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Abstract

Background: The model species Tetranychus urticae produces important plant injury and economic losses in the
field. The current accepted method for the quantification of the spider mite damage in Arabidopsis whole rosettes
is time consuming and entails a bottleneck for large-scale studies such as mutant screening or quantitative genetic
analyses. Here, we describe an improved version of the existing method by designing an automatic protocol. The
accuracy, precision, reproducibility and concordance of the new enhanced approach are validated in two
Arabidopsis accessions with opposite damage phenotypes. Results are compared to the currently available manual
method.

Results: Image acquisition experiments revealed that the automatic settings plus 10 values of brightness and the
black background are the optimal conditions for a specific recognition of spider mite damage by software
programs. Among the different tested methods, the llastik-Fiji tandem based on machine learning was the best
procedure able to quantify the damage maintaining the differential range of damage between accessions. In
addition, the llastik-Fiji tandem method showed the lowest variability within a set of conditions and the highest
stability under different lighting or background surroundings. Bland-Altman concordance results pointed out a
negative value for llastik-Fiji, which implies a minor estimation of the damage when compared to the manual
standard method.

Conclusions: The novel approach using llastik and Fiji programs entails a great improvement for the quantification of
the specific spider mite damage in Arabidopsis whole rosettes. The automation of the proposed method based on
interactive machine learning eliminates the subjectivity and inter-rater-variability of the previous manual protocol.
Besides, this method offers a robust tool for time saving and to avoid the damage overestimation observed with other
methods.
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Background

The two spotted spider mite Tetranychus urticae Koch
(Acari: Tetranychidae) is a cosmopolitan phytophagous
pest that causes important plant damages and yield
losses [1]. The predicted expansion of the spider mites
under the climate change, its extreme polyphagous char-
acter with more than 1100 documented host plants and
its ability to develop pesticide resistance makes 7. urti-
cae one of the most significant pests in the agriculture
[1-3]. Phytophagous mites pierce parenchymatic plant
cells using stylets to suck their nutrients and produce se-
vere chlorosis mainly on the leaves leading to a reduc-
tion in crop yield [4-6]. T. urticae is a model within
chelicerate herbivores with its small genome sequenced
and a broad range of tools and protocols developed [1,
7-9]. Besides, the mite ability to feed on the model spe-
cies Arabidopsis thaliana has provided an outstanding
opportunity for functional studies about plant-mite in-
teractions [10-16].

The quantification of the plant damage produced by 7.
urticae is particularly important to decision-makers
when the crop damage is related to yield losses; for plant
breeding approaches where various accessions, germ-
plasm, varieties and/or cultivars need to be rated; and
for pest management decisions [17]. Likewise, it is a
valuable tool for the understanding of fundamental pro-
cesses in biology, such as plant-pest coevolution [18].
During last years, the quantification of the damage pro-
duced by T. urticae in Arabidopsis plants [10-16] has
been measured using the method described by Cazaux
et al. [7]. This method is based on the manual identifica-
tion of the chlorotic spots by using the Adobe Photo-
shop program and the later transformation of the pixels
in mm? of damaged area. This manual approach is very
subjective because the rater (human specialist) has to
distinguish the chlorotic spots produced by the mite
feeding from other light coloured or background areas
such as trichomes or early senescence symptoms. Even
when this manual method provides an accurate and pre-
cise quantification, it is time-consuming and entails the
intrinsic intra- and inter-rater variability [19]. In the case
of the symptoms caused by pathogens or chewing in-
sects, the high contrast between damaged/undamaged
regions facilitates the repeatability and reproducibility of
the results using automatic programs such as Fiji [13,
20] or APS Assess [21, 22]. In contrast, cell content
feeders (mites or thrips) and phloem feeders (aphids)
produce subtle symptoms difficult to recognise by auto-
matic software programs. In previous works, the soft-
ware CompuEye [23], Ilastik [24] and/or Fiji [25] have
been used to quantify the cell damage produced by suck-
ing feeders. These approaches have been used to evalu-
ate plant damage in detached leaves or in a piece of leaf
of known area, but not in whole plants which should
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provide a more realistic measure. Therefore, we decided
to test the effectiveness of the three automatic programs
(Assess, CompuEye and the tandem Ilastik-Fiji) in paral-
lel to the manual annotation (Photoshop) to estimate
the damage caused by spider mites on Arabidopsis ro-
settes. These three automatic programs were selected
based on the availability of the software, their user-
friendly platforms and their capacity to process in batch
mode large amounts of images. The software selection
covers well documented methods with the sensitivity to
identify subtle biological stresses, employing strategies to
do so such as simple thresholding (Assess and
CompuEye) and modern machine learning techniques
(Hastik). Another important considered feature for the
selection was the accessibility of the methodologies to
non-computer scientists, so they could be used without
resorting to programming expertise or high computer
processing power. Additionally, the effects of the back-
ground and the selected lighting conditions during the
image acquisition have been analysed to optimise this
process. Our comparative analysis highlighted advan-
tages and limitations of each approach compared to the
manual method and demonstrated that the tandem
Ilastik-Fiji method was the most reliable. The automa-
tion of the procedure, by using modern machine learn-
ing methodologies, eliminated the intra and inter-rater
variability, massively reduced the quantification process
time, and avoided the overestimation of the damage in-
herent to the manual method.

Results

Selection and optimization of methods under study
Three automatic software programs were selected for
this study, Assess [22], CompuEye [23] and the tandem
Ilastik-Fiji [24]. These programs were identified as previ-
ously used for damage quantification with potential to
automatically discriminate the subtle damage produced
by the T. urticae infestation. As a reference, we used the
manual annotation [7] currently used to quantify spider
mite damage in Arabidopsis. For the analysis on Assess
2.0, the Classic Panel was used. The thresholds on each
colour plane were explored to discriminate the rosette
area from the background. Damage analysis was per-
formed on the rosette area by also exploring the thresh-
old values on each plane. Once the desired plane and
threshold values were identified (Additional file 1: Table
S1), macroinstructions (macros) were designed to auto-
matically process the images (Additional file 2: Macro
S1). CompuEye analysis was performed by testing each
of the four available systems. Different degrees of sensi-
tivity were assayed to correctly identify the damaged
areas. Once the combination of system/sensitivity was
identified (Additional file 1: Table S2), the bulk of
infested and non-infested plant images was analysed.
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The custom detection system of this program was not
used due to poor results.

