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Abstract

Background: Taproot is the main edible organ and ultimately determines radish yield and quality. However, the
precise molecular mechanism underlying taproot thickening awaits further investigation in radish. Here, RNA-seq
was performed to identify critical genes involved in radish taproot thickening from three advanced inbred lines
with different root size.

Results: A total of 2606 differentially expressed genes (DEGs) were shared between ‘NAU-DY’ (large acicular) and
‘NAU-YB’ (medium obovate), which were significantly enriched in ‘phenylpropanoid biosynthesis’, ‘glucosinolate
biosynthesis’, and ‘starch and sucrose metabolism’ pathway. Meanwhile, a total of 16 differentially expressed
miRNAs (DEMs) were shared between ‘NAU-DY’ and ‘NAU-YH’ (small circular), whereas 12 miRNAs exhibited specific
differential expression in ‘NAU-DY’. Association analysis indicated that miR393a-bHLH77, miR167c-ARF8, and
miR5658-APL might be key factors to biological phenomenon of taproot type variation, and a putative regulatory
model of taproot thickening and development was proposed. Furthermore, several critical genes including SUS1,
EXPB3, and CDC5 were characterized and profiled by RT-qPCR analysis.

Conclusion: This integrated study on the transcriptional and post-transcriptional profiles could provide new
insights into comprehensive understanding of the molecular regulatory mechanism underlying taproot thickening
in root vegetable crops.
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Background
Radish (Raphanus sativus L., 2n = 2x = 18) is an import-
ant worldwide root vegetable crops belonging to Brassi-
caceae family. The fleshy taproot is the main product
organ and determines the final yield and quality of

radish. Abundant nutrient substances exist in fleshy tap-
root including carbohydrates, crude fiber, vitamin C and
protein. Currently, extensive researches on the molecular
mechanism of root development had been conducted in
a range of plant species such as Arabidopsis [1], tobacco
[2], maize [3–5], and rice [6, 7]. However, the molecular
mechanism underlying taproot thickening is still far
away from being fully clarified in root vegetable crops
such as radish.
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In the past decades, with the rapid development of
‘omics’ methodology, RNA-seq has become a valuable
strategy for systematical identification of differentially
regulated genes, miRNAs, and regulation pathways in
different tissues, organs, and developmental stages in
several plant species, such as Rosa chinensis [8], Glycine
max [9], Citrus sinensis [10], Myrica rubra [11], Sola-
num lycopersicum [12], and R. sativus [13]. Furthermore,
the available genome database of radish provided a use-
ful genome information platform for the investigation of
molecular mechanism underlying radish taproot thicken-
ing [14–16].
In recent years, several studies on identification and

dissection of gene expression and complex regulatory
network during taproot thickening in radish have been
performed. Using RNA-Seq technology, many miRNAs
and transcripts were identified to be differentially
expressed during radish taproot thickening [13, 17], and
carbohydrate metabolism pathway was significantly acti-
vated during taproot thickening, particularly in cell pro-
liferating tissues [15]. Nevertheless, previous studies
were mainly focused on a single radish cultivar, and the
key genes involved in radish taproot thickening among
different root-type radish genotypes remains to be accur-
ately identified. Increasing evidences indicated that root
shape and size (root-type) are significantly different
among different cultivars, and genes related to root-type
difference are considered to be candidates that promote
or repress taproot thickening in radish [15, 18, 19]. So
far, there is no report on identification of genes involved
in taproot development in different cultivars, which
limits the genetic improvement and germplasm
innovation of radish cultivars.
To identify differentially expressed genes (DEGs) and

differentially expressed miRNAs (DEMs) involved in tap-
root thickening, three advanced inbred lines with differ-
ent root shape and size consisting of radish ‘NAU-DY’
(large acicular), ‘NAU-YB’ (medium obovate) and ‘NAU-
YH’ (small circular) were used in this study. An inte-
grated mRNA-seq and sRNA-seq analysis was performed
at three development stages of taproot thickening from
three advanced inbred lines. Furthermore, RT-qPCR
analysis was carried out to validate the expression pat-
terns of several important candidate genes. The outcome
of this study could reveal critical genes and miRNAs
underlying the taproot thickening, and provide new in-
sights into dynamic regulation of taproot thickening in
radish.

