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Abstract

Background: Sweet osmanthus (Osmanthus fragrans Lour.) is one of the top ten traditional ornamental flowers in
China. The flowering time of once-flowering cultivars in O. fragrans is greatly affected by the relatively low
temperature, but there are few reports on its molecular mechanism to date. A hypothesis had been raised that
genes related with flower opening might be up-regulated in response to relatively low temperature in O. fragrans.
Thus, our work was aimed to explore the underlying molecular mechanism of flower opening regulated by
relatively low temperature in O. fragrans.

Results: The cell size of adaxial and abaxial petal epidermal cells and ultrastructural morphology of petal cells at
different developmental stages were observed. The cell size of adaxial and abaxial petal epidermal cells increased
gradually with the process of flower opening. Then the transcriptomic sequencing was employed to analyze the
differentially expressed genes (DEGs) under different number of days' treatments with relatively low temperatures

"o

(19°C) or 23 °C. Analysis of DEGs in Gene Ontology analysis showed that “metabolic process”, “cellular process’,
"binding”, “catalytic activity”, “cell”, “cell part”, “membrane”, “membrane part”, “single-organism process’, and
“organelle” were highly enriched. In KEGG analysis, “metabolic pathways”, “biosynthesis of secondary metabolites”,
“plant-pathogen interaction”, “starch and sucrose metabolism”, and “plant hormone signal transduction” were the
top five pathways containing the greatest number of DEGs. The DEGs involved in cell wall metabolism,

phytohormone signal transduction pathways, and eight kinds of transcription factors were analyzed in depth.

Conclusions: Several unigenes involved in cell wall metabolism, phytohormone signal transduction pathway, and
transcription factors with highly variable expression levels between different temperature treatments may be
involved in petal cell expansion during flower opening process in response to the relatively low temperature. These
results could improve our understanding of the molecular mechanism of relatively-low-temperature-regulated
flower opening of O. fragrans, provide practical information for the prediction and regulation of flowering time in
O. fragrans, and ultimately pave the way for genetic modification in O. fragrans.
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Background

Osmanthus fragrans Lour. (Oleaceae) is one of the top
ten traditional ornamental plants in China with more
than 2500 years’ history of cultivation [1]. It is a small
evergreen tree, grown as ornamental plants for its fra-
grant edible flowers. Cultivars of O. fragrans could be di-
vided into once-flowering group and recurrent-flowering
group according to different flowering habits [2]. The
once-flowering cultivars bloom in autumn and the flow-
ering time varies greatly in different areas, such as in
Hangzhou, Shanghai, Nanjing, and Suzhou, or even in
different years in the same area [3]. The researches on
the flowering time of different cultivars indicated that
relatively low temperature before blooming is the most
important environmental factor determining the flower
opening of O. fragrans [3, 4]. However, the knowledge of
molecular mechanism of flower opening in O. fragrans,
especially response to relatively low temperature, still re-
mains limited.

In many higher plants, the growth of flower petals is the
most remarkable process during flower opening. Flower
petals are the most important component of reproductive
organs and play vital roles in attracting the suitable polli-
nator(s). Flower color, size, shape and appearance, which
are determined by flower petal, are important traits appre-
ciated by the breeders and consumers [5]. One of the
traits, the size of flower petal is determined by cell division
at early phases of petal growth and cell expansion at later
stages of flower opening [6].

Cell expansion is accompanied by a series of
process including cell wall loosening, cellulose biosyn-
thesis, polysaccharides conversion into soluble carbo-
hydrate, ion and water uptake, and cytoskeleton
rearrangement [7]. Cell wall loosening proteins in-
clude expansin (EXP), xyloglucan endotransglycosy-
lase/hydrolase (XTH), endo-1,4-B-D-glucanase, and
pectinase [8]. Among them, EXP and XTH particu-
larly participate in disrupting the non-covalent bonds
between the cellulose microfibrils and the cross-
linking glycans of the cell wall to increase the cell-
wall creep rate, while pectinase and endo-1,4-B-D-glu-
canase can degrade the cell wall [9]. In wintersweet
(Chimonanthus praecox), the expressions of EXP
genes increase during flower opening [10]. The devel-
oping petals of carnation show high activities of cellu-
lase and pectin esterase [11]. These findings reveal
that petal growth relevant to flower opening is prob-
ably attributed to cell expansion. Moreover, soluble
carbohydrates depending on the degradation of poly-
saccharides can act as osmotically active compounds
which could lower the osmotic water potential and fa-
cilitate water influx in order to allow cell expansion
[12]. The concentration of soluble carbohydrates in
the petals will increase in the flower opening process
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of plants such as carnation [13], rose [14], chrysan-
themum [15], Tweedia caerulea [16], and lisianthus
[17].

Cell expansion is regulated by both external factors,
such as temperature, humidity, and the quality and
quantity of light, and internal factors, such as the circa-
dian clock and phytohormones [18, 19]. Phytohormones
are the most important mediators regulating flower
opening and could be affected by circadian factors or en-
vironmental factors. As far as the present researches are
concerned, most of the phytohormones, such as auxin
(AUX), gibberellin (GA), ethylene (ETH), brassinosteroid
(BR), jasmonic acid (JA) and abscisic acid (ABA), are
proven to affect flower opening [5, 6, 20-22].