Regarding Ilastik, the program was trained to identify
the damaged tissue, and the original images were seg-
mented using this information. The segmented images
were processed in Fiji (Additional file 2: Macros S2-54).
Control rosette images were used to select the pixel
cluster size threshold to discriminate background noise.
A cluster size of 37 pixels was detected as the mean
value under which damage was disregarded for the final
measurements (Additional file 2: Fig. S1). A workflow of
the entire analysis procedure is showed in Fig. 1 and a
detailed explanation in the methods section.

The identification of specific thresholds for each lighting
and background condition was necessary for all the auto-
matic methods. Furthermore, control rosettes were used
to correct for the average error that the automatic
methods committed. This error consists on the identifica-
tion of “damaged” tissue in control rosettes due to the
presence of confounding areas related to the light colour
associated to young leaves, trichomes or early senescence.

Scanning condition optimization
To analyse the effect of lighting variations on the ability
of the methods used to identify damage, six brightness/
contrast combinations and two backgrounds were ap-
plied to each rosette image (Fig. 2). Attention was paid
to the data closeness of the automatic methods to the
manual reference method and the variability within each
method and condition tested (Fig. 2).

Before the values were corrected using control rosettes
(Fig. 2a), a clear damage overestimation and variability
were detected on the values calculated by Assess and
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CompuEye for all of the lighting conditions and back-
grounds tested. The damage was three/four times higher
than the calculated with the reference method for the
black background and up to nine-fold when the photos
were scanned with white background. Values obtained
with the Ilastik-Fiji tandem were closer to the reference
programme results showing an overestimation only in
the condition A2 with black background and in A2 and
A6 with white background. When data were corrected
using the damage of the control rosettes (Fig. 2b), on the
black background Assess and CompuEye overestimation
decreased and maintained high variability for most of
the conditions tested. Damage estimated by the Ilastik-
Fiji tandem was again closer to the reference method,
and showed an underestimation for the conditions Al,
A2 and A6. When the correction was applied to the im-
ages taken under the white background, the damage
quantified with Assess and CompuEye showed a signifi-
cant reduction or an absence of values due to the identi-
fication of more damage in the control than in the
infested rosettes. Regarding the Ilastik-Fiji tandem, the
damage was overestimated only in the condition A6,
being the values closer to the ones calculated with the
reference program, and with an acceptable intra and in-
ter variability (Additional file 1: Table S3). Statistical
analysis using GLM revealed significant variations on
the damage identified by the programs for background
(¢ =29.99, p <0.001) and lighting condition (x> = 63.85,
p <0.001). No difference was found for the damage esti-
mated under the same lighting conditions on different
backgrounds (x> =5.14, p =0.27) (Additional file 3:
Table S1). The program with the closest values to the
Photoshop reference method was the Ilastik-Fiji tandem,
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Fig. 1 Flow chart of the analysis procedure using the llastik-Fiji method. Eight rosettes for control or treated rosettes were scanned either on
black or white background (a), rosettes are individualized, and the total area of each rosette is estimated using Photoshop (b). A selection of
individual rosettes is imported to llastik (c) and used to train the program (d), to distinguish mite damage (red), from healthy rosette (green) and
background (yellow). All the images are processed and exported as 8-bit (e). The previous images are imported into Fiji and the damaged areas
extracted and exported as black and white images (f). The damaged area is calculated for treated and control rosettes (g). Control rosettes are
then used to correct the damage area from mite-treated plants. Black and white scale bars indicate 1cm




Ojeda-Martinez et al. BMC Plant Biology (2020) 20:397 Page 4 of 19
P
a Black White
. 600
T 200 !
£ i 400 :
8 |
H] .
k]
)
g 1o 2001
[ [
[a] O i %
SEEEY 8
B o —
0 : : L] I : 04 i _ i G i i (;mli:ionlD
Assess  CompuEye llastik  Photoshop Assess  CompuEye  llastik  Photoshop =
Program B A
b Black White B
600 -
75
~
E
E 400
8 50 L ##@
©
e H
[}
g F
200
E 25
S ———
_&
0 0
Assess CompuEye  llastik  Photoshop Assess  CompuEye  llastk  Photoshop
Program
Fig. 2 Box-and-whiskers plots representing the estimated damaged area (mm?). Data were obtained from each system under different lighting
conditions and white and black backgrounds: (a) Without control rosette correction, and (b) after error correction using rosette controls. Data
were obtained from A. thaliana Col-0 genotype, infested with 50 T. urticae adults for 4 days; n = 3. Lighting conditions (Brightness, Contrast for
each case): A1 =1,/-56; A2 =50,-25; A6 =90,-100; A4 = Automatic threshold (30,-69 White; 40,-69 Black); A3 and A5 values were selected for each
background subtracting and adding 10 values of brightness, respectively, maintaining contrast values. Black dots indicate outlier values

in particular for the conditions A3, A4 and A5, which
also had low Standard Deviations (SDs) and Coefficients
of Variation (CVs), and behaved similarly for both back-
grounds (Additional file 1: Table S3). Under these same
three conditions, Assess had also damage values on the
black background with low SDs and CVs that were close
to the Photoshop standard. Any lighting condition out
of A3, A4 and A5 induced the automatic methods to ei-
ther overestimate or underestimate the damage values,
and also produced high variability or excessive damage
identification on the control rosettes. Due to the accur-
acy of the results of two out of the three automatic pro-
cedures, A3, A4 and A5 conditions were selected for
subsequent analyses.