Methods
Plant materials
Three advanced inbred lines of radish, ‘NAU-DY’ (large
acicular), ‘NAU-YB’ (medium obovate), and ‘NAU-YH’
(small circular), were used in this study, and the seeds

were developed from college of Horticulture, Nanjing
Agricultural University, Nanjing, China. (Fig. 1). The
seeds were germinated on a wet filter paper in darkness
at room temperature for 3 days, and then planted in
plastic pots and cultured in the growth chamber with 16
h light (25 °C) and 8 h dark (18 °C). For each advanced
inbred line, the characteristics of radish growth and de-
velopment were shown in Fig. 1, and the time point with
‘two leaves and one heart’, cortex splitting, and the high-
est rate of taproot thickening were as selection criteria
of pre-cortex splitting stage (PSS), cortex splitting stage
(CSS) and expanding stage (ES), respectively. The tap-
root samples S1, S2, and S3 were harvested at PSS
(‘NAU-DY’, 20 days after sowing, DAS; ‘NAU-YB’, 20
DAS; ‘NAU-YH’, 10 DAS), CSS (‘NAU-DY’, 30 DAS;
‘NAU-YB’, 25 DAS; ‘NAU-YH’, 20 DAS) and ES (‘NAU-
DY’, 55 DAS; ‘NAU-YB’, 45 DAS; ‘NAU-YH’, 40 DAS)
from five randomly selected individual plants, respect-
ively. Equal amount of samples from five individuals was
pooled for library preparation and sequencing. All har-
vested taproot samples were immediately frozen in li-
quid nitrogen and stored at − 80 °C for RNA extraction.

mRNA-seq and sRNA-seq library construction and
sequencing
Prior to mRNA library construction, total RNAs were
extracted at three different developmental stages of tap-
root thickening with the TRIzol reagent (Invitrogen) ac-
cording to the instruction manuals, respectively. The
detailed experimental procedures of cDNA library con-
struction and sequencing were performed according to
the reported approaches [20, 21]. The corresponding
mRNA-seq libraries were named as S1 (‘NAU-DY’, DY_
S1; ‘NAU-YB’, YB_S1), S2 (‘NAU-DY’, DY_S2; ‘NAU-
YB’, YB_S2), and S3 (‘NAU-DY’, DY_S3; ‘NAU-YB’, YB_
S3) library, respectively.
Small RNA library was generated from total RNA ac-

cording to the instruction of NEBNext® Multiplex Small
RNA Library Prep Set for Illumina® (NEB, USA.) in
‘NAU-DY’. The detailed experimental operation proce-
dures of sRNA library construction and sequencing
followed the previous method [22], and the correspond-
ing sRNA-seq libraries were named as DS1, DS2, and
DS3 library, respectively. Among these, mRNA-seq and
sRNA-seq data of ‘NAU-YH’ were cited from our previ-
ous studies [Sequence Read Archive (SRA) with the
GenBank accession No.: SRX707630] [13, 17]. The tech-
nical workflow of the integrated mRNA-seq and sRNA-
seq analysis was shown in Fig. 2.

Genome mapping and differential expression analysis
Reference genome sequences were downloaded from the
radish genome website (ftp://ftp.kazusa.or.jp/pub/rad-
ish), and two transcriptome sequences of radish from
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‘NAU-YH’ and ‘CKA’ were download from our two pub-
lished papers, and all these sequences were acted as ref-
erence sequences in this study [23, 24]. Prior to the
alignment of RNA-seq reads to reference sequences, the
raw reads were screened to achieve high quality clean
reads by removing adaptor reads and contaminants. For
mRNA-seq data analysis, the clean reads were mapped
to reference sequences of radish with no more than two
mismatchs using TopHat2 software [25]. The FPKM
method was used to calculate gene expression level.
Read counts data were normalized using TMM method,
and p-value was calculated with Poisson distribution

model. The FDR (false discovery rate) is determined by
p-value ranges in multiple tests. In this study, the
threshold of |log2FC (fold change)| > 1 with q-value <
0.005 was selected as simulated biological variation to
determine whether a gene is significantly differential ex-
pression in the DEGseq analysis [26, 27]
For sRNA-seq data analysis, the unique small RNAs

were mapped to radish genomic sequence by Bowtie
software [28]. Sequences matching non-coding RNAs in-
cluded rRNAs, tRNAs, snRNAs, and snoRNAs were re-
moved. The remaining unique sequences were searched
against with known miRNA sequence by miRBase 21

Fig. 1 The characteristics of radish growth and development in three advanced lines. a. NAU-DY, b. NAU-YB, c. NAU-YH, d. The growth and
development curve of radish. The asterisk represents the plant materials of RNA-Seq, and a bar represents 5 cm. 1 represents pre-cortex splitting
stage (PSS), 2 represents cortex splitting stage (CSS) and 3–6 represents expanding stage (ES)
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software for known miRNA identification. Then the
remaining unknown sRNAs was used to predict novel
miRNAs by miREvo [29] and mirdeep2 software [30].
Differentially expressed miRNAs (DEMs) from different
developmental stages of taproot thickening were identi-
fied using DESeq software [31]. For all comparisons,
miRNAs with |log2 FC | > 1 and an adjusted q-value <
0.01 were assigned as DEMs.

miRNA target prediction and annotation
Prediction of miRNA target gene was performed by
psRobot_tar in psRobot [32]. GO classification (GO
database, http://www.geneontology.org.) and KEGG
pathway (KEGG database, http://www.genome.jp/
kegg/) methods were carried out for allocating genes
to different functional categories and predicting
their biological functions, respectively. The KEGG
pathway enrichment and GO enrichment analysis
were performed with the condition of corrected p
value < 0.05.