In this research, potted plants of O. fragrans ‘Yanhong
Gui’ were employed as materials to research the effects
of different temperature conditions on flower opening
process under controlled relatively low temperatures.
Then the transcriptomic sequencing was used to analyze
the differentially expressed genes (DEGs) after different
number of days’ treatment under relatively high or low
temperatures to figure out the key genes involved in the
regulation of flower opening in relation to relatively low
temperature. This study would lay foundation on fully
revealing the molecular mechanism of relatively-low-
temperature-regulated flower opening of O. fragrans and
provide theoretical reference for the prediction and
regulation of flowering time and genetic modification in
O. fragrans.

Results

Scanning electron microscopy (SEM) and transmission
electron microscopy (TEM) analysis

Developmental stages of sweet osmanthus flowers for
SEM and TEM analysis were described as follows: stage
1 (S1), the outer bud scales unfurled and the inner bud
scales still furled; S2, the bud became globular-shaped
and the inside bracts covering the inflorescence was vis-
ible; S3, the inflorescence burst through bracts and the
florets closely crowded; S4, initial flowering stage; S5,
full flowering stage; S6, pollen-scattered stage. Observa-
tion on the cell size of adaxial and abaxial petal epider-
mal cells with SEM revealed that cell size of adaxial
petal epidermal cells increased gradually (P<0.05, by
Duncan’s multiple range test) from S1 to S6 (Fig. 1la,
Table S1), while that of abaxial petal epidermal cells en-
larged gradually from S1 to S5, reached the peak at S5,
and then greatly decreased from S5 to S6 (Fig. 1b, Table
S1). These results were coincident with results in Gail-
lardia grandiflora [23], carnation [24] and T. caerulea
[16], indicating that the cell division ceased and cell ex-
pansion occurred during floral opening process. How-
ever, in rose [25] and E. grandiflorum [26] cell division
and cell expansion simultaneously appeared during this
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flowering stage; S5, full flowering stage; S6, pollen-scattered stage

Fig. 1 Observation on the petal cells of sweet osmanthus flower from S1 to S6 with SEM and TEM. a Observation on adaxial petal epidermal cells
with SEM. White bar 50 um; b Observation on abaxial petal epidermal cells with SEM. White bar 50 um; ¢ Observation on adaxial petal epidermal
cells with TEM. White bar 5 um. S1), the outer bud scales unfurled and the inner bud scales still furled; S2, the bud became globular-shaped and
the inside bracts covering the inflorescence was visible; S3, the inflorescence burst through bracts and the florets closely crowded; S4, initial

process. What’s more, based on TEM observation, it was
found that vacuole occupied most area of adaxial petal
epidermal cells in O. fragrans (Fig. 1c, Table S1). The
same situation occurred in E. grandiflorum [26]. These
results indicated that the petal cell expansion was

accompanied by the enlargement of vacuole. Vacuole
size increased gradually from S1 to S6. At S2, vacuole
size of cells was nearly two times as large as that at S1.
With the cell development, vacuole size of cells at S6
was just one time larger than that at S2 (Fig. 1c, Table
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S1), suggesting that the growth rate from S1 to S2 was
the highest during flower development.

Bud appearance with treatments

Before 23°C or 19°C treatment, the buds of all plants
were at S1, and they were spindle-shaped, with unfurled
outer bud scales and furled inner bud scales. Bud ap-
pearance remained the same under 23 °C treatment for 2
d, 4 d, and 6 d (H2, H4, H6), as well as the 19 °C treat-
ment for 2 d and 4 d (L2 and L4). When treated with
19°C treatment for 6 d (L6), the bud stage reached at
S2, suggesting that the relatively low temperature, like
19°C, helps ‘Yanhong Gui’ blossom in experimental
condition.

lllumina sequencing and de novo assembly of sequence
reads

To reveal the effect of 19°C on the transcriptomic
change in ‘Yanhong Gui’, we collected three biological
replicate samples of H2, H4, H6, L2, L4, and L6 for ref-
erence transcriptome sequencing and RNA-seq analysis.
Reference transcriptome sequencing generated 164,753,
984 raw reads and 110,307,366 clean reads (Table S2). A
total of 152,247 transcripts with average length of 751 nt
were obtained and 96,920 unigenes with average length
of 873 nt were yielded after all clean reads were assem-
bled (Table S3).

Functional annotation and classification

The assembled unigenes were aligned to Non-Redundant
Protein Sequence Database (NR), Nucleotide Sequence
Database (NT), Swiss-Prot Database, Kyoto Encyclopedia
of Genes and Genomes (KEGG) Database, Eukaryotic
Orthologous Groups of proteins (KOG) Database, Gene
Ontology (GO) Database, and InterPro Database, in order
to obtain the putative annotations (Table S4). Totally, 61,
654 (63.61%) unigenes were successfully annotated using
at least one database, while 8150 (8.41%) unigenes were
annotated using all seven databases. Total 57,721 (59.56%)
of unigenes were annotated using NR database, 59.26% of
which have high homology to sequences from Sesamum
indicum (Fig. S1). In total, 37,284 unigenes were matched
in the Swiss-Prot database, which is about 38.47% of all
annotated unigenes (Table S4). There were 40,764 uni-
genes mapped into 134 KEGG pathways which can be di-
vided into six large pathways including “cellular
processes”, “environmental information processing”, “gen-
etic information processing”, “human diseases”, “metabol-
ism”, and “organismal systems” (Table S5). The pathways
with the highest numbers of unigenes were “metabolic
pathways” (Ko01100, 8561 unigenes, 21%), followed by
“biosynthesis of secondary metabolites” (Ko01110, 4440
unigenes, 10.89%), “plant-pathogen interaction” (Ko04626,
1876 unigenes, 4.6%), and “plant hormone signal
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transduction” (Ko04075, 1444 unigenes, 3.54%) (Table
S5). Next, GO analysis was performed and a total of 16,
014 unigenes (16.52% of all annotated unigenes) were cat-
egorized into 53 GO terms under three main categories:
biological process, cellular component, and molecular
function (Fig. S2). Proteins related to “metabolic process”,
“cellular process”, and “single-organism process” were
enriched in biological processes. The “single-organism
process” category defines a biological process involving
only one organism, and the 4806 unigenes annotated as
such may be related to flowering organisms specifically. In
the cellular component category, the “cell”, “cell part”, and
“membrane” were the most highly presented GO terms.
Under the molecular function category, the “catalytic ac-
tivity”, and “binding proteins” were the most enriched
(Fig. S2). We also performed KOG analysis to evaluate the
functions of the assembled unigenes and 43,496 unigenes
were assigned 25 KOG classification (Fig. S3). Among the
25 KOG classification, the cluster of “general function pre-
diction only” (11,753 unigenes, 27.02%) represented the
largest group, followed by “signal transduction mecha-
nisms” (6000 unigenes, 13.79%) and “function unknown”
(4761, 10.95%). “Cell motility” has the smallest proportion,
only accounted for 0.20% (Fig. S3). Additionally, 46,405
(47.88%) unigenes in the transcriptome library were anno-
tated against InterPro database (Table S4).