Accuracy and precision of each method

In order to test the precision and accuracy of each
method, two additional genotypes, Kon and Bla-2, were
added to the Col-0 used in the previous experiment.
Kon plants were highly susceptible to the attack of the

spider mite, displaying more chlorotic areas, while Bla-2
was highly resistant showing less symptoms on the
infested rosette. The response of Col-0 and Bla-2 ro-
settes to the spider mite was quite similar, although Col-
0 was a bit less resistant [11]. Accuracy was assessed by
analysing the position of the genotypes in the plant dam-
age scale and calculating the quotient between the Kon/
Col-0 mean damage [13, 14]. For every lighting condi-
tion tested on both backgrounds, the mean damage cal-
culated by all the methods was below the standard,
except for the Kon genotype on the condition b3 (Fig. 3).
The worst accuracy scenario occurred for the least
lighted bl condition, for which Assess and CompuEye
lost the information because they detected more “dam-
aged” areas on the control than on infested rosettes (Fig.
3). The CompuEye and Assess outcomes under condi-
tions b2 and b3 were also misleading because of some
loss of information. In the conditions w2 and w3 the
CompuEye results were the expected comparing the
three accessions (Kon > Col-0 ~ Bla-2) but the SDs and



Ojeda-Martinez et al. BMC Plant Biology (2020) 20:397

CVs were quite high (Fig. 3; Additional file 1: Table S4).
Regarding Ilastik, the damaged areas displayed in five
out of the six conditions maintained the standard known
relationship among the mean damage for each genotype
(Kon > Col-0 ~ Bla-2). However, their values were always
lower than in the manual annotation (Fig. 3; Additional
file 1: Table S4; Additional file 3: Table S2). The condi-
tion where the Ilastik results reproduced better the
known relationship among the genotypes was b3 on the
black background. In the aforementioned condition, the
relationship of the susceptible genotype (Kon) divided by
the resistant one (Col-0) reached 4.5 (Table 1), which fit-
ted with previous manual-obtained data where the quo-
tient Kon/Col-0 was between 2.5 and 4.5 [13, 14].
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The values represent the relationship between the two
genotypes, Kon and Bla-2, on the opposite ends of the
spider mite resistance spectrum.

In addition, the Ilastik method had less data variability,
being its SDs and CVs lower compared to the other
automatic methods (Fig. 3; Additional file 1: Table S4).
All the methods displayed more dispersed values for
Kon than for the other two genotypes (Fig. 3; Additional
file 1: Table S4).

Background and lighting effects on the method
reproducibility

To evaluate the reproducibility of the automatic
methods, damage estimation was conducted using three
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Fig. 3 Box-and-whiskers plots representing the estimated damaged area (mm?) obtained from each of the systems under different lighting conditions
and white (top row) and black (lower row) backgrounds. Data were obtained from A. thaliana Col-0, Bla-2 and Kon genotypes, infested with 20 T.
urticae adults for 4 days; n = 8. Lighting conditions (brightness, contrast for each case): w2 and b2 (central column) = Automatic threshold (30,-20
White; 40,-10 Black); w1, w3, b1 and b3 values were selected for each background subtracting and adding 10 values of brightness, respectively,
maintaining contrast values. Black dots indicate outlier values
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Table 1 Kon/Col-0 mean damage quotient calculated for each
automatic method and the standard (Photoshop)

Program Assess Compukye llastik Photoshop
Lighting

Condition

W1 39 20 2.7

W2 - 32 2.7 2.7

W3 - 34 3.1 2.5

B1 - 06 2.8

B2 - - 3.1 28

B3 - - 45 23

lighting conditions on two backgrounds. A GLM was
performed to detect statistical differences and a pair-
wise comparison analysis with Bonferroni correction to
locate them. B&A plots were produced for each method
to compare the estimated variability between back-
grounds (Fig. 4). The coefficient of repeatability was also
calculated to analyse the effect of background and light-
ing conditions (Tables 2 and 3). As expected, statistical
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0.001), lighting conditions (x> = 21.8, p < 0.001) and pro-
grams (x°> =76.01, p<0.001) (Additional file 3: Table
S3). Lighting conditions varied the damage estimated by
the programs (x> =42.95, p <0.001). Differences were
also detected among the programs for the damage calcu-
lated in the genotypes (x> = 29.22, p < 0.001).

According to B&A plots and Coefficient of Repeatabil-
ity (CR) values, the Ilastik estimations were more repro-
ducible with different backgrounds. Ilastik displayed
narrower limits of agreement compared to the other two
automatic methods for every genotype analysed (Fig. 4).
CR values for different lighting conditions (Table 2) and
background changes (Table 3) were in general lower for
Ilastik compared to the other two automatic methods,
especially for Bla-2 and Col-0 genotypes.

In addition to all the previous data, the damage quan-
tification images generated by Ilastik had the highest vis-
ual accuracy (Fig. 5).

Concordance analysis
B&A plots were produced to study the agreement of
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Fig. 4 Bland-Altman plot comparing reproducibility of the three automatic methods and the standard on different backgrounds. Each panel
compares the results of the methods on white versus black background for the genotypes Bla-2 (upper panel), Col-0 (middle panel) and Kon
(lower panel). Method identification is on top of its corresponding column. The Y axis represents the damage values on white background minus
the values estimated on the black background. The central solid line indicates the mean difference, the two outer dashed lines indicate +1.96
standard deviations
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Table 2 Coefficients of repeatability (CR) and confidence intervals (Cl) when lighting conditions are changed

Program Assess Compukye llastik Photoshop
Conditions

Genotype Background CR c CR @ CR @] CR @]

Bla-2 White 20.38 13.23;4837 6.88 4941177 2.10 1.59;3.19 1.31 1.02;1.85
Col-0 9.98 5.77;44.10 9.87 6.81;1892 3.69 2.885.23 157 122222
Kon 20.83 16.25;29.53 11.71 9.13;,16.61 16.55 1291,23.47 743 5.80;10.54
Bla-2 Black 1.15 0.59;2.22 12.90 7.45;56.96 1.77 1.36;2.59 260 2.03;3.69
Col-0 - - - - 2.26 1.76;3.21 6.80 5.30,9.64
Kon 32.16 25.09;45.59 110,51 86.20;,156.66 31.56 23.32,50.28 7.57 591;10.74