Reverse transcription quantitative PCR (RT-qPCR) analysis
Total RNA and miRNA extraction (Tiangen) and reverse
transcription (Takara) were conducted according to the
manufacturer’s instructions. RT-qPCR was performed
using a SYBR Primix Ex Taq kit (TaKaRa), and the

amplification reactions were conducted on ROCHE
LightCycler 480 instruments [33]. The RsActin and 5.8S
ribosomal RNA (rRNA) were used as the reference genes
for normalization, respectively. The relative expression
level of each gene was calculated by 2-△△CT method.
Three replicates and Duncan’s test (P < 0.05) were con-
ducted, and the Pearson correlation coefficient was cal-
culated by DPS software to evaluate the correlation of
gene expression patterns from RNA-Seq and RT-qPCR.
Primers were designed by Beacon Designer 7.0 (Add-
itional file 1: Table S1).

Results
Analysis of sRNA and mRNA sequencing data
A total of 14.81M, 15.65 M, and 16.95M clean reads
were obtained from three development stages during
taproot thickening in ‘NAU-DY’. For the length of 18
to 30 nt reads, a total of 10.86 M, 12.20M, and 13.06
M clean reads were generated from DS1, DS2, and
DS3 library, respectively. All the three libraries in
length distribution showed a similar size characteristic
ranging from 18 to 30 nt, especially for the majority
of sRNA reads enriched at the length of 21 and 24 nt
(Additional file 1: Figure S1). Among them, 7.56M
(69.59%) sRNA, 9.58M (78.52%) sRNA, and 10.55M
(80.79%) sRNA reads were successfully mapped to

Fig. 2 The basic workflow of the integrative transcriptome and miRNA experiment in radish
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reference sequences corresponding to DS1, DS2, and
DS3 library, respectively (Additional file 1: Table S2).
To identify regulated genes during taproot thickening

in radish, six cDNA libraries from two advanced inbred
lines were constructed from plants at three developmen-
tal stages of taproot thickening (S1, S2, and S3). In the
line of ‘NAU-DY’, a total of 34.84M, 25.42M, and 28.28
M clean reads were obtained from DY_S1, DY_S2, and
DY_S3, respectively, from which 22.62M (64.91%),
16.19M (63.69%), and 18.10M (64.01%) were corres-
pondingly uniquely mapped (Additional file 1: Table S3).
While in the line of ‘NAU-YB’, totally 32.54M, 33.10M,
and 31.62M clean reads were generated from YB_S1,
YB_S2 and YB_S3, respectively, among which 21.14M
(64.95%), 22.36M (67.56%), and 21.21M (67.08%) were
uniquely mapped from YB_S1, YB_S2 and YB_S3, re-
spectively (Additional file 1: Table S3).

DEMs identification during three developmental stages of
taproot thickening
A total of 77, 85, and 56 DEMs were identified from
DS2 vs DS1, DS3 vs DS1, and DS3 vs DS2, respectively
(Fig. 3a, b, c and Additional file 1: Table S4). In detail,
compared with pre-cortex splitting stage, 28 up-
regulated miRNAs and 49 down-regulated miRNAs were
identified at cortex splitting stage. Meanwhile, 85 DEMs
including 26 up-regulated and 59 down-regulated miR-
NAs were identified in DS3 vs DS1. However, only 56
miRNAs were identified to be differentially expressed in
DS3 vs DS2, with 19 up- and 37 down-regulated miR-
NAs in radish. Interestingly, only eight, seven and three
miRNAs were specifically expressed in DS2 vs DS1, DS3
vs DS1, and DS3 vs DS2, respectively; whereas 33, 17
and eight DEMs were shared with each pairwise com-
parison, respectively; but 28 DEMs were shared among
three comparisons (Fig. 3d). Heatmap clustering of
DEMs was shown in Additional file 1: Figure S1, and the
results indicated that the expression levels of those miR-
NAs exhibited characteristics of dynamic change during
radish taproot thickening.
A total of 16 DEMs were shared between ‘NAU-YH’

and ‘NAU-DY’ from sRNA-seq data (Table 1). Among
these DEMs, 14 DEMs were conserved miRNAs, and
two DEMs were non-conserved miRNAs. Interestingly,
the expression patterns of miR394a, miR408-5p, and
miR828 were similar between ‘NAU-YH’ and ‘NAU-DY’;
whereas that of miR395a was changed between ‘NAU-
YH’ and ‘NAU-DY’ in two lines of three corresponding
comparisons (Table 1). Meanwhile, compared with the
small-size genotype ‘NAU-YH’, a total of 12 DEMs were
specifically differential expressed during taproot thicken-
ing in large-size radish genotype ‘NAU-DY’ (Table 2).
Among these, miR165a-3p and miR165a-5p were down-
regulated in DS3 vs DS1 and DS3 vs DS2 pairs, and

miR167c-5p and miR167d were down-regulated in DS2
vs DS1 and DS3 vs DS1 pairs; whereas miR167a-3p were
up-regulated in each comparison pairs. These results
suggested that miR394a, miR408-5p, and miR828 might
be involved in taproot thickening, while miR395a and
DEMs specific to ‘NAU-DY’ might contribute to root-
type differences.