RNA-sequencing (RNA-seq) and mapping to the reference
transcriptome database

Eighteen ¢cDNA libraries for RNA-seq analysis were re-
spectively sequenced, generating 23.58-24.14 Mb raw
reads (Table S2). Furthermore, we obtained 23.58—24.13
Mb clean reads in 18 cDNA libraries, with the clean data
rate of 99.94-99.97%. Then, these clean reads were re-
spectively mapped to the reference transcriptome data-
base. Total mapped reads percentage and unique match
percentage in the 18 libraries were similar. Total
mapped reads percentage ranged from 86.39 to 88.44%,
and unique match percentage ranged from 53.7 to
56.29% (Table S6). The correlation coefficients among
biological replications are greater than 0.94 in all sam-
ples (Fig. 2, Table S7).

Screening and analysis of DEGs

We performed a detailed comparative analysis of the
DEGs (P value <0.01 and |logoRatio| > 1) in three com-
parisons including L2 vs H2, L4 vs H4, and L6 vs H6. In
the L2 vs H2 comparison, there were 7365 and 15,864
unigenes were down-regulated and up-regulated, re-
spectively. Meanwhile, 8393 and 22,755 unigenes were
down-regulated and up-regulated in the L4 vs H4 com-
bination, respectively. In the L6 vs H6 comparison, 9551
unigenes were down-regulated and 22,011 unigenes were
up-regulated, respectively (Fig. 3a). In total, there were
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more up-regulated unigenes than down-regulated uni-
genes during floral opening under relatively low
temperature. Additionally, 7496 up-regulated DEGs were
shared by three comparisons, while 4108, 6132, and
6913 up-regulated DEGs were only up-regulated in the
L2 vs H2, L4 vs H4, and L6 vs H6 comparison, respect-
ively (Fig. 3b). What’s more, 2968 down-regulated DEGs
were shared by three comparisons, while 2954, 2189,
and 3806 down-regulated unigenes were only down-
expressed in the L2 vs H2, L4 vs H4, and L6 vs H6 com-
parison, respectively (Fig. 3c).

GO enrichment and KEGG pathway analysis of DEGs
In this work, GO analysis were used to classify the func-
tions of the annotated DEGs under different

temperatures treated for different number of days. In all
comparisons, the most significantly enriched GO terms
in biological process were “metabolic process”, “cellular
process”, and “single-organism process”. In cellular com-
ponent, five GO terms including “cell”, “cell part”,
“membrane”, “membrane part’, and “organelle” were
highly enriched. “Binding” and “catalytic activity” which
were in the molecular function were significantly
enriched in all comparison’s groups (Table 1). All DEGs
were mapped to KEGG pathways in order to investigate
the major pathways of them (Table 2). They were
enriched in 132, 133, and 134 KEGG metabolic pathways
in the L2 vs H2, L4 vs H4, and L6 vs H6 comparisons.
In all the comparison group, “metabolic pathways”, “bio-
synthesis of secondary metabolites”, “plant-pathogen
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of the number of down-regulated DEGs between the three comparisons. L2, L4 and L6 respectively represents the samples from the plants under 19 °C
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Table 1 The top ten most enriched GO terms of DEGs in all comparison groups

GO term hierarchy GO term hierarchy 2 Number of DEGs

! L2 vs H2 L4 vs H4 L6 vs H6

Biological process metabolic process 1823 2328 2539
cellular process 1693 2190 2331
single-organism process 1117 1424 1556

Cellular component cell 1287 1626 1729
cell part 1271 1610 1710
membrane 1162 1395 1613
membrane part 886 1052 1229
organelle 866 1117 1187

Molecular function binding 1628 2135 2266
catalytic activity 1693 2136 2379

Note: L2, L4 and L6 respectively represents the samples from the plants under 19 °C treatment for 2 d, 4 d, and 6 d; H2, H4 and H6 respectively represents the

samples from the plants under 23 °C treatment for 2 d, 4 d, and 6 d
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Table 2 The top ten most enriched KEGG of DEGs in all comparison groups