Photoshop standard procedure (Fig. 6). The differ-
ences were expressed as percentages of the values
[(Method A — Method B)/mean)]. Due to the poor
accuracy of the results on the conditions wl and bl,
the plots were only produced for the conditions w2,
w3, b2 and b3. More replicates were analysed in the
Ilastik-Fiji/manual annotation plots because less sam-
ples were lost during control correction. All the
methods were biased to identify less damage com-
pared to the standard, with the exception of Com-
puEye under the condition b3 on a black background
(Fig. 6). The aforementioned exception was also the
only case in which CompuEye presented narrower
limits of agreement compared to the rest of the
methods. The agreement limits for Ilastik were gener-
ally the narrowest (Fig. 6), followed by those from
Assess, which indicated more consistency for these
two estimation procedures. However, Ilastik bias to
identify less damaged areas was larger compared to
the other two methods. On average, Ilastik detected
up to 1.36% (28 mm?) less damaged areas than Photo-
shop, while Assess detected up to 0.37% (17 mm?) less
area and CompuEye overestimation reached 0.58%
(53 mm?) (Fig. 6). Agreements between the automatic
and the standard methods were also analysed by cal-
culating Lin’s concordance correlation coefficient
(CCC) and Spearman correlation coefficient. While
the correlation coefficient identifies relationships
among methods, Lin’s CCC is also able to detect con-
stant bias and penalise accordingly. Regarding the
Spearman coefficient, the correlation was significant
(p <0.001) for all the methods analysed. The correl-
ation with the reference method was higher when the

images were taken on black background for all the
automatic methods (Fig. 7). When analyses were per-
formed using Lin’s CCC, no perfect relationship was
detected between the automatic methods and the
manual standard approach. Except for CompuEye on
the black background (Fig. 8), the rest of the methods
displayed a tendency to underestimate damage com-
pared to the standard. The highest CCC occurred for
Assess on a black background (Fig. 8), indicating a
better agreement, although most of its values were
below the line of concordance. As expected from the
previous B&A plot results, Ilastik had the lowest CCC
values for both backgrounds, although were higher in
the black background. This method was highlighted
as the one with the largest bias in the B&A plots
(Fig. 6), and since the CCC penalises this tendency,
its values were the lowest.

Comparative analysis of damage detection on control
rosettes

Due to the larger size of the control rosettes compared
to the infested ones (t=25.291, df=1054.2, p-value <
0.001), confounding areas were more abundant in these
rosettes. To control this effect, damaged areas in the
control rosettes were expressed as a percentage of the
total rosette area. Differences were identified when the
percentages of damaged areas in the control rosettes
were analysed using a GLM (Additional file 3: Table S4).
The highest interactions indicated statistical differences
for the percentages when genotypes were analysed under
different lighting conditions and backgrounds (x> =
120.6, p <0.001) (Additional file 3: Table S4). In general,

Table 3 Coefficients of repeatability (CR) and confidence intervals (Cl) when background is changed

Program Assess CompuEye llastik Photoshop

Genotype CR cl CR @ CR @ CR c

Bla-2 17.70 12.21;33.90 19.14 13.74,32.74 1.84 147,250 1.76 143,232
Col-0 - - - - 413 3.36,544 420 341,554
Kon 26.07 20.33;36.96 73.54 57.36;104.25 14.99 12.02;20.18 1.94 1.57;2.56
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Fig. 5 Area selection accuracy on two lighting conditions and backgrounds. The identification of damaged areas by the two software’s that has the
best accuracy (llastik and Assess), is assessed using the standard (Photoshop, top row). Results are shown for the brightest conditions on both
backgrounds: w3 (white background, middle row) and b3 (black background, lower row). Damaged areas are represented by red colour (Assess and
Photoshop) and black colour (llastik). Lighting conditions (brightness, contrast for each case): w3 and b3 (40,-20 White; 50,-10 Black, respectively). Black

Col-0 Kon

damaged area values increased for the control rosettes
when they were scanned on a white background (Fig. 9).

The lighting variations on each of the backgrounds did
not cause statistically significant differences on the dam-
aged areas (Additional file 3: Table S5). Assess and
CompuEye had a tendency to detect more basal damage
for Bla-2 and Col-0 genotypes on the white background,
compared to Kon. This behaviour on genotypes that
normally presented low damage area values for the
infested plants, led to the loss of information when the
control correction was applied. CompuEye was the soft-
ware that identified more damage on control rosettes
(up to 50%), followed by Assess (up to 40%). The post-
hoc analysis highlighted Ilastik as the method that iden-
tified less damaged areas on the control rosettes (up to
10%, Additional file 3: Table S5). Errors, such as the
identification by CompuEye and Assess of the petioles as
damage (Fig. 10), were controlled under the black
background.

Discussion

In the last years, great efforts have been done to improve
the understanding of the molecular bases of Arabidopsis
resistance to spider mites [10—16]. Since the screenings
to evaluate plant resistance require an appropriate
method for plant damage quantification, most re-
searchers of the spider mite community have used a

protocol to quantify leaf damage based on manual anno-
tation [7]. This procedure has allowed the identification
of genes involved in Arabidopsis defence against spider
mite, their role in defence against spider mites in crops,
and the existence of mite adaptations to different plant
hosts [26—29]. However, this method has some weak im-
portant points. It is subjective, dependent on the human
eye, time consuming, and presents high inter and intra-
rater variability. In this context, to establish an alterna-
tive procedure for an efficient and automatic quantifica-
tion of spider mite damage in Arabidopsis using whole
rosettes was required. Among the different automatic
programs already described to quantify plant damage,
Assess, CompuEye and Ilastik methods were selected be-
cause they had been previously used for the quantifica-
tion of similar plant subtle symptoms [21-25]. Different
conditions and parameters were tested to fix the optimal
settings for the establishment of a reliable automatic
method with high accuracy, precision and concordance
to be routinely used in the A. thaliana-T. urticae inter-
action studies.

Background and brightness

It is well known that the scanning conditions and the
image quality affect the quantification of the damage cal-
culated by digital methods [18, 23, 30]. These analyses
require specific thresholds, training and sensitivities for
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Fig. 6 Bland-Altman plots of estimated damage area (automated method vs Photoshop). The central solid line indicates the mean difference, the
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0, Bla-2 and Kon genotypes, infested with 20 T. urticae adults for 4 days; n = 8. Lighting conditions (brightness, contrast for each case): w2 and
b2 = Automatic threshold (30,-20 White; 40,-10 Black); w3 and b3 values were selected for each background adding 10 values of brightness,
maintaining contrast values

a correct identification and quantification of the damage
[31, 32]. In Arabidopsis, the leaf symptoms due to the
spider mite feeding are identified as chlorotic spots or
small regions in pale yellow or white colour [6], which
are highlighted on a white background. Indeed, the man-
ual method used as reference generally detected more
damage when the measurements were done on a white
background. This feature suggests that the bright