DEGs identification and functional enrichment analysis
A total of 4131, 4979, and 1635 genes were differentially
expressed in YB_S2 vs YB_S1, YB_S3 vs YB_S1, and YB_
S3 vs YB_S2, respectively. Meanwhile, 2499, 3970, and
1924 DEGs were identified from DY_S2 vs DY_S1, DY_
S3 vs DY_S1, and DY_S3 vs DY_S2, respectively. Of
these DEGs, a total of 2606 DEGs were shared between
‘NAU-YB’ and ‘NAU-DY’ (Additional file 2: Table S5).
Heatmaps of DEGs indicated that the expression pat-
terns of DEGs were similar between ‘NAU-YB’ and
‘NAU-DY’ (Additional file 1: Figure S2); whereas more
DEGs existed and their expression patterns were more
various in ‘NAU-YH’ than those in ‘NAU-YB’ and
‘NAU-DY’ [13].
GO enrichment analysis was performed among 2606

DEGs that shared according to the same comparison
pairs from ‘NAU-YB’ and ‘NAU-DY’. ‘cellulose microfib-
ril organization’ (GO:0010215), ‘cell growth’ (GO:
0016049), ‘carbohydrate biosynthetic process’ (GO:
0016051), and ‘S-adenosylmethionine biosynthetic
process’ (GO:0006556) were specifically enriched in S3
vs S1, whereas ‘carbohydrate metabolic process’ (GO:
0005975) was shared with each comparison pairs in tap-
root thickening of radish (Table 3). Meanwhile, KEGG
enrichment analysis was used to identify the critical
pathway that genes involved in taproot thickening.
‘starch and sucrose metabolism’ (ath00500) was shared
among three comparison pairs, ‘phenylpropanoid biosyn-
thesis’ (ath00940), ‘glucosinolate biosynthesis’ (ath00966)
was shared between two comparison pairs (S2 vs S1 and
S3 vs S1), whereas ‘thiamine metabolism’ (ath00730) was
specifically enriched in S3 vs S2 (Table 4). The results
suggested that it was a process of substances and energy
metabolism, which promotes cell growth and organ en-
largement during taproot thickening in radish.

DEM target prediction and association analysis of DEGs
and DEMs
A total of 1280 targets were predicted with psRobot soft-
ware from sRNA data of ‘NAU-DY’ (Additional file 1:
Table S6). Among these targets, totally 849 and 431 tar-
gets belonged to 68 known miRNAs and 36 novel miR-
NAs, respectively (Additional file 1: Table S6). Of these,
even though these miRNAs targeted different genes, the
annotations of several targets belonged to the same fam-
ilies, for example, several known miRNAs including
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miR156a-3p, miR159b-3p, miR159c, miR5658, miR827,
miR828, miR858a, miR858b, and novel miRNAs including
novel_119, novel_136, novel_1, novel_37, and novel_96
targeted Myb domain genes (Additional file 1: Table S6).
A total of 12 DEMs were specifically differential

expressed during taproot thickening in large-size radish
genotype ‘NAU-DY’ when compared with the small-size
genotype ‘NAU-YH’ (Table 2). To explore miRNA-
mRNA regulatory network in taproot thickening, the as-
sociation analysis between miRNA and mRNA of 12
DEMs that specific to ‘NAU-DY’ was performed. The re-
sults showed that miR167c-5p (targeted by ARF8),
miR393a-5p (targeted by bHLH77), miR5658 (targeted

by APL) were identified to be specifically differentially
expressed during radish taproot thickening of ‘NAU-DY’
(Additional file 1: Table S6).

RT-qPCR validation
To explore genes expression patterns during radish tap-
root thickening, 20 genes were performed for RT-qPCR
analysis from RNA-seq data of ‘NAU-DY’ and ‘NAU-
YB’. RT-qPCR results showed that the expression levels
of auxin-induced in root cultures protein 12 (RsAIR12),
auxin transporter protein 1 (RsAUX1), auxin efflux car-
rier component 3 (RsPIN3), dihomomethionine N-
hydroxylase (CYP79F1), glutamate synthase 1 (GLT1),