Pathway D L2 vs H2 L4 vs H4 L6 vs H6

Percent (%)  P-value Percent (%)  P-value Percent (%)  P-value
Metabolic pathways ko01100  22.94 3.69895E-07  23.64 2.02306E-16 2378 9.35908E-20
Biosynthesis of secondary metabolites ko01110 1243 1.83429E-07  13.09 808594E-19  13.23 3.08193E-23
Plant-pathogen interaction ko04626 542 290029E-05 543 4.82036E-07 567 1.43759E-11
Starch and sucrose metabolism ko00500  4.03 9.30016E-08  3.69 381391E-05 377 8.46098E-07
Plant hormone signal transduction ko04075 396 0.01001351 427 6.50429E-07  4.65 2.91758E-15
Protein processing in endoplasmic reticulum ko04141  3.04 0.03015519 282 0.2699489 263 0.827178
Carbon metabolism ko01200 2.84 0.1309717 2.87 0.06273836 3.1 0.000191297
Endocytosis ko04144 272 05626473 293 0.07581657 2.73 0.5247731
Ribosome ko03010 276 0.006505746 294 4.06865E-06 - -
Phenylpropanoid biosynthesis ko00940  2.55 2.74168E-13 - - - -
Amino sugar and nucleotide sugar metabolism  ko00520 251 0.007218067  2.66 1.27859E-05 246 0.003741373
Biosynthesis of amino acids ko01230 245 0.8067985 266 0272135 278 0.04693815
Spliceosome ko03040 - - 282 0.8755484 252 0.9998826
RNA transport ko03013 - - - - 2.56 0.997384

Note: L2, L4 and L6 respectively represents the samples from the plants under 19 °C treatment for 2 d, 4 d, and 6 d; H2, H4 and H6 respectively represents the

samples from the plants under 23 °C treatment for 2 d, 4 d, and 6 d

interaction”, “starch and sucrose metabolism”, and “plant
hormone signal transduction” were the top five pathways
with the largest number of DEGs (Table 2).

Identification of DEGs involved in the cell wall
metabolism

The expansion of petal cells depends on the cell wall
loosening and cellulose biosynthesis, soluble carbohy-
drate allocation, ion and water transport, and cytoskel-
eton rearrangement [7]. Therefore, we screened the
DEGs which may be involved in the cell wall metabolism
under different temperatures. EXP and XTH, are two
kinds of essential proteins involved in cell expansion,
loosening and rearranging the cell wall fibers in growing
tissues [8]. In cucumber, EXPs consist of four sub fam-
ilies: a-EXP, B-EXP, EXP-like A and EXP-like B and
were first discovered to loosen cell walls in pH
dependent manner [27]. In our study, four a-EXP and
one B-EXP were significantly different expressed under
23°C and 19 °C comparisons (Fig. 4, Table S8). Among
them, four a-EXP were up-regulated under relatively low
temperature (19 °C) and one S-EXP was down-regulated
under the treatment of 19 °C.

Eleven unigenes which encoded as XTH protein were
significantly expressed, seven of them (CL256.Contig3,
CL3252.Contig2, CL10571.Contigl, Unigenel021, Uni-
genel631, Unigene24045, and Unigene25288) were up-
regulated under the treatment of 19°C and four
(CL1547.Contigl, CL7741.Contigl, CL8777.Contigl, and

Unigene26777) of them were down-regulated under
19 °C treatment (Fig. 4, Table S8).

The expression of unigenes involved in cell wall syn-
thesis, modification or hydrolysis which probably partici-
pate in the process of flower opening were also assessed
(Fig. 4, Table S8). There were three cellulose synthase
(CES) genes, six xylosidase (XYL) genes, two pectin es-
terase (PE) genes, five polygalacturonase (PG) genes, and
two pectate lyase (PL) genes with dramatic fold change
in all three comparisons (Fig. 4, Table S8). The expres-
sion of all CESs and PLs genes increased when treated
with relatively low temperature of 19°C for different
number of days. Most of the XYLs were up-regulated
under relatively low temperatures except Unigenel7352.
Three PGs’ expression increased and two of them de-
creased when exposed to relatively low temperature.
One PE gene was greatly up-regulated while one PE
gene was down-regulated when the plants were exposed
to 19°C. Several genes associated with cell wall synthe-
sis, modification or hydrolysis are up-regulated, suggest-
ing that these genes may play vital roles in regulating
petal cell expansion.

Aquaporins can facilitate the passage of water and/or
small neutral solute fluxes across membranes and can be
classified into four subclasses such as plasma membrane
intrinsic proteins (PIPs), tonoplast intrinsic proteins
(TIPs), nodulin-26-like intrinsic membrane proteins
(NIPs) and small basic intrinsic proteins (SIPs) based on
the sequence homology and cellular localization [28].
Three kinds of aquaporins including two PIPs, two TIPs
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and three NIPs, were found in our transcriptomes and
most of them were significantly up-regulated under rela-
tively low temperature (Fig. 4, Table S8). However, only
the expression level of two NIPs (Unigene22675, and
Unigene40148)  decreased under relatively low
temperature. Dehydrins are hydrophilic, thermostable
stress proteins and some of them were identified as os-
motic stress-responsive protein which could facilitate
the inflow and outflow of water [29]. In our research, all
the dehydrin genes were down-regulated when exposed
to relatively low temperature (Fig. 4, Table S8).