surrounding the plant tissues alters the detection of
damage achieved by the human eye. Likewise, our find-
ings supported that the Assess and CompuEye programs
also recognised greater damage in the control infested
rosettes when the images were taken on a white back-
ground. The brightest conditions produced the highest
capacity to detect damaged tissues but, at the same time,
the highest error rates due to colour similarities and
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Fig. 7 Spearman correlation coefficient (r)) describing the relationship between the damage estimated areas by Photoshop and by the automatic
methods. The blue line represents the best fit and the grey areas show a confidence interval with 95% probability

reflection [18, 32]. Consequently, the overestimation of
the spider mite damage in the control rosettes caused
the loss of data when the correction was applied, and
rendered whole genotypes without any information after
infestation. To elude an excess of errors and to avoid the
misinterpretation between mite damage, trichome-rich
regions and early senescent symptoms, the acquisition of
images on a black background was also tested. Under
these conditions, the estimation of the damaged area in
the control rosettes by the Assess and CompuEye pro-
grams was significantly lower than the values determined
on the white background, avoiding known errors such as
the identification of petioles as damage [33, 34]. In
addition, the importance of lighting conditions on image
analysis pushed us to assess the combination of contrast
and brightness in the quantification of the plant damage.
As expected, extreme conditions of brightness were hur-
dles for the automatic methods [30]. In accordance to
Kirk et al. [35], a subset of moderate settings rendered
the most reliable and robust results. These settings were

the automatic condition proposed by the scanner and 10
points of brightness variations above and below that
value. The analysis of these three lighting conditions
provided a mix of results for each background and the
Ilastik program was the one that generated less variable
results with a higher reproducibility for most of the con-
ditions tested.

Accuracy, precision and concordance

Accuracy refers to closeness of a measurement to a spe-
cific value while precision denotes the closeness of the
measurements to each other. Both concepts are
mandatory in the evaluation of any automated method
based on the application of computer image processing
to quantify plant damage. The closeness to the standard
was greatly affected by the dimmer conditions independ-
ently of the background. Therefore, a brightness reduc-
tion under the automatic detection was not advisable, as
previously reported [36]. In our study, the CompuEye
method performed worse under conditions where the
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other programs had positive results. It failed to repro-
duce resistance ranges among the Bla-2, Col-0 and Kon
accessions on the white background and lost data from
some genotypes on the black background due to exces-
sive damage estimation on the control rosettes. Besides,
it had wider limits of agreement on the B&A plots, al-
though its bias were the lowest. These results agreed
with the high variability of its estimations. It was also
the only method that incurred in overestimation, and
the most affected by changes on lighting and

background conditions. The main hurdle in the Assess
method was the estimation of damage for the control
Col-0 rosettes. This method consistently identified more
damage in several Col-0 control plants than in infested
plants, leading to loss of data. Furthermore, the values of
damage obtained by this method on a white background
for the Kon accession were the most variable. These re-
sults agreed with the fact that the RGB model in which
they rely was susceptible to light variations [33]. On the
contrary, the variability found by the Ilastik method was
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generally similar to the standard values except for the
Kon genotype, whose highly variable data were detected
independently on the condition and the software used.
Ilastik results also consistently reproduced the Kon >
Col-0 ~ Bla-2 relationship regardless of the condition.
The proximity of the aforementioned values to the refer-
ence ones, the small standard deviation, and the uni-
formity of the relationship among genotypes identified
the brightest condition tested on the black background
(condition b3) as the best condition for the Ilastik pro-
gram. The quotient of mean damage Kon/Col-0 by the
Ilastik method was 4.5 for the condition b3, similar to
the results reported by Santamaria et al. [13, 14]. The re-
producibility of the relation in the damage found in
Kon/Col-0 was a good indicator of the Ilastik reliability.

In terms of concordance, which defines the similarity,
harmony or consistence between two different measure-
ments, the Assess and CompuEye methods agreed more
to the reference method. However, the wider agreement
limits for the Assess and CompuEye procedures sug-
gested a higher variation between their estimated areas
compared to Ilastik, the latter having noticeably a higher
underestimation bias. Likewise, although the correlation
coefficients were significant for all the methods, Lin’s
CCC values were superior for the Assess and CompuEye
methods. As CCC evaluated agreement between the two
methods by analysing the deviation of their relationship
from a line that goes 45° through the origin [37], CCC
values for the Ilastik method were heavily penalised due
to its bigger bias. The close relationship detected by the
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Fig. 10 "Damaged areas” identified by the automatic methods on
control rosettes. Identified areas are compared on a leaf among the
three automatic methods as an example. A white background (a-c)
and a black background (d-f) are used for comparison. Damaged
areas are identified by llastik in black (a, d). Red colour identifies
damaged tissue by Assess (b, e) and by CompukEye (c, f). Black scale
bar indicates 1 mm

correlation analysis and CCC between Assess, Com-
puEye and the standard method could be due to their
similar strategy to detect damaged areas.

The standard method involved the manual segmenta-
tion, by means of red dots, of the damaged regions that
were going to be later extrapolated and summed as
squared areas of 0.25*0.25mm [7]. Apart from the
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variations on the measurements produced by the sub-
jectivity or rater experience [38, 39], this method also in-
curred in an intrinsic overestimation related to the
selection procedure. When a region was selected as
damaged, a mixture of healthy and chlorotic tissue was
often included in the selection (Fig. 11). This
phenomenon occurred inside of the damaged areas but
was more frequent in the boundaries of the damaged re-
gions (Fig. 11c). As a consequence, healthy tissue was
counted as damaged. The miscounting increases every
time that a new selected square had these characteristics,
which happened with moderate frequency. The rate of
miscounting also proliferated as the total damage in-
creased, especially if the areas were spread. On suscep-
tible genotypes such as Kon, where the damaged areas
were extensive and dispersed, the incidence was higher.