Fig. 3 Identification of DEMs during radish taproot thickening. a. Volcano plot of miRNAs; b. Venny chart of miRNAs
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glutathione S-transferase F3 (GSTF3), and acid beta-
fructofuranosidase 4 (BFRUCT4) were higher at PSS
than that at CSS and ES, whereas the expression level of
auxin-responsive protein (IAA26) and sucrose synthase 1
(SUS1) were higher at CSS than that at PSS and ES
(Fig. 4). Meanwhile, expansin B3 (EXPB3), cell division
cycle 5-like protein (CDC5), sucrose-phosphate synthase
1 (SPS1), jacalin-related lectin 34 (JAL34), glutamine
synthetase cytosolic isozyme 1–2 (JLN1–2), aspartic pro-
tease in guard cell 2 (ASPG2), aspartic proteinase A1
(APA1), beta-amylase 5 (BAM5), phosphoenolpyruvate
carboxylase 2 (PPC2), and glucose-1-phosphate adenylyl-
transferase (AGPS1) were higher at ES than that at CSS
and PSS (Fig. 4). In addition, RT-qPCR expression

profiles showed that 18 of 20 randomly selected genes
were in agreement with the RNA-Seq data, and two
genes including JAL34 and AUR showed difference only
at ES and CSS, respectively. Overall, the Pearson correl-
ation coefficient results displayed a positive correlation
between RNA-seq data and RT-qPCR analysis at the
mRNA level (r = 0.78, p = 0.0006), indicating the reliabil-
ity of the transcriptomic data (Additional file 1: Figure
S3).
To verify the expression patterns of miRNAs and their

corresponding targets in radish, a total of 14 DEMs and
three differentially expressed target genes were selected
for RT-qPCR analysis. As shown in Figure S4, the ex-
pression patterns of RT-qPCR analysis were in line with

Table 1 Overview of DEMs shared between ‘NAU-YH’ and ‘NAU-DY’

DEMs NAU-YH NAU-DY

log2 (S2/S1) log2 (S3/S1) log2 (S3/S2) log2 (S2/S1) log2 (S3/S1) log2 (S3/S2)

miR156a-3p 9.52 N −9.52 −5.3591 − 9.405 − 4.3581

miR156c-3p −13.12 − 13.12 N − 3.3905 − 5.0363 −1.9579

miR157a-3p N −1.72 − 2.44 − 2.2267 − 6.8916 − 4.977

miR171b-3p 10.26 N −10.26 −2.627 − 3.4505 − 1.1357

miR171b-5p −9.86 −9.86 N −2.3005 −5.8566 −3.6757

miR172c 3.37 2.74 N 5.5808 8.3388 2.4459

miR172e-3p −4.22 −4.28 N 6.0129 7.5173 1.1922

miR394a 7.73 7.25 N 1.6853 1.9103 N

miR395a −7.57 −7.57 N 3.3711 3.9826 N

miR395b 7.41 6.36 −1.05 2.4611 1.8126 N

miR397a −3.92 −6.29 −2.38 −5.7315 −4.3851 1.0342

miR408-5p −2.01 − 4.93 − 2.91 −1.9648 −2.6612 − 1.0086

miR824-3p −3.36 −3.53 N −1.6303 N 1.3092

miR828 −1.80 −1.66 N −6.2059 −5.7862 N

miR400 −1.19 −1.86 N −1.2587 N N

miR858a N 1.38 1.19 −3.3814 −1.035 2.0342

Table 2 Identification of DEMs specific to ‘NAU-DY’ with large acicular root

sRNA DS2 reads DS1 reads log2FC DS3 reads DS1 reads Log2FC DS3 reads DS2 reads log2FC

miR165a-3p N N N 4219 12,833 −2 3692 11,787 −2

miR165a-5p N N N 83 295 −2 73 315 −2

miR167a-3p 63 13 2 113 10 4 1646 760 1

miR167c-3p 39 183 −2 1881 546 2 N N N

miR167c-5p 42 332 −3 42 137 −2 N N N

miR167d 677 1452 −1 58 248 −2 N N N

miR319a 162,378 373,420 −1 N N N 475,335 131,886 2

miR5658 N N N 7 0 4 6 0 4

miR8175 N N N 407 141 2 356 102 2

miR857 3 199 −6 8 149 −4 7 2 2

miR170-5p 0 57 −7 0 43 −6 N N N

miR393a-5p N N N 5 14 −1 N N N
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that obtained from sRNA-seq, whereas they had differ-
ences on the degrees of differential expression between
the two methods. This inconsistency might be caused by
two different calculation methods. Moreover, the
negative correlations between miRNAs and their corre-
sponding targets (miR167-ARF8, miR393-bHLH77,
miR5658-APL) could be found at the expression levels,
suggesting the reliability of the sRNA-seq data and
miRNA-mediated gene silencing involved in radish tap-
root thickening (Fig. 5).