Identification of DEGs involved in the phytohormone
signal transduction pathway

There are some reports on phytohormones that can
affect the floral opening [19], and therefore, we explored
the DEGs involved in eight phytohormone signal trans-
duction pathways. The levels of endogenous AUX were
much higher in the basal petals and application of ex-
ogenous indole-3-butyric acid (IBA) can enlarge the cell
length in chrysanthemum [5]. Many unigenes involved
in AUX signal transduction pathway were increasingly
expressed with the flower opening of rose, suggesting
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that AUX signaling participated in petal development
[30]. In this study, nineteen unigenes were significantly
differently expressed under different temperatures in AUX
signal transduction pathway which included the auxin
transporter protein (AUX1), auxin-induced protein/auxin-
responsive protein (AUX/IAA), auxin response factor
(ARF), auxin responsive GH3 family protein (GH3) and
small auxin-up RNA family protein (SAUR) (Fig. 5). The
majority of them had lower expression under relatively
low temperature, especially three ARF members
(CL661.Contig9, CL274.Contigl, and CL12908.Contig6),
which decreased sharply as the treated days lengthened.
Only one AUXI1, two AUX/IAA, one ARF, and one GH3
were up-regulated when treated with relatively low
temperature (Fig. 5, Table S9).

The phytohormone JA and its derivative methyl jas-
monate (MeJA) can affect the flower opening of E.
grandiflorum [31], rice [32], A. thaliana [20]. The gene
BIGPETALp (BPEp), which can be regulated by JA, may
also play a role in JA-mediated petal growth [6]. In JA
signal transduction pathway, most of genes such as
Coronatine-insensitive protein 1 (COII), jasmonate ZIM
domain protein (JAZ), and MYC2 were down-regulated
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in this study. Only two JAZ (Unigene43759 and
CL8754.Contig3) genes and four MYC2 (CL37.Contigl,
CL6240.Contigl, CL3114.Contig2, and CL2658.Contig2)
genes were up-regulated under 19 °C treatment (Fig. 5,
Table S9), suggesting that these unigenes may function
as positive regulators of flower opening in O. fragrans
(Fig. 5, Table S9). Only six TGACG-sequence-specific
DNA-binding protein (T'GA) genes in salicylic acid (SA)
signal transduction pathway were expressed differently
under different temperatures and two of them
(CL2000.Contigl and CL225.Contigl) were increased
after 19 °C treatment (Fig. 5, Table S9).

Nineteen unigenes in the gibberellin acid (GA) signal-
ing pathway were also differentially expressed under dif-
ferent temperatures (Fig. 5). Five of six GID1 were
down-regulated under relatively low temperature, with
the exception of Unigene22649, which was nearly in-
creased eight thousand times after 2 d treatment of
19°C. Three DELLA and five PIF3 genes were decreased
while two DELLA and three PIF3 genes were increased
after relatively low temperature treatment (Fig. 5, Table
S9). Only four of twenty unigenes including two PYR/
PYL and two ABF (ABA responsive element binding
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factor) genes in ABA signal transduction pathway
were up-regulated after 19 °C treatment. However, the
expression of one ABF (CL12556.Contigl) was de-
creased by two hundred times under the relatively
low temperature at 19°C compared with that under
23°C (Fig. 5, Table S9).

Most of the unigenes in cytokinin (CTK) signal transduc-
tion pathway were down-regulated under relatively low
temperature including all Arabidopsis histidine phospho-
transfer Protein (AHP) genes, and all B-ARR members, espe-
cially the AHP (CL11134.Contig2), which was decreased
severely after 6 d treatment of 19 °C (Fig. 5). However, most
of the A-ARR members (CL7866.Contig2, Unigenel8524,
and CL8358.Contigl) were up-regulated when treated by
relatively low temperature (Fig. 5, Table S9).

The effect of ETH on flower opening may be dose-
dependent, species-dependent or cultivar-dependent [19].
In ETH signal transduction pathway, the expression pat-
tern of some ethylene receptor (ETR, Unigenel4562),
serine/threonine-protein kinase (CTR1, CL10648.Con-
tig2), and ethylene insensitive 3 protein (EIN3,
CL10633.Contigl) genes, were more complicated. For ex-
ample, the expression level of Unigenel4562 and
CL10633.Contigl were decreased when treated by 2 d of
relatively low temperature, while they were increased
when the treatment time was lengthened. Most of the
genes in this pathway were down-regulated after the rela-
tively low temperature’ treatment (Fig. 5, Table S9).

Cell elongation is also regulated by BR, which is a
plant-specific steroid hormone and longitudinal cell ex-
pansion of BR mutants is greatly reduced in A. thaliana
[33, 34]. Eight of fifteen unigenes in the BR signal trans-
duction pathways were increased under 19 °C treatment,
including all brassinosteroid receptor (BRI1), one BRI1
Associated receptor Kinase 1 (BSK), one TCH4, and one
cyclin-D3 (CYCD3) (Fig. 5, Table S9). The expression
level of BRI1, especially Unigene37674 and Uni-
gene35684 were dramatically increased when treated
with 19°C. However, seven of fifteen unigenes in this
signal pathway were decreased under 19°C treatment.
The expression level of BZR1/2 was eight-fold under
19°C compared to 23 °C, and the expression level were
continuously increased as the treatment time prolonged,
suggesting the same role of BZR1/2 in petal develop-
ment of O. fragrans and G. hybrida. Similarly, the ex-
pression level of TCH4 (CL8777.Contig2) was enhanced
by relatively low temperature.

Identification of DEGs of transcription factors (TFs)

Many TFs changed dramatically under different temper-
atures, so we improved the screening criteria. The TFs
with a |log,Ratio| =22 in any comparison were analyzed
further. 79 TFs which were divided into eight gene fam-
ily (Fig. 6, Table S10) were selected for further analysis
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because they may be involved in petal cell expansion [5,
30]. In the MYB TF family, only five out of twenty genes
(Unigene36971, CL242.Contig2, CL10695.Contig2, Uni-
genell061, and Unigene30676) were up-expressed under
relatively low temperature. Overexpression of the
MYB62 gene results in a GA-deficient phenotype and
can be partially alleviated with the application of exogen-
ous GA [35]. In our study, we did not find the homolo-
gous unigenes to MYB62 in O. fragrans, but some
unigenes homologous to other gene family members,
such as MYB4 (CL9450.Contigl) and MYB86 (Uni-
genel9015), were expressed differently under different
temperatures (Fig. 6, Table S10), indicating they may be
involved in the regulation of relatively low temperature
on flowering opening in O. fragrans.

