue, GLM;
yellow, MLM; green, MLMM; red, FarmCPU. Venn diagrams were
visualized by online software Venny 2.1: http://bioinfogp.cnb.csic.es/tools/
venny/.

Additional file 5: Supplementary Figure 5. Heat map of the putative
candidate gene expression patterns (log2-transformed) in 15 tissues in
Minghui 63, Shanyou 63, and Zhenshan 97 varieties. Darkblue indicates
high expression, white indicates low expression, and grey indicates NA.

Additional file 6: Supplementary Figure 6. (a) The expression pattern
of a candidate gene ( OsWRK102) in different tissues from public data. (b)
The candidate gene expression profile in different treatment (High Cd
[(50 μM CdSO4)]), Low Cd [(1 μM CdSO4)], and Very Low Cd [(0.2 μM
CdSO4)] in Shoot and Root.

Additional file 7: Supplementary Figure 7. Heat map of the genes’
(located in the blocks) expression patterns under cadmium stress. Red
indicates high expression, and blue indicates low expression. Genes with
red color are candidate genes in the current study.

Additional file 8: Supplementary Table 1. The sample list and
structure information of O. sativa accessions.

Additional file 9: Supplementary Table 2. The QTLs associated with
agronomic traits, ionomic in flooded and unflooded conditions with four
different methods.

Additional file 10: Supplementary Table 3. List of gene orthologous
with Arabidopsis thaliana.

Additional file 11: Supplementary Table 4. The distribution of LD
blocks in the 12 chromosomes of rice.

Additional file 12: Supplementary Table 5. List of candidate genes
located in the LD blocks for agronomic, ionomic in flooded, and ionomic
in unflooded traits.
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