The Assess and CompuEye methods behaved similar
to the manual method performed on Photoshop, tending
also to overestimate the damaged areas and because of
that, their concordance was higher. The segmentation
procedure on the Classic Threshold Panel from the As-
sess software makes use of a simple thresholding proced-
ure by choosing a range of pixels inside a selected colour
space [40, 41]. The selection has two fixed boundaries
that encompasses the pixels regarded as of interest.
However, due to the complexity of a rosette, the dam-
aged areas included separated ranges of pixels and not
necessarily a single range. When a single broad range
was selected, healthy tissue was also included in the se-
lection such as young leaves, trichome-rich regions and
leaf borders. The extent of misidentification depended
on the presence of confounding areas, which vary among
rosettes. On the other hand, the CompuEye segmenta-
tion procedure also relies on a simple thresholding pro-
cedure. The available systems are pre-programmed to
identify lack of green colour and to increase their scope
by regulating their sensitivity [23]. As in the manual
method, the image is divided in square units of a se-
lected size and the identification procedure analyses each
square at a time, calculating an average colour [42]. The
strategy of choosing a fixed colour/pixel-value as a
threshold below which damage selection is done, works
similar to the Assess procedure and carries the same
drawbacks.

Different from the two previous automatic techniques,
the Ilastik method uses a more complex approach to
identify damage, which is more than likely the reason of
its low concordance [43]. It allows the identification of
pixels as damaged areas in complex texture images by
combining active learning and machine learning tech-
niques [44]. The identified pixel information provided by
the user is initially bootstrapped. Subsequently, the input
is used for the construction of individual decision trees,
and the pixel by pixel classification of the whole image
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Fig. 11 Analysis of the overestimation phenomenon that occurs in the Photoshop method. A random region of a rosette processed by the
standard method (a) is zoomed (b). Healthy tissue can be seen, as indicated by black arrows (c), inside the squares assumed by the method to
be filled by chlorotic tissue. Black scale bar indicates 1 cm. The sides of the squares on b and ¢ are 0.25 mm

occurs by means of a random forest classifier [44, 45].
Classification by means of random forest is deemed as
one of the most efficient learning machine techniques
and has been reported as robust when trained using
small sample sizes [46, 47]. Moreover, when used for the
identification of biological stresses on plants, it has been
identified as superior compared to other supervised ma-
chine learning techniques [48]. The software also guides
users to ambiguous regions to fine-tune the classification
by adding extra information. Instead of a fixed area or
array of pixels, as the previous strategies used by Assess
and CompuEye, the Ilastik procedure allows to select-
ively pick those pixels that better represent what the
user identifies as damaged tissue. This sort of selection
allows a finer estimation of damage on a complex visual
environment such as a rosette image. Also, all the previ-
ous procedures occur in a user-friendly interface that
does not require any programming knowledge from the
user.

Some of the main limitations of the automatic proce-
dures found during the development of the present
study were related to their sensitivity to light and back-
ground conditions. Therefore, the present study identi-
fied those lighting and background conditions where the
programs tended to have their best outcome. The high
sensitivity of the Ilastik method highlighted as the best
choice. However, it prevented the use of the trained
model on certain Arabidopsis ecotypes to identify dam-
age on another one, which led to the training of individ-
ual models for each ecotype tested. As a machine
learning based software, Ilastik requires training data to
be able to effectively identify damage from healthy
tissue. This is a challenge for the present experimental
design due to its replication limitation. However, in the

array of available artificial intelligence technologies, the
strategy used by Ilastik optimises the usage of available
training data, reducing the total amount required, as dis-
cussed below.

llastik as a machine learning approach

As stated before, the Ilastik background algorithm that
identifies the damaged areas in the rosettes is deemed as
supervised machine learning. The capacity of this tech-
nology to identify patterns makes it useful in scientific
tasks, such as the detection and measurement of disease
symptoms by means of specific algorithms [49]. Software
running the afore mentioned technology also improve
when given new information in an automated fashion,
regardless of the knowledge of the underlying model for
the raw data [50]. Among machine learning techniques
applied to image analysis, deep learning methods are al-
ternatives to the supervised machine learning employed
by Ilastik. They use an important number of images pro-
vided by the user to identify pixels. Therefore, this alter-
native explores high amounts of raw images and provide
labels and associate image regions with them without
human intervention [51]. Deep learning approaches for
image analysis, such as convolutional neural networks,
are very powerful. However, they require large amounts
of training data, being precisely the decrease of the train-
ing data size one of the main areas of research for this
methodology [52].

On the other hand, supervised machine learning in-
volves algorithm parametrization by means of human
guidance, allowing the extraction of meaningful patterns
from the samples provided [53]. Unlike deep learning,
the machine learning methodology used by Ilastik pro-
vides classification conclusions based on significantly
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less image requirements. Image replication depends on
the number of rosettes cultured into growth chambers,
whose capacity is generally limited. Additionally, Arabi-
dopsis rosettes must be infested manually one by one
using tens of minuscule mites, which have to be re-
moved also by hand prior to the scanning procedure. As
a consequence, phenotyping experiments are generally
in the range of 6 replicates [13, 14]. This is a strong
challenge to the use of deep learning techniques and
renders their use unpractical, since the training phase re-
quires hundreds to thousands of images [54]. Dissimilar
to deep learning techniques, the strategy employed by
Ilastik reduces the feature space to the user-selected
pixels, using the training data only to identify the deci-
sion surface [52]. As a consequence, this method allows
a balance between accuracy, simplicity and speed, and
significantly reduces the amount of data required for the
training and analysis processes [52]. Moreover, deep
learning requires a heavy processing power and a large
amount of time for the training phase, and usually in-
volves programming abilities [54, 55]. Since one of the
main goals of the present work is to provide an access-
ible and reproducible method, these requirements would
also act as a restrain.

Another advantage of the machine learning tech-
nique used by Ilastik is that of improving its perform-
ance when more information is given. In that regard,
future tests will be done to validate and enhance this
methodology. Issues that should be checked are the
results obtained upon enrichment of the training sam-
ples, the error reduction by means of the control im-
ages and the expert-segmented images, and the
maintenance of the relationship among the damaged
areas in different Arabidopsis ecotypes. Moreover, due
to the plasticity of the supervised machine learning
methodology, the current protocol can also be applied
to the identification of damage from different stresses
such as fungal, viral or bacterial infections. Likewise,
the present protocol could also be transferred to
other plant species, expanding further its applicability
spectrum. As future approaches that could be applied
to the present damage identification requirements are
emerging deep learning strategies such as data aug-
mentation, transfer learning, or domain adaptation.
The aforementioned machine learning approaches
make use of diverse strategies in order to ameliorate
training data requirements while maintain efficacy
and specificity. This is a feature that render their use
appealing due to the image availability restriction of
the present studies.