In the bHLH TF family, three genes (Unigene30441,
CL796.Contig2, and CL6865.Contigl) were up expressed
after treated by 19°C. Among them, especially the
bHLH79, the expression level of bHLH79 isoform X2
(CL6865.Contigl) increased five hundred times when
treated by 6 d of relatively low temperature. However, the
expression level of bHLH 117 decreased sharply when ex-
posed to 19°C. None of the TF genes was up-regulated
under relatively low temperature in the AP2 and NAC TF
family. Plant-specific NAC family genes can regulate plant
development, cell division, senescence, and responses to
abiotic stress [36]. In recent research, the N-terminal
binding domain of RhNAC2 could be bound to the pro-
moter of RIEXPA4 thus regulating of dehydration toler-
ance during the expansion of rose petals [37]. The
expression of all the members of NAC family decreased
under the relatively low temperature (Fig. 6, Table S10),
indicating that the suppression of NAC genes may facili-
tate the expression of EXPs to promote the elongation of
flower petals in O. fragrans.

In the TCP TF family, two genes (CL9936.Contig2,
and Unigenel0400) were up-expressed under relatively
low temperature treatment. miRNAs, such as miR-
NA319a, have also been found to be involved in petal
elongation by regulating TCP4 which regulates AUX ef-
fects [38]. Therefore, TCP4-like gene (CL9936.Contig2,
and Unigenel0400) increased with relatively low
temperature treatment, implying they may regulate the
petal development in O. fragrans (Fig. 6, Table S10).

Four out of nine genes were up-regulated in the
MADS TF family, especially the AGAMOUS gene,
which is the C-function genes, and its expression in-
creased significantly with the 19°C treatment. In the
WRKY TF family, only two genes (CL11608.Contigl,
and Unigene860) were up-regulated under relatively low
temperature. In Zinc finger TF family, four out of eleven
genes’ expression increased when exposed to 19 °C. Gen-
erally speaking, only a small proportion of TFs were up-
regulated under relatively low temperature.
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Fig. 6 Heat maps of TF genes between the three comparisons (L2 vs H2, L4 vs H4, and L6 vs H6). Red rectangles represent the up-regulated
unigenes, and green rectangles represent the down-regulated unigenes. All information for each gene list can be found in Table S10. L2, L4 and
L6 respectively represents the samples from the plants under 19°C treatment for 2 d, 4 d, and 6 d; H2, H4 and H6 respectively represents the
samples from the plants under 23 °C treatment for 2 d, 4 d, and 6 d

gRT-PCR analysis

Ten differentially expressed unigenes comprising four
genes involving in cell wall metabolism, four genes re-
lated to phytohormone signal transduction and two
genes of TF were analyzed by qRT-PCR in order to

confirm the results of RNA-Seq. All ten genes tested by
qRT-PCR confirmed significant differential expression
(P <0.05) between 19°C and 23°C treatments (Fig. 7).
Although fold changes of the ten genes between 19°C
and 23 °C treatments were not always similar in RNA-



Fu et al. BMC Plant Biology (2020) 20:337 Page 12 of 16
P
EXP XTH XYL Pl
CL10934.Contig2 CL7741.Contig1 CL1473.Contig2 CL6542.Contig1
160 65 25 25 §& 250 55 160 75
£ 1404 il 3 v 8 i § 140 i
s Fs & S 20 20 & S 200 Ls & S L~
5 120 - % H 3 o S 120 a
13 S £ L= £ S E 5 %5
5 L4 S 5 5 S S S S
5 100 4 ks B 15 15 B E 150 4 3 o 2 1004 4 8
5 13 5 < 5 S S <
2 80 4 F3 v% 2 v% 2 -% 2 80 .%
% 0 4 x |5 g £ 104 1.0 g, £ 100 t2 g £ e 3 §
i g 5 g ) £ 5 ] 2 8
s @ L4 § S 5 05 g E 50 [ § z W ;
g 209 ] & : & ] & 209 Y8
0 Y = — [ 0 00 & 0 o 2 0 0 g
2d 4d 6d
DELLA ABF B-ARR TGA
CL3343.Contig3 CL1427 Contig2 CL9105.Contig2 CL2000.Contig2
6 128 30 14 & 40 20 & 25 06 &
i E ] o = o el T 3
35 10 & 3 2 12 2 3 4 2 L0 I Fos &
H T 3 03 s 55 52 L
g+ E § s g : 8 n Ar foes
2 06 2 g 08 2 = 5 215 /A &
g3 ] g 15 $ g 20 10 § 3 / Los §
§ 04 2 § 06 & s 2 s 2
8 3 8 8 g 8 g 10 14
52 02 § 5 101 04 § 5 g B 3 02 &
= 2 3 = 43 = 10 ros 3 = & 3
£ 1 00 £ £ 54 02 $ * 2 g os Lot ¢
w kel [ 3 w g w i}
0 : 02 ¢ 0 ; A : 0o 0 ! 00 & 00 . ' z 00 &
2d 2d 4d 6d 2d 2d 4d 6&d
MyB TCP
Unigene56106 Unigene6406
14 18 § 12 20 &
s - g
£ 12 Fie g .l F1s &
b / Lia 5 T Hie &
£ 10 / L2 5 £ g e 14 5 [/ 19°C (RNA-seq)
§ 89 tio g £ L] c,___‘} ’ 1§ : 1 23°C (RNA-seq)
§ 6 * Z ros g g Los & —e— 19°C (qRT-PCR)
5 4 - [%¢ ¢ s 4 Fos & —-0—- 23°C (aRT-PCR)
% 24 o4 o g 5] Fo4 ¢
[t N Fo2 2 & Loz 2
0 ’ i 2 00 & 0 Y 3 00 &
2d 4d 6d 2d 4d 6d
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Seq and qRT-PCR results, the overall trend was consist-
ent. Generally, the expression levels of CL10934.Contig2
(EXP), CL1473.Contig2 (XYL) and CL6542.Contigl (PL)
were significantly lower in 23 °C treatment than those in
19°C treatment with qRT-PCR analysis, while the ex-
pression levels of other seven genes were higher in 23 °C
treatment. Similarly, CL10934.Contig2, CL1473.Contig2
and CL6542.Contigl were down-regulated, while other
seven genes were up-regulated in 23 °C treatment, which
verified the accuracy of RNA-Seq results.