Molecular dynamic regulation network of taproot
formation and development
Radish taproot thickening has a complex molecular
regulation mechanism [13, 15, 17]. In general, the sub-
stances involved in morphogenesis including sucrose,
starch, and protein are indispensable for taproot forma-
tion and development in radish, and a series of genes
(e.g. SUS1, SUS3, SUC1, SUC2) were involved in these
processes. Among them, SUS1 might contribute to tap-
root thickening in radish with long and thick root [15].
Genes involved in plant hormone biosynthesis and signal
transduction including auxin (e.g. SAUR40, IAA26,
IAA3, IAA7), CTK (e.g. LOG8, CKX6), and GA (e.g.
GA2ox1, GA3ox2, RGA2) are likely to be important reg-
ulators in signal transduction process for radish taproot
thickening [34, 35]. Cell cycle is regulated by F-box
protein (e.g. CYCU4–1, CYCD3–1, CDC5) and cyclin-
dependent kinase (e.g. KRP5) [36–38], which might de-
termine cell number of radish taproot thickening. Cell
expansion is regulated by expansin proteins (e.g. EXPA9,
EXPB1/3), xyloglucan endotransglucosylase/ hydrolase

protein (e.g. XTH9, XTH7), and root cell elongation fac-
tor (e.g. COBRA) [35, 39], which might determine cell
size during taproot thickening. In addition, several tran-
scription factors (TFs) were found to be involved in root
development in other plants including rice, and Arabi-
dopsis, and some TFs including bHLHs (e.g. miR393-
bHLH77, bHLH96, bHLH148), MYBs (MYB4, MYB28,
MYB44), and WRKYs (e.g. WRKY12, WRKY19,
WRKY33) were identified in this study, indicating that
they may play critical roles in taproot thickening in rad-
ish (Additional file 2: Table S5) [40–43].
Totally, 45 shared genes were differentially expressed in

three advanced inbred lines with different root size, and
their corresponding expression patterns were shown in
Fig. 5a. The results indicated that most DEGs shared the
similar expression patterns, whereas several DEGs (e.g.
SUS1, SUC1, EXPB3, EXLA2, and ERF109) exhibited dif-
ferential expression patterns. Interestingly, gibberellin 3
oxidase 2 (GA3ox2), cytokinin oxidase 6 (CKX6),
miR167c-5p (targeted by ARF8), and miR393a-5p (tar-
geted by bHLH77) were specifically differentially expressed
in ‘NAU-DY’. Based on these results, a putative regulatory
model of radish taproot thickening and development was
put forward (Fig. 5b, c). In short, sucrose (the key gene of
sucrose metabolism: SUS1) as a signal molecular could in-
duce miR393-bHLH77 specific expression [44, 45], and
then regulation of downstream genes (CYCs) played im-
portant roles in cell division during radish taproot thick-
ening [40, 43, 46]. Some genes involved in the
biosynthesis and signal transduction of auxin (miR167-
ARF8), CTK (CKX6) and GA (GA3ox2) also regulated sev-
eral functional genes (COBRA, EXPB1/3, CDC5),

Table 3 GO significantly enrichment of DEGs shared between ‘NAU-DY’ and ‘NAU-YB’

GO_accession Description Corrected_p-Value DEG number

S2 VS S1

GO:0005975 carbohydrate metabolic process 0.0036482 32

S3 VS S1

GO:0010215 cellulose microfibril organization 0.024918 5

GO:0016049 cell growth 0.024918 5

GO:0016051 carbohydrate biosynthetic process 0.024918 29

GO:0006556 S-adenosylmethionine biosynthetic process 0.024918 4

S2 VS S1-S3 VS S1

GO:0005975 carbohydrate metabolic process 1.40E-06 72

GO:0055114 oxidation-reduction process 2.49E-06 90

GO:0044283 small molecule biosynthetic process 5.82E-06 34

S2 VS S1-S3 VS S2

GO:0005975 carbohydrate metabolic process 4.67E-09 22

GO:0008152 metabolic process 0.0048322 56

S2 VS S1-S3 VS S1-S3 VS S2

GO:0005975 carbohydrate metabolic process 0.010675 11
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indicating that they might play roles in initiating radish
taproot thickening and development (Fig. 5) [47].

Discussion
Integrative mRNA-seq and sRNA-seq approach provided
valuable tool for exploiting the potential critical genes
and uncovering complex regulatory networks for the

traits [48–50]. Radish taproot thickening is a complex
biological process that consisted of a series of material
accumulation and signal transduction pathway. To date,
the molecular mechanism of taproot formation was still
not fully uncovered in radish. In this study, an integrated
mRNA-seq and sRNA-seq analysis was performed dur-
ing the taproot thickening in three radish advanced

Table 4 KEGG significantly enrichment of DEGs shared between ‘NAU-DY’ and ‘NAU-YB’