Conclusions
In this work, a new and automatic method of damage
quantification produced by spider mite feeding in
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Arabidopsis whole rosettes is proposed. Our findings are
a clear advance on the available manual method cur-
rently accepted to quantify damage in infested plants.
Among the methods tested, the combination of Ilastik
and Fiji used in tandem is the most accurate, precise and
reproducible procedure to quantify spider mite damage
in Arabidopsis rosettes. The concordance analysis shows
a bias for the results obtained by the Ilastik procedure
that reveals the overestimation of damage produced with
the rest of approaches, including the reference one. Be-
sides, the study of the influence of the image scanning
conditions in the damage quantification enabled to select
the proper lighting and background conditions to evalu-
ate plant damage under the identified system. Thus, this
automated method based on machine learning, non-
subjective, not time consuming and with no inter and
intra-rater variability can be considered as an enhanced
and appropriate method to study different aspects of the
plant-spider mite physiological interaction.

Methods

Plant material and growth conditions

Seeds for all the A. thaliana accessions were kindly pro-
vided by Dr. Vojislava Grbic (University of Western On-
tario, Canada) and originally acquired from the ABRC
(Arabidopsis Biological Resource Center). A. thaliana
plants from the accessions Columbia (Col-0), Kondara
(Kon) and Blanes (Bla-2) with different susceptibility to
T. urticae [11] were used.

Seeds were planted and incubated for 5days at 4°C
and plants were then grown in growth chambers (Sanyo
MLR-350-H) under control conditions (23°C +1°C, >
70% relative humidity and a 16h/8hday/night
photoperiod).

Spider mite maintenance

A colony of T. urticae London strain (Acari: Tetranychi-
dae), kindly provided by Dr. Miodrag Grbic (University
of Western Ontario, Canada), was reared on beans (Pha-
seolus vulgaris) and maintained on growth chambers
(Sanyo MLR-350-H, Sanyo, Japan) at 25°C+1°C, >70%
relative humidity and a 16 h/8 h day/night photoperiod.

Infestation protocol

A. thaliana three-week-old plants were carefully infested
with 50 or 20 T. urticae female adults per plant using a
fine brush for the optimization of the conditions or for
method comparisons, respectively. Three to eight repli-
cates were used.

Image acquisition and processing

After 4 days of infestation, mites were carefully removed
from the rosettes and the entire rosettes were cut and
scanned using HP Scanjet (HP Scanjet 5590 Digital
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Flatbed Scanner series). A millimetre paper was used as
a size reference (Fig. 1a). To evaluate the effect of back-
ground and lighting variations in the damage estimation,
images were taken on white and black backgrounds
under six conditions: i) the lighting condition used by
Cazaux et al. [7]; ii) the automatic brightness and con-
trast levels suggested by the scanning software; iii) two
conditions that consisted on adding and subtracting 10
values of brightness to the automatic threshold, main-
taining the contrast; and finally, iv) two extreme lighting
conditions. All tested conditions are summarized in
Table 4. Three biological replicates coming from three
independent rosettes scanned at the same time were
used as individual replicates.

After the identification of the conditions that produced
the lowest variability and the closest results to the stand-
ard, the accuracy, precision, reproducibility and con-
cordance of the methods were studied, including the
Bla-2 and Kon Arabidopsis genotypes in the analysis.
These two aforementioned accessions are located at the
opposite ends of the Arabidopsis susceptibility spectrum.
Kon is the most susceptible and, consequently, the most
damaged by spider mites, and Bla-2 the most resistant
or less damaged by this phytophagous acari [11]. The
previous information was considered important to evalu-
ate the reliability of the methods tested. Images of the
three Arabidopsis, Col-0, Kon and Bla-2 genotypes were
taken under the lighting optimal conditions in black and
white backgrounds. Tested conditions are summarized
in Table 5. Eight biological replicates coming from eight
independent rosettes scanned at the same time were
used as individual replicates.

All the images were taken in Adobe RGB colour mode,
with 1200 dpi of resolution and saved as tiff files. Indi-
vidual rosettes were separated from the original images
(duplicated/renamed) using Adobe Photoshop program,
retaining the size and resolution, and were saved as tiff
files (Fig. 1b).

Damage quantification

Plant damage was identified as the total area of chlorotic
spots detected after spider mite feeding. Image process-
ing and quantification of the feeding damage was

Table 4 Scanning conditions employed to determine damage
estimation stability using Col-0 genotype

Condition Contrast Brightness Background
Al -100 920 White / Black
A2 =50 25

A3 -69 40

A4 -69 30

A5 —69 20

A6 -56 1
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Table 5 Scanning conditions employed to test the performance
of each method using Bla-2, Col-0 and Kon

Condition Contrast Brightness Background
W1 -20 20 White

W2 =20 30

W3 -20 40

B1 -10 30 Black

B2 =10 40

B3 -10 50

performed with Adobe Photoshop CC 2018 v20.0 [56],
APS Assess v2.0 [40], Compu Eye (http://www.ehabsoft.
com/CompuEye/LeafSArea/) [23] or Ilastik 1.1.3
(https://www.ilastik.org/) [44] followed by the Fiji soft-
ware (https://fiji.sc) [57]. The manual identification of
injured areas was done by the Photoshop program ac-
cording to Cazaux et al. [7], and used as the standard
method to compare the results with the automatic pro-
cedures. Briefly, a layer was created over the original ros-
ette image and a grid of equal square sizes was applied
as a guide. Damaged areas were manually identified by
covering them using dots. Each dot corresponded to a
small square formed by the grid. The final number of
dots was calculated and multiplied by the area of the
squares to obtain the total damaged area.

For the three automatic methods, a summary of the
main followed steps is depicted in the Additional File 4.
CompuEye software was used according to Bakr [23]. In
short, the first step was to calibrate the system using the
millimetre paper guide scanned with the rosettes. Each
of the four available systems and sensitivities of the soft-
ware were tested for every genotype, at different light
conditions and backgrounds. The custom detection sys-
tem was also tried. The system/sensitivity combination
that better matched the highlighted areas in Photoshop
was recorded and used to batch process the images. In
the case of the APS Assess software, previous protocols
[58-60] were optimized to specifically detect spider mite
plant damage. All the analyses were performed using the
Classic Panel, and the combination of colour plane and
pixel range that reproduced better the standard areas
was selected. Macros were programmed for batch pro-
cessing the images of each genotype under different
lighting conditions and backgrounds.