Discussion

The flowering time of once-flowering cultivars of O. fra-
grans is greatly affected by the relatively low temperature
and they need a certain amount of low temperature ac-
cumulation at autumn before blooming [3]. The sensitiv-
ity difference to the requirement of relatively low
temperature among different cultivars leads to the vari-
ation of flowering time [3]. In this study, 19 °C treatment
in experimental condition for 6 d is enough for flower
opening in the cultivar “‘Yanhong Gui’. The early flower-
ing cultivar such as “Zao Yingui’ would blossom when
the daily minimum temperature lower than 21 °C last for
after 5-8 days, while the late blossoming cultivar, such
as ‘Wan Yingui’, needs 5-8 days of the daily minimum
temperature lower than 19 °C [39].

Flower opening is accompaning with cell division and
cell expansion in petal cells [7]. are up-regulated during
floral open process in sandersonia [40], Mirabilis jalapa
[41], petunia [9], carnation [42], and wintersweet [10].
Similarly, during flower opening of O. fragrans under
relatively low temperature, four a-EXP were up-
regulated in this study (Fig. 4, Table S8). It was also re-
ported that B-EXP is more efficient in disrupting cell
wall polymers than a-EXP [41], however, one S-EXP was
down-regulated under 19 °C treatment. The result is co-
incidence with the results in rose [30], suggesting that -
EXP may be involved in petal development in a special
manner different from a-EXP. As to XTH, four rose
XTH genes (RbXTH3, RbLXTHS5, RbXTH6, and
RbXTH12) were up-regulated during flower opening and
associated with petal movement [43]. Rice OsXTHI2
gene can cause rice glume-unclosing after anthesis under
high temperature conditions [44]. In our experiment, we
cannot found the homologous genes of XTH3, XTHS,
XTH6 and XTH12, but other family members were dis-
covered. Most of XTH genes were up-regulated under
relatively low temperature, indicating that they may be
involved in the flower opening process of O. fragrans
and different family members may have different
functions.

These cell wall metabolism processes were also influ-
enced by multiple kinds of phytohormones via
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transcription factors [19]. The expression patterns of
phytohormone pathway genes are different under differ-
ent temperatures treated by different days in our re-
search. In A. thaliana, both the AUX and JA signal
transduction function synergistically during petal devel-
opment [45]. And ARFS8 can interacts with BIGPETALp
(BPEp) to regulate cell expansion in petals [6] and can
trigger the expression of MYB21 and MYB24 to induce
the production of JA to promote petal growth [45].
However, most DEGs involved in AUX and JA signal
pathways were down-regulated (Fig. 5, Table S9), sug-
gesting that the regulation of relatively low temperature
on flower opening in O. fragrans doesn’t depend on
AUX and JA signaling.

GA can regulate seed germination, stem elongation,
petal growth and flowering [46], and ABA has an antag-
onistically role such as in floral transition and fruit de-
velopment [47]. The same circumstance occurred in the
G. hybrida petal growth [22]. Compared to unigenes in-
volved in ABA signal transduction pathway, there were
much more unigenes in GA signal transduction pathway
which increased sharply under the treatment of 19°C.
This result was consistent with the result in rose [30].
However, whether this kind of antagonistic role exists in
petal growth of O. fragrans still needs further
demonstration.

ETH can promote flower opening in carnation, Phal-
aenopsis orchids, and petunia, but it inhibits flower
opening in several rose cultivars [19]. ETH can induce
the expression of DELLA genes via EIN3-3 when it
functions as inhibitors during flower opening in rose
[22]. In our study, EIN3 was down-regulated under rela-
tively low temperature (Fig. 5, Table S9), suggesting that
ETH may function negatively on flower opening in re-
sponse to relatively low temperature in O. fragrans.

In G. hybrida, BL shows more efficient effect on
lengthening the cells in the middle and basal regions of
petals than GA [21]. But the expression level of BES1/
BZR1 was decreased after only 0.5 h BR treatment, indi-
cating its vital role in petal cell expansion [21]. In our
study, expression level of the homologous unigene of
BZR1 (Unigene45694), decreased dramatically when ex-
posed to relatively low temperature (Fig. 5, Table S9),
suggesting the same role in petal development of O. fra-
grans as that in G. hybrida.