#Term ID Input number Corrected P-Value

S3 VS S1

Phenylalanine metabolism ath00360 16 0.049828146

Cysteine and methionine metabolism ath00270 14 0.051167179

Phenylpropanoid biosynthesis ath00940 18 0.0527419

Ubiquinone and other terpenoid-quinone biosynthesis ath00130 6 0.218324112

ABC transporters ath02010 5 0.223834934

Biosynthesis of secondary metabolites ath01110 64 0.414801288

Isoquinoline alkaloid biosynthesis ath00950 4 0.414801288

Cutin, suberine and wax biosynthesis ath00073 4 0.414801288

S3 VS S2

Thiamine metabolism ath00730 3 0.020228102

S2 VS S1-S3 VS S1

Glucosinolate biosynthesis ath00966 13 3.79E-07

Starch and sucrose metabolism ath00500 27 0.001822699

2-Oxocarboxylic acid metabolism ath01210 15 0.002400877

Biosynthesis of secondary metabolites ath01110 87 0.002498601

Phenylpropanoid biosynthesis ath00940 22 0.003925529

Phenylalanine metabolism ath00360 18 0.004088511

Sulfur metabolism ath00920 10 0.004445186

Selenocompound metabolism ath00450 5 0.067434074

Tryptophan metabolism ath00380 8 0.067434074

Cysteine and methionine metabolism ath00270 13 0.067434074

Nitrogen metabolism ath00910 7 0.126626602

Phenylalanine, tyrosine and tryptophan biosynthesis ath00400 8 0.159801465

Glycine, serine and threonine metabolism ath00260 9 0.159801465

Glutathione metabolism ath00480 11 0.159801465

Tyrosine metabolism ath00350 6 0.215571217

Flavonoid biosynthesis ath00941 4 0.239223498

S2 VS S1-S3 VS S2

Fructose and mannose metabolism ath00051 5 0.007626905

Amino sugar and nucleotide sugar metabolism ath00520 7 0.007626905

Starch and sucrose metabolism ath00500 8 0.013150643

S3 VS S2-S3 VS S1

Flavonoid biosynthesis ath00941 4 0.035061213

S2 VS S1-S3 VS S1-S3 VS S2

alpha-Linolenic acid metabolism ath00592 3 0.005396308

Starch and sucrose metabolism ath00500 5 0.006062768
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inbred lines to further understanding the molecular
mechanism underlying the taproot formation. As size
varied in fleshy root, three representative radish ad-
vanced inbred lines were used in this study. A total of
2606 DEGs were shared between ‘NAU-DY’ and ‘NAU-
YB’, whereas 16 DEMs were shared between ‘NAU-YH’
and ‘NAU-DY’ and 12 DEMs were specifically

differentially expressed in ‘NAU-DY’. Moreover, several
critical genes including SUS1, EXPB3, and CDC5 were
characterized and profiled by RT-qPCR analysis. This
study represents a systematical report on
characterization of the potential critical genes involved
in taproot formation by integrative mRNA-seq and
sRNA-seq approach in three radish advanced lines.

Fig. 4 The validation of expression levels of selected DEGs related to radish taproot thickening
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Critical genes related to root - type differences
Genes related to root-type difference are considered to
be candidates that promote or repress taproot thickening
in radish [51]. A total of 140 and 70 specifically
expressed genes were identified in skinny-type roots and
thick-type roots using suppression subtractive
hybridization (SSH), respectively [18]. Several genes
involved in phenylpropanoid metabolism were overex-
pressed in the skinny-root-type cultivar, and phenylpro-
panoid was the precursor in lignin synthesis, suggesting
lignin biosynthetic pathway was involved in radish tap-
root thickening [52]. Furthermore, genes related to
ethylene production and root hair elongation were also
overexpressed in skinny-type roots, and the reason may
be that ethylene and lateral root development inhibit cell
expansion and elongation of main root [53]. Therefore,

the DEGs between skinny- and thick-root cultivars were
probably involved in root-type variation.
In this study, a total of 12 DEMs belonging to

miR165, miR167, miR319, miR5658, miR8175,
miR857, miR170, and miR393 family miRNAs were
specifically differentially expressed during taproot
thickening in large acicular radish ‘NAU-DY’, which
might be related to root-type variation. On the other
hand, many DEGs were identified to be specifically or
commonly expressed between ‘NAU-YH’ and ‘NAU-
DY’ (Fig. 5). For example, genes involved in starch
and sucrose metabolism including sucrose synthase 4
(SUS4), sucrose-phosphate synthase 2 (SPS2), and 6-
phosphofructokinase (FK1, FK7) were specifically
expressed in ‘NAU-DY’, whereas SUS1, sucrose syn-
thase 3 (SUS3), sucrose transport protein (SUC1,

Fig. 5 A putative regulatory model of radish taproot thickening and development. a. Heatmap of shared DEGs among three advance inbred
lines; b. The expression profile of DEMs and their corresponding target genes; c. A proposed regulatory model of radish taproot thickening
and development
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SUC2), sucrose-phosphate synthase 2 (SPS1), and 6-
phosphofructokinase (FK3, FK6) were co-expressed in
‘NAU-DY’ and ‘NAU-YH’. Association analysis of
mRNA and sRNA results showed that miR167c-5p
(targeted by ARF8), miR393a-5p (targeted by
bHLH77), miR5658 (targeted by APL) were identified
to be significantly differentially expressed during rad-
ish taproot thickening of ‘NAU-DY’, indicating that
miR393-bHLH77, miR167-ARF8, and miR5658-APL (a
member of MYB) might play critical roles in taproot
thickening of radish.