A modification of the method used by Visschers et al.
[24] was also tested. The aforementioned method uses
Ilastik as an interactive machine learning tool to seg-
ment images [52]. This software was trained using im-
ages composed of control and treated rosettes to identify
damaged tissue. Training was done for each genotype
scanned on each specific lighting condition and back-
ground, from which six to seven images of damaged and
control rosettes were randomly selected. During the
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training phase, the pixels corresponding to background,
healthy tissue and damaged areas were labelled. The
characteristic of the software to instantly model the un-
labelled regions of the image, allowed the evaluation of
the classification performance by using the unlabelled
pixels as testing datasets. Incorrectly identified areas by
the program were amended, which allowed a re-training
procedure based on the increased amount of training la-
bels. Uncertain areas indicated by the software were an-
notated to help the robustness of the results. The
previous steps were repeated and information was given
to the software during the training procedure until no
significant improvement was detected in performance.
Further evaluation occurred by comparing the results to
the manual segmentation done by a specialist on the
same images. Using the information from the training
procedure, the images were opened in Ilastik (Fig. 1c),
batch segmented (Fig. 1d), and exported to Fiji as 8-bit
images (Fig. 1le). Then, images were reopened in Fiji and
converted to black and white (Fig. 1f). To discriminate
damage from noise, the damaged area was corrected
with a cluster size threshold selected from control ros-
ette cluster frequency graph (Fig. 1g). Macros were de-
signed and the images batch processed. The protocol of
spider mite damage quantification in Arabidopsis ro-
settes using Ilastik-Fiji tandem is detailed in Add-
itional file 5. The training files are available in the
website of our research centre (http://www.cbgp.upm.es/
files/Ilastik_paper.php).

Data correction

After the damage quantification by the automatic
methods, values were corrected using the damage identi-
fied in the controls without mites. Non-infested plants
were used to assess the misidentification of damaged tis-
sue that is normally expected due to the visual complex-
ity of a rosette. To do so, the control rosettes of each
genotype were analysed under the same thresholds and
conditions that were used on their treated counterparts.
The percentage of damaged tissue on each control plant
was calculated based on the damaged area and the total
rosette area. A mean percentage was calculated from the
previous values that was multiplied by the total area of
each infested rosette. Uncorrected values were then
modified by subtracting the multiplication of the mean
percentage by the value of each total rosette area. The
mean of the damaged areas detected in the control ro-
settes was calculated by using the following formula:

x. = Z(DAci/TAci)

c
n

X, accounts for the mean of the percentages of dam-
aged area in the control rosettes; DA, indicates the
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damaged area in each independent rosette (ith); TA,;
represents the total area of the ith rosette; and n ac-
counts for the number of replicates. The corrected data
were calculated by:

Ai = DA“' - EE*TA“

A; accounts for the corrected damaged area of the ith
rosette; DA,; represents the uncorrected damaged area of
the ith rosette; and TA,; the total area of the treated ith
rosette.

The previous correction procedure was performed in-
dependently for each genotype under each lighting/back-
ground condition tested.

Statistical analyses

To evaluate the performance of the automatic methods and
to compare them with the standard manual method, the
concepts of accuracy, precision, reproducibility, concordance
and bias were evaluated [18, 61]. Data from the optimization
of lighting conditions were analysed by a Generalized Linear
Model (GLM). The aforementioned test was performed with
a gamma distribution and an inverse link function to analyse
lighting and background effects using the model Damage~-
Program*Background*ConditionID.  Reproducibility =~ was
tested by changing the lighting conditions and background
and the data assessed by a GLM with exponential distribu-
tion and an inverse link function, applying the best fit model
Damage~Program*Condition]D*Genotype. Bland-Altmann
(B&A) plots were also used to visually identify variability
along with Coefficients of Repeatability (CR). Concordance
was compared by using B&A plots expressing the differences
as percentages of the values. Agreement was also showed by
calculating Lin’s Concordance Correlation Coefficient (CCC)
and Spearman Correlation Coefficient (SCC). Damage identi-
fied by the automatic methods in the control rosettes was
expressed as percent of the total area and compared using a
GLM analysis with a gamma distribution and inverse link
function in the best fit model DamagePercent~Program*-
ConditionID*Genotype. A Chi-Square distribution test was
used to analyse all the GLM models. Differences were identi-
fied by the application of a pair-wise comparison analysis
with Bonferroni correction. Rosette area for control and
infested plants were compared by t-test. For all tests, results
having p values <0.05 were considered as significant. All stat-
istical and data analysis was performed using the R software
version 3.5.3 [62].
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1186/512870-020-02584-0.
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damage by Assess 2.0. Table S2. Combination of detection system and
sensitivity used to identify damage by CompuEye. Table S3. Descriptive
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Additional file 2: Macro S1. Assess macro used to select area of
interest and identify damaged areas. Macro S2. Fiji macro used to
transform grey scale images to black/white. Macro S3. Fiji macro used to
identify the pixel cluster size. Macro S4. Fiji macro used to calculate
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appearance of damage clusters in Bla-2, Col-0 and Kon control rosettes.

Additional file 3: Table S1. Statistical R output for GLM analysis. The
test compares the damaged areas identified by the automatic methods
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genotype. Table S2. Statistical R output for GLM analysis. The test com-
pares the damaged areas identified by the automatic methods under
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roni correction comparing method results under different lighting
conditions. The test compares the damaged areas identified by the auto-
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grounds for the genotypes: Bla-2, Col-0 and Kon. Table S4. Statistical R
output for GLM analysis. The test compares the damaged areas identified
by the automatic methods under three lighting conditions and white/
black backgrounds for the controls of the genotypes: Bla-2, Col-0 and
Kon. Table S5. Pair-wise comparison with Bonferroni correction compar-
ing control rosette results under different lighting conditions. The test
compares the damaged areas identified by the automatic methods under
three lighting conditions on white/black backgrounds for the control of
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Additional file 4. Flow chart depicting the general steps for the three
automatic analysis tested.
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