Conclusion

The comprehensive transcriptomic dataset relating to
flower opening of O. fragrans under relatively low
temperature (19°C) treatment was performed using
RNA-seq technology, and a group of DEGs, which may
regulate petal growth through pairwise comparison ana-
lysis of DEGs between different temperature treatments,
had been identified, including unigenes involved in cell
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wall metabolism, phytohormone signal transduction
pathway, and TFs. Overall, the resources generated in
this study would lay foundation on fully revealing the
molecular mechanism of relatively-low temperature-
regulated flower opening of O. fragrans and provide the-
oretical reference for the prediction and regulation of
flowering time and genetic modification in O. fragrans.
Our future research will be focused on understanding
the biological function of these candidate important
DEGs and revealing how these DEGs response to rela-
tively low temperature in O. fragrans.

Methods

Plant materials and treatments

Plants of O. fragrans ‘Yanhong Gui’ were potted and
grown in the resource nursery of Zhejiang Agriculture
and Forestry University. All plant materials were owned
by Zhejiang Agriculture and Forestry University. The de-
velopment of flower opening process are classified into
S1-S6 as described in this paper [3]. When the floral de-
velopment stage was at S1, potted plants were moved
into the growth cabinet with the temperature of 19°C
(relatively low temperature) or 23°C (relative high
temperature), respectively. The relative humidity was
about 50-60% and the photoperiod was 12 h light/12h
dark regime with an illumination of 80 umol-m™ s ",
Petals were harvested every 2 days after treatment until
the developmental stage of plants under 19 °C condition
reached S2. The samples were named as H2, H4, H6
(treated for 2 d, 4 d, and 6 d under 23 °C treatment, re-
spectively) and L2, L4, L6 (treated by 2 d, 4 d, and 6 d
under 19°C treatment, respectively). All samples were
collected at 10:00 am in order to avoid the influence of
diurnal rhythm. Three biological replicate samples were
collected to generate 18 samples in total. In addition,
petals at different developmental stages (S1-S6) were re-
spectively sampled for SEM and TEM analysis.

SEM and TEM analysis

According to previous studies [25, 48], SEM and TEM
were carried out and were observed and photographed
in Hitachi Model TM-1000 SEM and Model H-7650 re-
spectively in Zhejiang University. Cell size of adaxial and
abaxial petal epidermal cells, and vacuole size were
manually measured using Image | software (http://rsb.
info.nih.gov/ij/, NIH, MD, USA).

RNA extraction, cDNA library preparation and sequencing
RNA isolation and RNA purification of 18 samples were
carried out as described previously [49]. The cDNA li-
brary preparation and sequencing of 18 samples of O.
fragrans were respectively performed as described previ-
ously [50] for RNA-seq analysis. What’s more, a RNA
pool mixed from 18 RNA samples was used to construct
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a cDNA library for reference transcriptome sequencing.
The Illumina sequencing was performed at the Beijing
Genomics Institute (BGI) (Shenzhen, China) (http://
www.genomics.cn/index.php) according to the manufac-
turer’s instructions (Illumina Inc., San Diego, CA, USA).
A total of 18 sets of raw reads were obtained for RNA-
seq analysis, corresponding to H2-1, H2-2, H2-3, H4—
1, H4-2, H4-3, H6-1, H6-2, H6-3, L2-1, L2-2, L.2-3,
L4-1, L4-2, L4-3, L6-1, L6-2, and L6-3, while raw
reads were obtained for reference transcriptome corre-
sponding to ALL.

Transcriptome data processing and analysis

Raw reads were cleaned by removing the sequence of
adaptor, high content of unknown bases and low-quality
reads before downstream analysis to decrease data noise.
As O. fragrans did not have an appropriate reference
genome sequence, the Trinity method [51] was used to
de novo assemble all clean reads and the Tgicl method
[52] was used to cluster the transcripts to obtain non-
redundant unigenes. The assembled unigene sequences
were aligned by Blastn [53] to nucleotide database NT,
aligned by Blastx [53] or Diamond [54] to protein data-
bases NR, Swiss-Prot, KEGG, and KOG, and aligned by
InterProScan5 [55] to protein database InterPro to get
the annotations. With the NR annotation, GO annota-
tions of unigenes were obtained using Blast2GO soft-
ware [56]. FPKM (reads mapped per 1000 bp per million
sequenced reads) method was used in calculated expres-
sion level [57]. Comparisons of FPKM between samples
treated under different temperatures for the same num-
ber of days (L2 vs H2, L4 vs H4, and L6 vs H6 respect-
ively) were performed for each unigene. To identify the
DEGs in the two samples, the Audic and Claverie
method was employed [58]. Unigene with a P value
<0.01 and a |log,Ratio| =1 were considered significant
DEGs. All DEGs were mapped to each term of the GO
and KEGG databases. For the analysis of transcription
factors, |log,Ratio| >2 were marked to be significantly
different between the two samples.

Quantitative real-time PCR (qRT-PCR) analysis

The extraction of total RNA, first-strand cDNA synthe-
sis, and qRT-PCR were performed as previously de-
scribed [49]. Ten DEGs were randomly chosen and the
primer sequences were listed in Table S11. Gene relative
expression levels of those ten genes were normalized
relatively to the expression level of an internal control
OfACT [59] using the 27" method.

Statistical analysis

The statistical analysis of the size of adaxial petal epider-
mal cells, abaxial petal epidermal cells, and vacuole, as
well as relative expression level and FPKM analysis was
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performed by one-way analysis of variance (ANOVA)
using SPSS software version 18.0 (SPSS Inc., Chicago, IL,
USA). Duncan’s multiple range test was employed and
differences of P < 0.05 were considered significant.
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