SUS1 and CDC5 might contribute to taproot thickening in
radish
Carbohydrate metabolism was prominently activated in
thickening roots, particularly in cell proliferating tissues,
among which the expression level of SUS1 was associ-
ated with root thickening rates [15]. In this study, the
GO term ‘carbohydrate metabolism process’ (GO:
0005975) was significantly enriched and shared by any
comparison pair for taproot thickening of radish, irre-
spective of the size of the root, which was in agreement
with a previous report in radish [13, 15], suggesting that
carbohydrate metabolism would probably be vital for
taproot thickening.
Interestingly, among these genes involved in carbohy-

drate metabolism process, SUS1 gene showed differential
expression patterns among three advanced inbred lines
of radish. For large acicular radish, the expression level
of SUS1 (Rsa1.0_00483.1_g00003.1) reached peak at cor-
tex splitting stage and much higher than those in
medium obovate and small circular radish (FD536105).
Furthermore, SUS gene was of importance on the devel-
opment of potato tuberization [54], tomato fruits setting
[55], carrot root formation [56], maize grain formation
[57], wheat grain formation [58], and rice grain forma-
tion [59]. In this study, RT-qPCR validation result indi-
cated that SUS1 displayed high expression patterns at
CSS, particularity in ‘NAU-DY’, indicating SUS1 might
play a vital role on taproot thickening process, particu-
larly for the thickening of large acicular radish rather
than the small circular radish (Fig. 4).
CDC5 is a cell cycle regulator that encoding a MYB-

related protein. Recently, increasing reports of AtCDC5
plays a positive regulation for miRNAs accumulation,
which control plant growth and development [60].
Meanwhile, CDC5 gene was crucial to cell cycle during
the G2 period, and the phase transition of G2 to M (G2/
M) was affected in the AtCDC5-RNAi transformants
[37], and AtCDC5-VIGS transformants died before bolt-
ing and accelerated cell death [38]. Interestingly, CDC5
was identified to be up-regulated during taproot thicken-
ing, whatever RNA-seq or iTRAQ-seq method, which
would be play important role in cell division of taproot

thickening in radish [13, 35]. In this study, RT-qPCR val-
idation result was approximately consistent with those
of previous studies, and CDC5 showed high abundance
expression at ES (Fig. 4). These results preliminarily sug-
gested that CDC5 might play an important role on the
growth and development of radish taproot thickening.

COBRA might be required for cell elongation of radish
taproot
Plant growth and development are promoted by a series of
targeted cell division and cell expansion. The plant cell wall
provides fundamental mechanical support for the plant
body and determinant of cell size and shape. As the main
component of cell wall, cellulose microfibril organization is
one of determinant of cell expansion. In this study, the GO
term ‘cellulose microfibril organization’ (GO: 0010215) was
significantly enriched in S3 vs S1 pair comparison between
‘NAU-DY’ and ‘NAU-YB’, and totally two COBRA and
three COBRA-like genes including COBL2, COBL5 and
COBL8 were identified to be differentially expressed (Add-
itional file 2). Previous studies showed that COBRA in-
volved in the cellulose synthesis, controlling the content of
cellulose in plant cell wall and the function of cell direc-
tional elongation [61–64]. Interestingly, in this study, all
COBRA genes were up-regulated, whereas all COBRA-like
genes were down-regulated in S3 vs S1 pair comparison be-
tween ‘NAU-DY’ and ‘NAU-YB’, suggesting that COBRA
might play a critical role on cell elongation for taproot
thickening in radish.

Conclusions
This is the first report on integrative analysis of tran-
scriptome and miRNA in three radish advanced inbred
lines during taproot thickening. A total of 2606 DEGs
were shared between ‘NAU-DY’ and ‘NAU-YB’, which
significantly enriched in ‘phenylpropanoid biosynthesis’,
‘glucosinolate biosynthesis’, and ‘starch and sucrose me-
tabolism’ pathway. Meanwhile, a total of 16 DEMs were
shared between ‘NAU-DY’ and ‘NAU-YH’, whereas 12
miRNAs showed specifically differential expression dur-
ing taproot thickening in ‘NAU-DY’ with large acicular
root when compared with ‘NAU-YH’ with small circular
root. Association analysis between DEMs and DEGs in-
dicated that miR393-bHLH77, miR167-ARF8, and
miR5658-APL might be related to root-type variation in
radish. Furthermore, RT-qPCR validation results indi-
cated that the DEGs/ DEMs evaluated were highly in
agreement with the RNA-Seq data. These finding would
provide valuable information on comprehensive under-
standing of the molecular regulatory mechanism under-
lying taproot thickening in radish, and facilitate further
genetic manipulation and quality improvement of root
vegetable crops.
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